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cm-1 The consequences of each of the three appro.'(imatiolls made by Kirkwood!n deriving tl!c LCI~nard-Jonc~-: 
cm-1 Devonshire cell theory are elucidated by a comparison with exact res~lts l~ the one-dimensIOnal case 01 

hard rods. This comparison gives an explicit calculation of the OI;c.. dlmcnslOna.1 communal entropy and 

(111-1 
shows that the single.occupancy approximation is exacl at close packmg, although It .does ~ot lc,~d to themlo
dynamic properties \vhich arc analytic functions of density. For two- and threc~dlmenSI?nal syst?IllS, ?u~ 

cm- I merieal fCSU Its sho\\' that the cell-theory entropy predictions are more accurate ~han m .one ~hmenslOn 
em-· I . because the particles are more localized. The morc-than.onc·particle-per-cell ~he?n~s provld~ slZ;lp]e and 

rigorous lower bounds 011 the entropy, but the convergence to the thermodynamiC lImIt by consldermg more 

teri,lls and more ~mrtic1es is slow. 

ot be 
. that 
cesses 1. INTRODUCTION 

d also 

phos- ELL theories have gained in interest recently 
6:Eu) because it could be shown that the pressure for C
at the 	 particles with hard-core potenti,t\s is given correctly 
Igh to 	 in the limit of close packing.l-3 This result was first 

suggested by numerical experiments.' These numerical 
experiments have also yielded the result, through inte
gration of the equation of state, that in both two and 
three dimensions the entropy is also nearly correctly 

photo- given at close packing by the Lennard-Jones-Devo.n
2Y of a shire cell theory.1> It was therefore thought worthwhIle 
l~alita to reexamine the foundation of the cell models in the 

is not hope of developing theories which could account for 
!iolates the small deviations. 

The physical reason that the pressure is given cor
lement rectlv in the limit is that the only characteristic volume 

on ,;hich the partition function can depend is the 
volume of the system less the volume of the particles, 
the free volume. The N-particle partition function is 
proportional to the Nth power of the free :olume.; Vries, 
This functional form is sufficient to determme theials, to 
pressure, but not the entropy, for which the coefficientements, 
multiplying this functional form is required. This cove dis-
efficient depends sensitively on the cooperative mo
tions possible in the system, since the magnitude of the 
effective free volume is determined by how localized 

Soc. Am. 
Iys. Rev. 	 a particle is. It is therefore surprising that the entropy 

is given so well by the cell theory, and this work was 
undertaken in an effort to understand this result. 
A further incentive for establishing the absolute en
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tropy at close packing is that it would enable one t.o 
draw the tie line between the solid and fluid branches 
of the hard-particle equation of state.6 Once the limiting 
properties have been theoretically determine~, it might 
be possible to go on and show that away irom close 
packing, the partition function, and hence th: the:mo
dynamic properties, are rigorously expreSSIble m a 
power series in the free volume,7 just as at low densities 
it can be proved that they are expressible in a power 
series in the reciprocal of the free volume.s 

Kirkwood9 showed that the Lennard-Jones-Devon
shire cell theory could be derived from the partition 
function by making three separate approximations. 
First, it was necessary to impose a fixed-cell structure 
on the system and to require that no particle leave it:s 
private cell. This so-called single-occupan~y app~ox:
mation can be expected to be exact only m the lImIt 
of close packing. Second, it was assumed that the cor
relation between the motions of neighboring particles 
could be neglected. This "product of singlet dis
tribution functions" approximation cannot be a very 
good approximation at high density. It is only rigor
ously valid in the limit of very low density where the 
particles are far enough apart to be independe~t. It 
can thus be predicted that, just as the self-conSIstent 
Hartree--Fock wavefunctions overestimate the energy, 
the self-consistent singlet distribution function, treat
ing all particles alike, will considerably over~stin:ate 
the free energy of a classical system. Hence, It nnght 
be expected that it is better not to cho~se the sel.f
consistent solution but to choose a solutIon more III 

keeping with the product approximation; namely, the 
one where all neighboring particles are locali~ed at 
their most probable position, at the centers of theIr cells, 
and hence uncorrelated with the central particle. This 

6 n J Alder and T. E. Wainwright, Phys. Rev. 127,359 (1962). 
7 n:;: Alder, W. G. Hoover, and T. E. Wainwright, Phys. Rev. 

