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".~"..1fcd after prolonged heating. A very small endo
.::m occurred at the clearing point. 
\;;rlicr two of the authors3 reported a similar solid

,.;A transition in cholesteryl acetate. Several DSC 
. 'yes were nm on this mesomorphic compound for 

, narison. An endotherm was observed at the crys
. : .:;;e modification. The positron lifetime in the case 

lht: ;tcetate ester increased at a temperature corre
"miing to this endothermic transition. This is just 
" opposite of the results observed for cholesteryl 

"..( ,jolla 1e. 
t:.~(h compound was also studied by the technique 

[,1), powder diffraction. The first trace of each sub
,';.,\.(; was taken before heating. Examination of the 
"~(('rns showed that the long spacings were very 
',n~e relative to the short spacings in cholesteryl 

.' .;,ionate, whereas just the opposite was true in 
',;,.":'teryl acetate. The second trace of each ester was 
:.lincd after they were heated without melting for 

; h at a temperature just above the first endothermic 
,:;,ilion previously discussed. It was found that the 

spacings decreased greatly in relative intensity 
the short spacings were very much intensified 

Ihe propionate ester. Just the opposite effect was 
,,!',\led in the acetate compound. 
Ii,\! implications in the prior descriptions are clear. 

uY5tai modification in the cholesteryl propionate 
",c"1i it decrease of the free volume4 in the molecular 

:i,l' and therefore an increase in the annihilation 
':' 01 of the orthopositroniull1. The free volume increased l" 

ror j. cholesteryl acetate at the solid-solid transition 
''o)llling for the decrease in the annihilation rate. 

I he authors are grateful to Dr. T. H. Hughes and 
, L, W. Clements for their aid in obtaining the powder 
;\ction patterns.us!n~' 
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".:rt'~t is growing in computer calculations of small· 
liwnnodynamic properties. It is, therefore, de
lil know how to extrapolate the small-system 

.:t., It:sults to the Jarae-svstem thermorb'namic 
, . b " ) 

Has note, we show thut the entropy for any 
htlnnonic crystal lies below the large-

by a term proportional to , where 
ll!i1nber of pa.rticles in the crystal. 

">i)(:cially useful to study a "h~nnollic crystal," 

one in which the potential energy contains no terms 
higher than quadratic in the displacements of the par
ticles from their lattice sites. This is first because in a 
real crystal, terms higher than the quadratic ones are 
negligible at low enough temperatures and can be 
treated as perturbations at higher temperatures. Sec
ond, the exact entropy S of a harmonic crystal can 
be calculated from its vibration frequencies S/k= 
InII(ef.::T/hvi), where k and Jz are Boltzmann's and 
Planck's constants; T is the absolute temperature; and 
the so-called "normal mode frequencies" Iv;\ are the 
D(N-1) nonzero frequencies with which an N-particle 
D-dimensional crystal can vibrate. These frequencies 
can be calculated by straightforward methods for peri
odic crystals of up to several thousand particles; this I 
is the exact Born-von Karman approach. 

We can simplify the equations giving the entropy 
for N-particle crystals by quoting the difference be I
tween the exact entropy and an approximation. The 
approximation to the entropy, not exact, is Einstein's, ! 

~ 

in which the product of frequellcies is approximated Iby the D(N-1) power of the "Einstein frequency," 1 
the frequency at which one particle would vibrate if f 

!
all of the others were fixed at their lattice sites. The ,
difference between the exact Born-von K6xman fre
quencies and the Einstein approximation shows the 
effect of many-body correlations. ~f we define the excess 
entropy S', S' is just k times the 
logarithm of the product II (VEillst{)in/Vi)' 

In one dimension, the distribution of frequencies of 
an LV-body periodic crystal with nearest-neighbor inter
actions is known.1 From it, one finds for the excess 
entropy 

(Se/Nkh_D=O.34657- (lnN)/lV+·", (1) 

where the dots here and in the following equations 
indicate omitted terms of order (1/N). 

In two or three dimensions the frequency distribu
tion is more complicated and only numerical work has 
been carried out. Beyerlein and Salsburg2 recently pub
lished a study of the thermodynamics of small periodic 
two-dimensional crystals with nearest-neighbor inter
actions and a hexagonal lattice structure with six 
nearest-neighbors per particle. By analyzing the re
sults that they tabulated, I noticed the relation 

(S'/jVkh_D=O.27326- (InN)/N+·· •. (2) 

Notice that the coefficient of the number-dependent 

{lnN)/N term is the same ill one and in two dimen· 

sions. To see whether or not this dependence is gener

ally valid, I calculated the exact Born·-von Karman 

entropies for the two close·p,teked three-dimensional 

periodic crystClls with nearest-neighbor intcractions.J 


The results showed that both dose-packed lattices, 

face-ccntered cuhic and hexagonal close·packed, have 

the sallie number dependence already found in oue and 

two dimensions, - (lniY)N; so this is evidcntly valid 
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for all crystals; 

(S<jNkhcc==O.24689- (lnN)jN+· ", 

(S"jNk) HCP= 0.24541- (lnN)j.:V+·· '. (3) 

The slight extra stability of the face-<:entered lattice 
over the hexagonal one shows up even in this simple 
calcula tion.4 

As a warning it should be pointed out that the easy 
way of calculating the entropy, summing the logarithms 
of the frequencies, is not the best way, where best means 
closest to the thermodynamic limit. for example, 
the entropy for the one-dimensional nearest-neighbor 
periodic harmonic crystal is evaluated directly from 
the configurational integral, rather than from the exact 
frequency distribution, one finds that the coefficient 
of the (lnN)!N term is -~ rather than - 1. 

