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The classical two-dimensional close-packed triangular lattice, with 
nearest-neighbor spring forces, is a convenient standard material for the 
investigation of dislocation motion and plastic flow. Two kinds of calcul
ations, based on this standard material, are described here: 
Molecular Dynamics simulations, incorporating adiabatic strains described 
with the help of DoZZ's Tensor, and 
Continuum Dynamics simulations, incorporating periodic boundaries and dis
location interaction through stress-field superposition. 
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I. 	 INTRODUCTION 

Continuum mechanics cannot furnish a complete understanding of the f10vl 

and wear of solids. Though the continuum picture does properly incorporate 
the conservation of energy and the increase of entropy it lacks a description 
of the microscopic lattice structure, and the defects present in the lattice. 

A satisfactory understanding of flow and wear can only emerge from models 
incorporating the creation, interaction, motion, and annihilation of crystal 

defects. Neither the static nor the dynamic structure of lattice defects is 
contained in a purely macroscopic continuum theory. Such a theory predicts, 
for instance, stress-field divergence in the dislocation-core region where a 

precise knowledge of the (finite) forces is necessary for accurate dynamical 
calculations. 

At the same time, the vast number of lattice defects, and the complexity 

of their mutual interactions, make it necessary to develop a descriptive .~ 

continuum picture in which stress, strain, and defect density do play funda

mental roles, replacing the underlying atomic and electronic coordinates and 
momenta. This change of scale, from microscopic to macroscopic, can only 
take place through an understanding of microscopic defect physics. 

Although experimental shockwave physics is developing rapid1y(1}, the 
resolution of structural probes is still limited to lengths and times some
what larger than atomic spacings and vibration periods. In view of the ex

perimental difficulties involved in probing, quantitatively, the microscopic 
scales of dislocation cores, vacancies, and crack tips, and in determining 
from these, indirectly, the form of the forces between the interacting atoms 

and electrons, expeT'iments, as opposed to 1 abora tory experiments, 

represent a much simpler path to understanding lattice defects. Computers 
are required to supplement theoretical analysis because even the classical 
N-body problem is complex. 

Computer simulations are limited to regions perhaps 100 atomic spacings 
wide, and to times of 1000 vibration periods, so that an enormous extrapola

tion remains to be made between the microscopic computer experiments and the 

macroscopic scales of interest in engineering practice. Even so, recent work 
on the rapid shock deformation of fluids(2) and solids(3) shows convincingly 
that computer simulations can establish defect configurations and deformation 

mechanisms. 
The scale gap, between microscopic computer experiments and macroscopi~ 

laboratory experiments, makes it worthwhile to develop "intermediate scale" 
simulation techniques. On the intermediate scale the defects themselves, 
rather than the underlying atoms and electrons, are treated individually. 
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These intermediate-scale simulations have meaning only to the extent that the 
assumed defect properties are firmly supported by atomistic calculations. 

Operational intermediate-scale theories of plasticity, based on disloca
tion dynamics, are not yet in existence. On a slightly more macroscopic 
level, where dislocations are described by a local density function, some 
very promising work has been done. Werne(4) and Stout(5), both at Livermore, 
have developed macroscopic theories from this b?sis. Werne's work is more 
thorough. He has incorporated his model for plastic flow, based on disloca
tion density, into continuum solid-mechanics simulations of simple mechanical 
tests. A long-range goal of our present work is to assess the accuracy of 
the assumptions used in macroscopic simulations such as Werne's. 

Surprisingly little simulation work has been carried out with disloca
tions in view of the tremendous theoretical effort(6-9) that has been expended 
on characterizing dislocation structure, interaction, and motion. Undoubtedly 

~he initial motivation for the theoretical work was understanding plastic flow 
in metals. Much theoretical work is now pursued with the apparent goal of 
mathematical elegance. not physical relevance, so that despite dozens of texts 
and thousands of articles, we still do not know why dislocations travel at the 
speeds they do and we cannot predict how many will be present in a particular 
flow. There is too little contact between the engineers carrying out solid 
mechanics calculations describing real materials and the "applied" (meaning 
purely theoretical) mathematicians dwelling in the archives of continuous 
functions. The work described here is part of a long-term program to help 
bridge the gap between the two disparate points of view, experimental and 
theoretical. 