Letters 11, 241 (1963). 
8 J. E. :Mayer and ]\f. G. Mayer, Statistical Mechanics (John 

Wiley & Sons, Inc., New York, 1940). 
9 J G. Kirkwood, J. Chern. Phys. 18,380 (1950). 
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third approximation does then lead to the Lennard
Jones-Devonshire cell theory, which is nearly quanti
tatively slIccessful for disks and spheres at high density. 

Each of these approximations has been quantita
tively evaluated in the one-dimensional hard-rod system 
for which the C;\,lct partition function is known.w This 
is 2dl appropriate system from the point of view that 
a particle is ahyays confined to a cell formed by its 
neighbors. It is this feature of the theory, however, 
which restricts its applicability in higher dimensions 
to the solie! phase. From the point of view of the second 
and third of the above approximations, the hard-rod 
system presents a particularly severe test. This is 
because a pm·tide is less localized if it has fewer neigh
bors to restrict its motion. The singlet distribution 
function, for example, can be shown in one dimension 
to have an inl1nite half-width in the thermodynamic 
limit. This means that a particle moves over distances 
large compared to the nearest-neighbor distance. It 
however, not clear whether for disks and spheres the 
singlet distribution function is bounded either. Locali
zation in the hard-rod is also less because of the 
absence of any potential minimum in the interaction. 
Thus, the Lennard-Jones-Devonshire theory should be 
more valid for real systems at low temperature, since 
the intermolecular potential localizes the particles.ll 

In order to obtain the exact thermodynamic prop
erties in the limit of close packing, it is necessary to 
work out the single-occupancy partition function 
without further approximations. Although this task 
can be carried out in one dimension, in higher dimen
sions this does not seem possible. Instead, successively 
more particles per cell are considered in the hope that 
the resulting scheme converges rapidly to the thermo
dynamic limit. The cell-cluster theory12 is such an at
tempt, but it gets bogged clown in a difficult combina
torial problem. An alternative scheme13 in which this 
problem is avoided and an identity is written which 
gives the partition function as a product of ratios of 
partition functions appears to converge very mpidly. 
However, this result is deceptive. The correction to the 
single-particle cell theory, which is always the l1rst 
approximation, is known to be small for hard disks and 
spheres. The second approximation, the ratio of the 
two-particle to the square of the one-particle partition 
function, is indeed very close to 1; however, the cor
rection is very small compared to the small correc'ion 
needed to reproduce the numerically established re
sults for the entropy. Another approach is to carry 
out Kirkwood's three-approximation scheme, outlined 

10L, Tonks, Phys. Rev. 50, 955 (1936). 
11 J. Barker, Lattice Theories of the Liquid State (Macmillan 

Co., New York, 1963). This book should be consulted for a de
scription of cell-theory calculations and extensive references to 
original papers. 

12 J. de Boer, Physica 20, 655 (1954); see also W. J. Taylor,
J. Chern. Phys. 24, 454 (1956); and the references listed on p. 95 
of Ref. 11. 

13 F. H. Stillinger, Z. W. Salsburg, and R. L. Komegay, J. Chern. 
Phys. 43, 932 (1965). 

above for one particle, for successively more particles 
per cell and ascertain its convergence. This is discussed 
for the hard-rod system in the third section of this 
report. 

Since all these schemes show slow convergence
that it is diH1cult to represent with a few-particle 
partition function the highl)' cooperative motions 
present in dense systems-an alternative approach is 
to incorporate into a simple few-particle model some 
of the correlations present. Such an empirical approach 
is represented by the correlated cell model for disks.7 

By having some of the particles perfectly correlated 
and others not at all, the model simulates quite success
fully the cooperative motion necess~Lry for melting. In 
addition, this model almost quantitatively accounts 
for the correction of the equation of state away from 
close packing. 