I would like to thank George Jelinek and Richard 
Grover for educational discussions and advice. Warren 
Cunningham energetically extracted the normal mode 
frequencies from the computing machinery at Liver
more. 

*This work was performed under the auspices of the U. S. 
Atomic Energy Commission. 
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aThe dynamic matrices from which the 
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787 (1957) (HCP). D. Huckaby and Z. 
ently calculated the thermodynamic-limit 
"ntered and hexagonul crystals. Their results 
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The van der Waals coefficients 
range interactions between metastable hdimr' 
various gases are important parameters 
cfliciency of thermal Penning ioLizatio;1 
similar mechanism can operate for ionization 
ions, although the interaction is then domiwlted 
polarization force. , 

Recently,2 accurate representations of the 
dependent dipole poJarizability of the meta "i8 bJc. stBles 
of helium have beell derived from which accu!:a Ie values 

TABLE 1. van der Waals coefficients for mixtures of alkali metals, 
metastable helinm, arrei atomic and molecular hydrogen. 

He (2, IS) He (2,35) 

Hz(!i) 198.3 135.9 
Hz(J.) 
Hz" 

140.3 
159.6 

96.5 
109.6 

H 129.4 88.2 
Li 3500 2090 
Na 3660 2220 
K 5940 3480 
Rb 6440 3760 
Cs 7980 4610 
He(2 IS) 11 280 5837 
He(2 3S 5837 3291 

it Orientation average. 

of the van del' Waals coeffieients for many gas mixtures 
can be obt.ained. Similar calculations can be carried 
through for the positive ion of lithium. 

According to the Casimir-Polder formula,3 the van 
der Waals interaction between a pair of spherically 
symmetric atomic systems a and b can be written as 

VCR) = - -~1'" a,,(iw) CKb(iW) dw, (1)
7rR 0 

where R is the interatomic distance and a(w) is the 
dipole polarizability at the frequency w. 

Accurate variational calculations of a(w) for the 1 lS, 
2 IS, and 2 3S states of helium have been reported 
recently,z and we have applied the procedures there 
described to calculate a(w) for the llS, 2 15, and 2 35 
states of Li+. 

There are available accurate theoretical representa
tions of a(w) for atomic hydrogen4 and for lithium." 
Semiempirical representations have been constructed 

TABLE II. van der Waals coefficients for mixtures of variolls 
gases with the ground and metastable states of Li+. 

Lj+ Li+ 
(2 1S) (2 35) 

H.(iJ) 0.8608 50.42 38.12 
H 2 (.L) 
H."N;
Crr. 

0.6775 
0.7386 
1.9 
2.$ 

36.00 
40.81 
90 

ao 

27.36 
20.95 
69 

105 
He(11S) 
He(2 IS) 
He(23S) 

0.302 
6.01 
4.2·1 

11.12 
1900 
1090 

8.61 
1070 . 
655 

Ne 0.660 21.7 16.8 
AI' 1.87 85.6 65.5 
Kr 2.58 127 96.9 
Xe 3.42 199 150 
II 0.'1931 32.44 U.31 
Li 3.32 706 447 
Na 3.60 751 481 
K 4.86 1170 723 
Rb 5.2t 1260 780 
Cs 6.09 1540 9-11 
U+(llS) 0.0782 1.672 1.320 
Jj+(2 IS) 
Li+(2 3S) 

1.672 
1.320 

366.0 
22·1.2 

24-1.2 
146.8 

<~ Odentat ion average. 

TABLE n 

k Li+(1 IS) 

+1 9.8(10.9)" 
o 2.000 

-1 0.5717(0.572i 
-2 0.1923 
-3 0.0705 
-4 0.0272 

'" The numbers in P:ltcz 

tions by Pekeris." 

for the inert gas·. 
hydrogen,9.l0 . molt
Separate represent 
dieular to the mo: 
hydrogen.lo 

The evaluation \' 
given in Tables I 
metastable states . 
viously, and we pn 
which we may chi, 

Deal and Kcstn 
estimate of 0.077,\ f· 
of Li+ with itself. 
diction of 0.0782. CL 

of less than \. 
respectively, for 0· 
Li+ with atomic 
He are in harmony 
and 0.302. 

With the 
in no case should U 
II exceed 10%. 

The moments 

where in is the os, 
transition to the 
tion energy in a tUl 

tion on atomic S11" 

the lIS, 2 1,), a!:ll 
calculated reprcs' 
a(w) . 

The static dip, 
S( -2). The v;tiu 
pared with tbe y,' 

of the d 
mations,14 respn'l i 
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