The microscopic atomistic computer simulations should be viewed as exper
iments in their own right, on unusually well-defined materials with reproduci
ble properties. The limitations on these computer experiments are nicely 
complementary to those constraining real laboratory experiments, so that by 
achieving correlations between the two classes of experiments, one may achieve 
understanding of real materials. 

Because crystal dislocations are the simplest entities responsible for 
plastic(meaning irreversible) flow, we have chosen to study these lattice 
defects in detail. Figure 1, taken from a dynamical microscopic simulation, 
shows an edge dislocation propagating through a triangular-lattice crystal . 

...Jhe top and bottom boundaries of the crystal are held fixed, so that the force 
driving the dislocation motion is the irreversible conversion of stored strain 
energy into heat. The dislocation can be seen most easily by viewing Figure 1 
obliquely. The defect corresponds to a place, near the righthand side of the 
figure, at which a diagonal line of close-packed atoms comes to an end. 
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1MB 

Figure 1. Edge dislocation pl'opagating in a triangular-lattice crystal. 

In three-dimensional crystalline materials both edge dislocations, such 
as that shown in Figure 1, and screw dislocations can occur. In two-dimension
al crystals only edge dislocations can exist, for screw dislocations involve 
out-of-plane displacements. The edge dislocations are mathematically more com
plicated, at least from the standpoint of continuum elasticity, but we consider 
them here because they dominate plastic flow in three dimensions as well as in 
two. We limit ourselves to the two-dimensional case, for simplicity, ignoring 
the complications associated with three-dimensional geometry, electrons, and 

quantum dynamics. Even so, the calculations we describe challenge even 
present day computers. 

Prior to the advent of fast computers peculiar models. such as that of 
Frenkel and Kontorova, were analyzed. Such models were chosen to simplify the 
analytic work, but bore only a slight resemblance to many-body systems composed 
of similar interacting particles. These artificial models persist today, 
largely due to inertia and lack of imagination. Some work has been carried out 

on dislocations in atomic lattices. Celli's work on three-dimensional screw 
dislocations(lO-11) > .and Weiner's work on a tViQ-dif:1ensional material with 

angle-dependent forces(12) exemplify rEce~: efforts .. 
At present there is a flurry 0; in:erest in dislocations. This interes~ 

was generated by ill-founded sCEcu.eticn that these defects are present. in 
large numbers, in meltin~ twc-d1~2~si~~al solids. Fortunately thoughtful cal
culations are beginning :: .' 3- 1 3), so that the temporary pedago;ical 

= 
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setback suffered by melting theory will ultimately be more than offset by our 

enhanced understanding of dislocations in solids. 
In characterizing complex phenomena it is useful to have a standard 

material for study, both simple and reproducible. In three-dimensional equi
librium and transport calculations, first the hard-sphere potential, and later 
the Lennard-Jones 12-6 potential have played this role. In this paper we 
choose, as our standard plastic material, a triangular lattice in which neigh
boring particles interact with suitably truncated Hooke's~Law springs. Much 
is already known about this system--that work is summarized in Section II. 
Sections III and 1111 are devoted to atomistic descriptions of dislocations, 
first individually, and then in groups, using classical molecular dynamics to 
solve the equations of motion for the underlying crystal lattice. In Section 
V we describe a method for treating the mutual interaction and motion of many 

(hundreds) dislocations using continuum dynamics. This intermediate-scale 
~imulation incorporates interaction information from the single-dislocation 

molecular dynamics work. 
The main novel features of the dislocation work described here are 

(i) the use of Doll's Tensor in solid-phase adiabatic flows, (ii) the use of 
periodic boundary conditions in the continuum calculations, (iii} the direct 
measurement of the equation of motion for dislocations--velocity as a function 
of stress, and (iiii) the incorporation of kinetic stress-linked creation and 
annihilation of dislocations. 
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II. THE TRIANGULAR LATTICE, A STANDARD MATERIAL FOR PLASTIC FLOW 