II. ONE-PARTICLE CELL THEORIES 

The starting point of any classical high-density 
theory is the configurational integral, QN, the volume
dependent part of the partition function 

(NO-Ii exp (-<I» drN 
v kT i 

\, 
t(1) 

I(ordered). 

The total potential energy of the system, 1>, is a func
tion of the coordinates of all of the particles 
r2, .• " rN. For the hard particles considered in this ! 

}paper <I> is either zero or infinity for a particular choice 
of rN. The particles are restricted to lie within the 
volume V throughout the integration. In the second 
form of the configurational integral, the .V particles 
arc to be ordered in anyone of N! equivalent ways. Any 
convenient ordering, such as Xl<XZ<'" <XN, can be 
used; in approximate theories the particles are often I 

I 
ordered by confining them to individual cells. 

Particles in the solid phase are ordered ("distinguish
able") and confined to small volumes of the order of { 
the volume per particle by their nearest neighbors. I 
Dynamically, the center of each particle sweeps out, I, 
as time goes on, a microscopic "free volume." Although 
there is no rigorous relation linking this physically 
imagined free volume to the iV-particle partition func
tion, one e:»'''Pects, intuitively, that this free volume 
will approximately equal the Nth root of the configura
tional integral, (QN) I/Nr:::::;V/. This idea was the basis for 
the cell and free-volume theories.u-14 

14 H. Eyring and J. O. Hirschfelder, J. Phys. Chem. 41, 249 
(1937); J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. 
Soc. (London) Al63, 53 (1937); A165, 1 (1938); A169, 317 
(1939); A170, 464 (1939). 
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CELL THEORIES FOR 

In order to clerke a cell theory from the confIgura
tional integral, Kirkwood' divided the volume V into 
:f equal cells. Kirkwood's first approxinmtion is to 
ignore the contributions of all but the single-occupancy 
configurational integral, QI (.Y),· 

f exp (-<f»drs (2) 
l' /,T 

(kth particle in /,'th cell). 

It is anticipated thnt at yery high density doubly 
occupied cells will be rare, :lssllming that the cell struc
turc is chosen \\'iscly, and that the approximation 
Qx;::::;Ql(T) will be accurate in this limit. 

In order to analyze the single-occupancy approxima
tion in detail. Q1(N) for hard rods is worked out below. 
The system of ,\, rods has a total length V so that each 
rod is confined to a cell of length VIX For 
convenience, the length oi a hanl rod is set e(lual to 
unity. With this,dlOicc of units the length per particle, 
A, and the density, p, both approach unity at close 
packing, In the single-occupancy configurational in
tegral the coordinate of the jth rod, Xj, is restricted to 
thejth cell: (j-l)A<Xi<jA, By introducing Mayer's 
jfunctions,8 1+1.;';+1= exp(-c/>i.i+l/kT) , for j=N-1, 
N-2, N-3, "', the following relation is obtained: 

Ql(N) =Q1(N -l)Q'l(1) +Ql(N -2)Q'I(2) 

+Ql(N-3)QI1(3) (3) 

where the prime indicates that all k particles in Q'l(k) 
are not only restricted to their cells but also linked to 
their nearest neighbors by f functions 

(4) 

Q'l(k) is zero when the k particles can no longer over
lap, that is, for densities less than (k-2)/(k-l). 
Thus the sum of products in Eq. (3) truncates, giving 
a closed-form recursion relation for Q1(N) in terms 
of the integrals Q'l(k). These latter can be evaluated 
by making a change of variable 

Q'I(k) (-)k-l[(k-l) (k-2)A]k/kL (5) 

With the help of these Q'l(k), a generating function 
can be written for the single-occupancy configura
tional integral 

ro • r r~,6 Q1 (N) Zlv =1EZk "'-'--..:...---''----'-=- (6) 

where L is 2+[p/(1- p) ] and the brackets [ ] in
dicate the greatest integer function. Each of the con
figurational integrals on the left-hand side of Eq. (6) 
is evaluated at the particular value of the density ap-

