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wed after prolonged heating. A very small endo-
.- occurred at the clearing point.

¢ arlier two of the authors® reported a similar solid-
;1, transition in cholesteryl acetate. Several DSC
s were run on this mesomorphic compound for

_parison. An endotherm was observed at the crys-
.. .ne modification. The positron lifetime in the case
é 1he acetate ester increased at a temperature corre-
-.ding to this endothermic transition. This is just
o app yosite of the results observed for cholesteryl
Fer 'mmate
" ¥ach compound was also studied by the technique
¢ 4 ray powder diffraction. The first trace of each sub-
e was taken before heating. Examination of the
suerns showed that the long spacings were very
L ense relative to the short spacings in cholesteryl
- sinnate, whereas just the opposite was true in
steryl acetate. The second trace of each ester was
ccsined after they were heated without melting for
i hoat a temperature just above the first endothermic
- snsition previously discussed. It was found that the
spacings decreased greatly in relative intensity

e propionate ester. Just the opposite effect was
~vraled in the acetate compound.

The implications in the prior descriptions are clear.
e erystal modification in the cholesteryl proplonate
ansed o decrease of the free volume? in the molecular
siwe and therefore an increase in the annihilation

2ot . ool the orthopositronium. The free volume increased
for f. ¢ the chiolesteryl acetate at the solid-solid transition
© ounting for the decrease in the annihilation rate.

o Ite authors are grateful to Dr. T. H. Hughes and

(41

ey

2. LW, Clements for their aid in obtaining the powder
- Ziaction patterns.
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Entropy for Small Classical Crystals*
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Testis growing in computer caleulations of small-
i thermodynamic properties, It is, therefore, de-
"t know how to extrapolate the small-system
‘ *H results to the large-system thermodynamic
v this note, we show that the entropy for any
ialie hnmonm crystal lies below the Ia,me—
241t by aterm pmpo‘*mnai to (InN)/N, w here
v sumber of purticles in the crystal,

- wepedially useful to study a “harmonic crystal,”
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one In which the potential energy contains no terms
higher than quadratic in the displacements of the par-
ticles from their lattice sites. This is first because in a
real crystal, terms higher than the quadratic ones are
negligible at low enough temperatures and can be
treated as perturbations at higher temperatures. Sec-
ond, the exact entropy S of a hanmonic crystal can
be calculated from its vibration frequencies S/k=
In] ] (ekT/hw:), where k and % are Boltzmann’s and
Planck’s constants; 7' is the absolute temperature; and
the so-called “normal mode frequencies” {#;} are the
D{N—1) nonzero frequencies with which an N-particle
D-dimensional crystal can vibrate, These frequencies
can be calculated by straightforward methods for peri-
odic crystals of up to several thousand particles; this
is the exact Born—von Kérmdn approach.

We can simplify the equations giving the entropy
for N-particle crystals by quoting the difference be-
tween the exact entropy and an approximation. The
approximation to the entropy, not exact, is Einstein’s,
in which the product of frequencies is approximated
by the D{N—1) power of the “Einstein frequency,”
the frequency at which one particle would vibrate if
all of the others were fixed at their lattice sites. The
difference between the exact Born-von Kdrmdn fre-
quencies and the Einstein approximation shows the
effect of many-body correlations. 1f we define the excess
entropy  Sexsct SEinstein=S¢, 5S¢ is just & times the
logarithm of the product | ! {vrinstoin/v4) .

In one dimension, the distribution of frequencies of
an N-body periodic crystal with nearest-neighbor inter-
actions i1s known.! From it, one finds for the excess
entropy

(S*/NE)1_p=0.3465T— (InN)/N+-+-, (1)

where the dots here and in the following equations
indicate omitted termms of order (1/N).

In two or three dimensions the frequency distribu-
tion is more complicated and only numerical work has
been carried out. Beyerlein and Salsburg?® recently pub-
lished a study of the thermodynamics of small periodic
two-dimensional crystals with nearest-neighbor inter-
actions and a hexagonal latlice structure with six
nearest-neighbors per particle. By analyzing the re-
sults that they tabulated, I noticed the relation

(S°/NE)op=0.27326—(InN)/N+-++.  (2)

Notice that the coefficient of the number-dependent
(111 N)Y/N term is the same in ene and in two dimen-
sions, To see whether or not this dependence is gener-
ally valid, T calculated the exact Born-ven Kdrmidn
entropies for the two close-packed three-dimensional
periodic crystals with nearest-neighbor interactions?
The resulls showed that bolh close-packed lattices,
{ace-centered cubic and hesagonal closepacked, have
the same number dependence alrmd; found in one and
two dimensions, — {InN)N; so this is evidently valid
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for all crystals;
(S%/Nk)roc=0.24689— (InN) /5 + - -,
(S*/NE)ner=0.24541~ (N) /N -+, (3)