HARD PARTICLES 
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FIG. 1. The error made in calculating the hard-rod entropy, 
u,ing 1, 2, or all 3 of Kirkwood's approximations. Curve 1 shows 
the COIIII!IIlIW/ Clltro,~y, the error resulting from the single-occu
pancy apPl1lxinmlion alone. Curve 2 is the entropy error rcsuiting 
lrolH the solution of Kirkwood's appro"imatc integral equation. 
Curve ;~ is tl1<! cntrol)Y eTror incurred after all three approxima
tions, the Lcnnard-Jolles-Devonshire cell-theory error. The dolled 
curve shows the error ohtained using the double-occup,mcy approx
imation to the partition (unction. 

pearing on the right-hand side, so that Eq. (6) is not 
a grand partition function. The analytic form of the 
single-occupancy partition function changes at densi
ties of ~, t, ~-, t, ".". Thus QI(N) is not analytic at 
these densities and the thermodynamic properties de
rived from Q1 (N) have discontinuous derivatives char
acteristic of phase transitions. In the thermodynamic 
limit this conceptually simple partition function thus 
produces an infinite number of fictitious phase transi
tions. In the thermodynamic limit, QI(N) is related 
to the smallest zero, Zo, of the polynomial appearing 
on the right-hand side of (6) : 

limQ1(N) = [Zo(A)]-N. (7) 
N_ro 

The differences in entropy and pressure between the 
exact10 configurational integral and the single-occupancy 
configurational integral are plotted in Figs. 1 and 2, 
respectively. The difference in entropy is the communal 
entropy which has not previously been calculated for 
interacting particles. It is shown to be a monatomic, 
smoothly decreasing function of the density. The 
entropy from the single-occupancy configurational 
integral is, as it must be, always too small. The pressure 
is also too small, \vith the greatest discrepancy, about 
30%, occurring near three-fourths the close-packed 
density. Both the pressure and entropy discrepancies 
vanish at close packing, making the single-occupancy 
partition function exact in that limit. 

For low densities, O<p<~, the smallest zero in the 
denominator of the generating function given by Eq. 
(6) is found by solving a quadratic equation 

Zo=X- (X2 -2)1I2 =2-V2+(X-2) (1-v'2') 

+(X_2)2v'2j4- (X-2)3v'2/4+···, (8) 
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o 0.2 0.4 0.6 0.8 1.0 
p~ 

FIG. 2. The error made in calculating the hard-rod compres
sibility factor (PI'INkT) using 1, 2, or all 3 of Kirkwood's 
approximations. Curve 1 sho\\'s the error resulting from the single
occupancy approximation alone. Curve 2 shows the result ob
tained from Kirkwood's approximate integral equation. Curve .3 
is the result according to the Lennard-Jones-Devonshire cell 
theory (all three approximations). 

so that the pressure from the single-occupancy con
figurational integral is given by the expressions 

=v2>.H-t(A-2) 

+~-(A-2F-···]' (9) 

The even-numbered virial coefficients are all zero in 
this density range. In the next-higher density range, 
i<p< i, the analytic form of Ql(N) changes, accord
i~g to Eq. (6). In this region Zo is given by the e:\"Pres
SlOn 

zo=2-v2+(A-2) (1-v1) +HA-2)2v'1 

--!2(A-2)3(28-17v2)+···, (10) 

which should be compared to Eq. (8). The pressure 
has the form 

PV/NkT=v2A[t-HA-2) +(v2-i) (A-2)2_ •.• J, 
(11) 

Comparison of Eq. (9) with Eq. (11) shows that the 
curvature of the single-occupancy isotherm, f)2p/av2, 
changes discontinuously at half the close-packed den
sity, and from Eq. (6) it is clear that successively 
higher derivatives will have discontinuities at suc
cessively higher densities. 

Although an analytical single-occupancy treatment 
for two- and three-dimensional hard particles is difficult 
to carry out, even at low density, the three qualitative 
effects found in one dimension have analogs in the 
higher dimensional cases too: (1) The analytic form 

AND B. J. ALDER 

of Q1 (.V) will change as the density increases and more 

complicated clusters become possible; (2) the single

occupancy approximation becomes exact at close

packing for hard parallel squares and cubes,15 and this 

is also likely true for disks and spheres but a proof is 

lacking; and (3) the pressure derived from QI(N) can 

be shown to have no vidal expansion; theflrst devia

tions from ideality are proportional to p4/2 ami p4/3 in 

two and three dimensions, respectively. 


Kirkwood's second approximation, unlike the first, 
is rather poor at high density. This approximation 
states that the probability distribution function for IV 
particles in their cells is a product of single-cell single
particle distribution functions i 

I 
I 

",lIe f
PN(rN) = 11 h(rk) (12) 

(Hh particle in kth cell). I 
iPI(r) is to be chosen to minimize the Helmholtz free i 

energy; this leads to an integral equation for the de ! 
tennination of PI (r). For hard particles it is not neces t 
sary to consider the integral equation at alL The solu
tion of the minimization problem is simplified in this ! 
case because minimizing the free energy corresponds 
to maximizing the entropy. The entropy is propor
tional to the logarithm of the volume in each cell for 
which the probability density is nonvanishing. For hard 
spheres Wood pointed out that PI(r) is nonvanishing 
in those parts of the cell separated by at least half of I
a particle diameter from the cell boundary. In order 

for hard rods to be independent of one another, no 

particle can be allowed within distance ~. of its cell 

walls, so that the solution of the minimization problem 

in this case is equivalent to the configurational integral 


QN [(V/N)-l}y (13) 

(fll'st and second approximations). 

This result should be compared with the exact result, 

eN[(V/N)-l}'V. Interestingly enough, in one dimen

sion the error introduced in the pressure by the first 

approximation (as shown in Fig. 2) is exactly offset by 

the second approximation, so that the pressure ob· 

tained from Eq. (13) is exact at any density. However, 
 f 
the error introduced by the second approximation in 

the entropy contributes a constant net entropy error 

of Nk at any density. Because correhtions, particularly 

at the highest densities, are important for hard par

ticles, the product approximation is poor. 


It is only in one dimension that the first two ap

proximations exactly offset each other, yielding the 

exact equation of state. The molecular dynamics studies 

indicate that at high density the pressure can be ex· 


1> The argument given on p. 226 of tbe last paper of Ref. 3 

can be applied to hard parallel squares and cubes to prove this 

statement. 
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in powers of the relative free volume 0:, 

FV/,"VkT (D/0:)+CO+C10:+C2a 2+-. -, (14) 

;Ihere 0: is (V IVa) 1 and Va is the clpse-packed volume. 
In D dimensions, \YoOc!16 found that the free-volume 
equation of state, PV/Nl.'T= (l_p-liD)-l, results when 
the tlrst two approximations arc made, This equation 
<Ji state reproduces the flrst term, D/a, in Eq. (let) cor
rccth·. However, the constant term is in error when 

3t, ca!Clilated by this free-\'olullle equation of state. The 
n "alue of from molecular clynamics dalaj is 1.9 in

. Y stead of 1.5 for disks. and 2.5 instead of 2.0 for spheres . 
e- In two or more dimensions this two-approximation 

frec-yolume equation of state is also known to be quali
tatively wrong at low density, since it does not leacl 

2) to the virial series. 
It is clear that the entropy derived from the lirst 

tll"O approxima tions is a rigorous lower bound on the 
con'ect entropy) for all of the configurations counted 
in the soIl! tion of Kirk wood's integral equat ion do ee 
contribute to the correct QN, but many other configurae
tions are left out by these approximations. The entropys-
error at close packing is Xk in one dimension, about 
lA.Yk for disks, and about 2Nk for spheres. Thus, the 

IS 
product approximation neglects important correlationsis 
at high density. r

The results of the minimization procedure just re)r 
ferred to are in fact less accurate than those obtained 'd 
from the Lennard-Jones-Devonshire cell theory, which .g 
requires one additional approximation. In order to getIf 
the Lennard-Jones-Devonshire cell theory Kirkwood 
!11;J.kes his third approximation, assuming that P1(r) 
is a delta function located at the center of the cell. This 
approximation is sensible provided the particles are 
localized, as they are at low temperatures in real 
systems "'here the molecules make small oscillations 
about their equilibrium positions. The initial step in 
solving by iteration the integral equation mentioned 
above is to substitute the delta-function guess into the 

equation. This first iteration generates exactly 
;., the Lennard-Jones-Devonshire theory. Thus, the free 
' volume per particle is evaluated by placing all neigh
t boring particles at the centers of their cells. This is,
:r of course, inconsistent in that the particles are not all 

treated alike in evaluating the free volume. For hard 
particles the choice that Pl(r) is a delta function might 
appear particularly poor. Woodl6 found in fact that the 
iteration scheme starting from this choice does not 
converge. 