The slight extra stability of the face-centered lattice
over the hexagonal one shows up even in this simple
* calculation t

As a warning it should be pointed out that the easy
way of calculating the entropy, summing the logarithms
of the frequencies, is not the best way, where best means
closest to the thermodynamic lmit. If, for example,
the entropy for the one-dimensional nearest-neighbor
periodic harmonic crystal is evaluated directly from
the configurational integral, rather than from the exact
frequency distribution, one finds that the coefficient
of the (InN)/N term is —% rather than —1.

I would like to thank George Jelinek and Richard
Grover for educational discussions and advice. Warren
Cunningham energetically extracted the normal mode
frequencies from the computing machinery at Liver-
more.

*This work was performed under the auspices of the U. s,
Atomic Energy Commission.
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van der Waals Coefficients for the Ground
and Metastable States of He and Li+
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The van der Waals coefficients describing the long-
range interactions between metastable helinm and
variolis gases are important paramcters affecting the
efficiency of thermal Penning ionization process! A
similar mechanism can operate for jonization: by pasitive
ions, although the interaction is then dominated by the
polarization force.

Recently,* accurate repr esentations of the frecuency-
dependent dipole polarizability of the metastable states
of heltum have been derived from which accurate values
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TasLe I. van der Waals coefficients for mixtures of alkali metals,
metastable helium, and atomic and molecular hydrogen.

He (2,15)  He (2,%S)
Ha(lh) 198.3 135.9
IL{1) 140.3 96.5
Hy® 159.6 109.6
H 129.4 88,2
Li 3500 2090
Na 3 660 2220
K 5040 3480
Rb 6 440 3760
Cs 7 980 4610
He(21S) 11280 5837
He (23S 5837 3291

* Qrientation average.

of the van der Waals coefficients for many gas mixtures
can be obtained. Similar calculations can be carried
through for the positive ion of lithium.

According to the Casimir~Polder formula,® the van
der Waals interaction between a pair of spherically
syminetric atomic systems ¢ and & can be written as

V(R)=~— ~%—6f aa{iw) o (iw) dew, (1)
where R is the interatomic distance and «(w) is the
dipole polarizability at the frequency w.

Accurate variational calculations of a(w) for the 115,

215, and 23S states of helium have been reported
recently,? and we have applied the procedures there
described to caleulate a(w) for the 118, 218, and 2385
states of Lit,

There are available accurate theoretical representa-
tions of @{w) for atomic hydrogen® and for lithium.?
Semiempirical representations have been constructed

Tasre IL van der Waals coefficients for mixtures of various
gases with the ground and metastable states of Li*.

it Li* Lit
(118) (218) (238)
Ha (D 0.8608 50.42 38.12
Hy{ L 0.6775 36.00 27.36
Ha 0.7386 40.81 20.95
N, 1.9 90 69
CH, 2.5 140 105
He(11S) 0.302 11.12 8.61
He(218) 6.01 1900 ©1070
He(235) 4.24 1090 655
Ne 0.660 21.7 16.8
Ar 1.87 83.6 65.5
Kr 2.58 127 96.9
Xe 3.42 199 150
H .4931 32,44 24.31
i 3.32 706 447
Na 3.60 751 481
X 4.86 1170 723
Rb 5.21 1260 780
c:s 6.00 1540 941
Lit(115) 0.0782 1.672 1.320
Li+(215) 1.672 366.0 244.2
Li*(238) 1.370 224.2 146.8

# Orientation average,
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Tanre 1!
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b Lit(115)

41 9.8(10,9)s

6 2.000
-1 0.5717(0.572¢
—2  0.1923
-3 6.0705
-4 0.0272

& The numbers in pare:
tions by Pekeris,is

for the inert gas
hydrogen,* “mole
Separate represent
dicular to the mo!
hydrogen®

The evaluation ¢
given in Tables [
metastable states
viously, and we pr
which we may clai

Deal and Kestn
estimate of 0.0774 1.
of Lit with itself,
diction of 0.0782, ¢
of less than 29,. b
respectively, for th:
Lit with atomic I
He are in harmony
and 0.302.

With the possib!
in no case should t
1T exceed 109%

The moments

transition to Lh I
tion energy in ate
tion on atomic stit
the 118,215,
calculated repres
alw).

The static dips
S(—2). The vl
pared with the v
of the uncouplul
mations, respect

We can relate

and S(-+1) o ih

The expectation
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