For hard rods the delta-function approxiImttion 
gives, for all densities greater than half the close-packed 
density, a free volume of 2[(V/N)-1], and this is 
in fact the average free volume. It is also, however, 
exactly twice the true solution of Kirkwood's integral 
equation. After applying all three appl'Oximations the 
entropy is too low by Nk In~c while the pressure is 

uncbanged from the two-approximation stage. The 
entropy discrepancy has thus been reduced from Xk 
to 0.307N 1< and the pressure remains exact. At densities 
less than half of close packed, the free volume from all 
three approximations is , the pressure is ideal, 
and the entropy is too low by NI.{l +In(1-p)1 

The effect in two or three dimensions is similar. The 
entropy is increased (nell!' close packing) by DYk InZ 
in D dimensions over the exact solution of the integral 
equation. The discrepancy between this entropy pre
diction and the exact entropy at close packing is not 
known precisely, but it is evidently quite smalL Pre
liminary estilllates from molecular dynamics indicate 
that the high-density Lennard-Jones-Devonshire en
tropy is slightly too low (0,06:Vk) for hard disks and 
slightly too high (,...""O.lNI,) for hard spheres. Thus, 
a vast improvement has resulted over the two-approxi
mation scheme where the discrepancies were I.·LV/" 
and 2.YI•. However, for hard disks and spheres the pres
sure does not remain unchanged, as for hard rods. 
PV/lYllT is increa.sed a little. Co increases from 1.500 
to 1.556 for disks, and from 2.000 to 2.125 for spheres. 
A comparison of the values of Co to the ones obtained 
from molecular dynamics5 (1.9 and 2.5, respectively» 
shows that the delta-function approximation improves 
the pressure too. The details of these molecular dy
na.mics results will be published soon. 

III. MORE-PARTICLE CELL THEORIES 

Squire and Salsburg17 generalized Kirkwood's ap
proach by dividing the volume V into N /2 identical 
cells, each of which is doubly occupied. Their first ap
proximation is 

~15) 

where Q2(:V) is the double-occupancy conilgurational 
integral. For hard rods, just as in the single-occupancy 
case, it is possible to derive a closed-form recursion 
relation for Q2(N) and to find a generating functiOn 
for Q2(N, A). In the low-density case, O<p< 1, one 
finds the result 

even 

1+1z2 
(16)

[1 

where A is the volume per particle, V/N. 
The entropy from the double-occupancy partition 

function is the dotted line plotted in Fig. 1. Although 
the results are closer to the exact entropy than the 
single-occupancy results, the improvement is greatest 
at low density. It appears that at high density the 

11 D. R. Squire and Z. W. Salsburg, J. Chern. Phys. 35, 486 
(1961). The correlated cell model of kef. 7 is essentially II 1",,,
dimensional analog of the three·dimensional hard-sphere model 
obtainlOd here

1#, JAl&4PMk!t;at, 
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properties of ()2(X) resemhle those of Ql(N) more 
closelv than those of ON. This is an indication that quan
titati~'e results in the solid phase will not bc obtained 
with a few-particlc model. Many particlcs are neccs
sary to reproduce thc c()opemtivc motion and corrc
lations present in a densc inllnitc systcm. 

Thc virial expansion for the doublc-occupancy con
llgurat ional integral can bc derived frol11 Eg. (16) by 
cxpanding thc smallest zero of the cubic polynomial 
as a power scries in p. The resulting virial expansion, 

givcs a second \·jrial coefficient within 50% of the cor
rect \';due, unity, as opposed to the value zero for the 
single-occupancy case. 

Squire and Salsburg17 derive an integral equation 
for the distribution function for two particles in a cell, 
based on the minimization of the Helmholtz free energy, 
under the restriction 

PN(r·\') = II P2(r2). (18) 
cells 

The solution of this integral equation must be self
consistent (all particles treated alike). Squire and 
Salsburg did not actually solve this integral equation 
for P2 (r2) , but it is clear that the results would be 
analogous to the one-particle theory. Again each par
ticle must stay at least one diameter distant from 
particles in neighboring cells, so that the problem in
volves the partition function for two particles confined 
to a rigid box. In one dimension the result is 

(19) 

(first and second approximations), 

so that the entropy has increased by O.347Nlc over the 
one-particle entropy at this stage, but is still too low, 
over the entire density range, by O.653Nk. The geom
etry involved in this problem is complicated for disks 
and spheres, but for hard parallel squares or cubes it 
is easy to show that the increase in entropy over the 
single-occupancy theory at the same two-approxiam
tion stage is also 0.347Nl<. For squares and cubes the 
known rigorous lower bounds on the entropy near 
close packing3 show that the double-occupancy result 
lies further from the correct entropy than in one di
mension: thus the convergence to the thermodynamic 
limit, obtained by considering bigger and bigger cells, 
is slower in two and three dimensions than in one. 

Although it is tedious to obtain multiple-occupancy 
configurational integrals for greater numbers of par
ticles per ce11,18 it is possible to consider the effect 
of the first two approximations combined for the 

18 The dependence of communal entropy on the number of 
particles per cell is discussed by O. K. Rice, J. Chern. Phys. 6, 
476 (1938); and by R. W. Gumey and No F. Mott, ibid. 6, 222 
(1938). 

gencral hard-rocl case, M particles per cell with 

PN(rN ) = II PM(rM). (20) 
'" Ii. 

The probability distribution function maximizing the 
entropy gives the approximation 

In the limit of large M, Eq. (21) passes over to the 
exact configurational integral, as it must. It is note
worthy that the pressure from Eq. (21) is correct for 
any M, while the entropy rises monotonically with M 
to the correct value. The 6'UCSS that Fv(rlf) is a 
product of M delta functions is always bettcr than the 
true solution of the integral equation, for any value of 
M. For jl;l as large as 10, however, the error in the 
entropy from the delta-function approximation is still 
of the order of O.l1Vk. This indicates that extension of 
the free-volume theories by considering bigger and 
bigger systems of particles confined to rigid containers 
converges so slowly that analytic work is ruled out. 

IV. CONCLUSIONS 

That the Lennard-Jones-Devonshire cell model pre
dicts the thermodynamic properties of hard spheres 
remarkably well is a surprising result. For real solids it 
was to be expected that the model would be a very good 
approximation at low temperature because the at
tractive potential localizes the molecules. In that case 
the first and third approximations of single occupancy 
and localization at the cell centers are quite realistic. 
The accuracy of the second approximation, that the 
particles move independently in the vicinity of these 
cell centers (shown to be accurate in the case of real 
solids at low temperature by harmonic oscillator calcu
l'1tionsl9 ) gives a clue as to why the cell model works so 
well for spheres too. The reason is that the thermo
dynamic properties are only sensitive to the high-fre
quency motions in the solid. The low-frequency co
operative motions do not affect the thermodynamic 
properties much, although an instability to a long
wavelength shear mode no doubt leads to melting. 
Thus, even for spheres the cell model nicely apprm::i, 
mates the surroundings of a typical particle, on a short 
time scale and in the solid phase. One can thus conclude 
that for any pair potential and at all temperatures the 
Lennard-Jones-Devonshire cell model is the best quick 
route to accurate solid-phase thermodynamic properties. 

In view of the above it should, however, not be sur
prising that the cell model does not predict the one
particle distribution function well. The exact dis
tribution function can be worked out analytically in one 
dimension; it does not have the sharp boundaries and 

19 E. W. ;l.ionlrolJ, "Theory of the Vibration of SimpJe Cubic 
Lattices with Nearest-Neighbor Interactions," Proc. Symp ..Math. 
Statistics Probability 3rd Berkeley, CaJiL, 1954-1955 31 ZOO 
(1956). . 
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[lOll top predicted by the cell modeL To calculate dis per-cell theories is p,trtly due to boundary effects. In 
tribution functions accurately or to predict melting molecular dynamics Of Monte Carlo calculations, which 
lr;msitions, it is clearly necessary to consicler highly arc after all just such theories treated numerically, it 
cooper<lti\"e motions. The inclusion of correlations is, was found that much more rapid convergence to the 

" If course, also necessary if the prediction of ther1110- thermodynamic results was obtained with periodic 
dl"namic properties from the cell model is to be im boundaries than with rigid boundaries. Another ad
p~oved upon. It \,'ill be difiicult to make further van tage of period ic boundary conditions is the au to
progress from such a good starting point. The attempt matic introduction of additional correlations between 
to treat a two- or three-dimensional system more the particles. An attempt in this direction, the cor
accurately by making only the single-occupancy ap related cell model for two disks, leads to significant 
proximation fails, except in one dimension, because improvements over the Lennard-Jones-Devonshire 
the simplification of single occupancy is not enough to model. The correlated cell model not only predicted 
permit an analytic treatment. melting at the correct density, but gave an almost 

The slow convergence of systematic more-particles- exact solid-phase equation of state. 
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Isenthalpic Solidification and the Specific Heat of Supercooled Liquid Phosphorus 
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Isenthalpic solidification of a unary (one-component) supercooled liquid results in either two-phase 
invariant equilibrium or in single-phase univariant equilibrium, depending on the degree of supercooling 
prior to solidification. 

When postsolidilication univariant equilibrium obtains, a determination of the specific heat at constant 
pressure, Cpl, of the supercooled phase relative to the stable, solid phase can be made by measuring the 
adiabatic temperature rise during recalescence. 

Values of Cpl for highly supercooled phosphorus over the temperature range _1° to +18°C have been 
determined with this method. No evidence for the changes in molecular association deduced from earlier 
viscosity data on supercooled phosphorus was found in the temperature variation of the specific-heat 
function. The enthalpy and specific-heat values determined ior supercooled liquid phosphorus agree with 
published values for the stable liquid above the normal melting point, T,=44°C. 

INTRODUCTION 

AN17MBER of recent investigations on both the 
equilibrium and tntnsport properties of various 

pure monatomic liquids have shown that these prop
erties vary in a smooth and continuous manner as a 

, 	 liquid is cooled from the region of stability above the 
thermodynamic melting point into the supercooled 
state. The effects of clustering, or extended local order
if present at all in these supercooled liquids--appear to 
be below present levels of experimental detection for 
equilibrium properties such as x-ray structure (atomic 
radical distribution) / specific heat,2 and mass density3; 

• National Academy of Sciences-Kational Research Council 
Postdoctoral Research Associate, Metallurgy Division, U.S. Kaval 
Research Laboratory. 

1 s. E. Rodriguez and C. J. Pings, J. Chern. Phys. 42, 2435-2437 
(1965) • 

, H. S. Chen and D. Turnbull, Bull. Am. Phys. Soc. 11, 329-330 
(1966) . 

'S. Y. Shiraishi and R. G. Ward, Can. Met. Quart. 3,117-122 
(1964). 

and for transport properties such as electrica14 and 
thermalS conductivity, and viscosity,6 N onethc1ess, a 
substantial body of experimental dala also exists which 
indicates various properties exhibiting anomalous 
behavior in the vicinity of the melting point; these 
so-called precrystallization phenomena were discussed 
recently by TurnbulF in a comprehensive paper on the 
liquid state and the liquid--solid transition. Turnbull's 
words are so apt, that we quote from Ref. 7 directly: 

"We note that the thermodynamic crystallization 
temperature is not an intrinsic property of either the 
crystalline or the amorphous phase but is rather the 
temperature at which two quite independent functions 

4 G. A. Colligan and J. M. Lo, Tech. Rept. SCP-4, ONR, 
Thayer School of Engineering, Dartmouth College, Hanover, 
N.H., October 1965. 

6 A. G, Turnbull, Z. Physik. Chern. (}'rankfurt) 42, 243-246 
(1964). 

oD. Ofte and L. J. Wittenberg, J. Metals 13, 692-693 (1961). 
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