The theoretical microscopic analysis of metal plasticity is complicated 
by several unpleasant facts. The crystals contain electrons, which must be 
described by quantum mechanics, and typically include impurities, grain bo'und
aries, and microcracks, all in an inhomogeneous anisotropic matrix. So far a 
useful computational quantum dynamics has not been developed. Considerable 
effort is still being devoted to equilibrium quantum fluid properties(16). 
Accordingly, cZassicaZ mechanics must be used in atomistic dynamic simulation. 
Even with this Simplification, the force laws which have proved useful in 
correlating equilibrium fluid and solid properties would require extremely 
large systems for quantitative plastic flow simulations. Numerical studies, 
using the Lennard-Jones 12-6 potential, indicate a relatively large 10% change 
in dislocation velocity as the crystal width is increased from 12 to 18 atomic 
spac;ngs(17). The corresponding three-dimensional crystals, with 10,000 
atoms, represent the practical limit for present day simulations. 

Because the simulations required to test approximate theories are time
consuming and relatively expensive, a voluminous and imaginative literature 
has developed around the idea that dislocations are responsible for plastic 
flow. Much of this work bears little connection either to experiment or to 
well-defined mechanistic simulations. We believe that the numerical tech
niques necessary to advance our theoretical understanding of plasticity do 

now exist. Rather than working directly with experimental data--from systems 
with unknown atomistic forces--or with calculations based on ad hoc models, we 
propose to explore a mechanistic model system with forces chosen for simplici
ty. We choose to study an elastic structure which is (i) stable, lii) iso
tropic, and (iii) relatively free of boundary effects. The lattice 
with nearest-neighbor Hooke's-Law springs is mechanically stabZe because any 
deformation causes some of the springs to stretch, creating a restoring force. 
The nearest-neighbor square lattice lacks this feature. The triangular 
lattice is elastically isotropic too. The inherent four-fold invariance 
associated with shear deformation and the physical six-fold symmetry of the 
lattice are consistent only for a shear modulus which is independent of angle. 
The minimization bovftdQry is empirical, and depends, as discussed 
on the next page, on the form of the forces. 

Because linear dynamical equations are particularly simple to analyze, 
we choose interatomic forces which are linear in the displacement 0 from the~ 
minimum-energy rest length do: 

F -KO for 0 r - do < w. [1] 
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Figure 2. Two Hooke's-Law pair potentials and the truncated Lennard-Jones 
palr potential. The distance and energy scales depend upon the fixed length 
d and the interatomic force constant K. The parameter w, expressed in units 
~!_~!_2!~~~_~~~_~~!~!~~_~!_!~~_~~~~~~~:~~~_~~~!~___________________________ _ 
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~Figure 3. Distribution of vibration frequencies for the stress-free, two
. dimensional triangular lattice. The Einstein approximate distribution con

sists of a single frequency. The Debye approximate distribution consists of 
either a single linear branch, of the type shown in the figure, or a combined 
distribution, obtained by adding two such branches together. 
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The Hooke's-Law force must be cut off at a distance somewhat greater than do 
to avoid the complication of second-and-higher-neighbor interactions. We do 
this by continuing the force beyond the distance of greatest attraction, do + 
w, where the stretch in the spring is w, to a final stretch of 2w, where the 

force vani shes: 

F = -K(2w - 0) for w < r - do < 2w. [2J 

The parameter w, which gives the range of the force, remains to be chosen. 

Which value of w is simplest? We have chosen w = O.15d because this valueo 
leads to simple defect structures and to relatively small boundary effects. 

This value is not very different from that suggested by the attractive-force 
maximum in the more-realistic Lennard-Jones 12-6 potential. The Lennard

Jones potential inflection point(force-law maximum) occurs just beyond a 

stretch of O.ldo' The pair potentials corresponding to the force law [lJ+[2J 
are compared with the truncated 12-6 potential in Figure 2. ~ 

What properties of the triangular lattice are already known? Dean(18) 
worked out the dependence of the vibrational frequencies on wavelength and 

direction(the "dispersion" relation), giving, implicitly. the complete fre
quency distribution. The calculated distribution of frequencies, at the 
stress-free density, is shown in Figure 3. This distribution has two quali

tatively interesting featuY'es shared by two-dimensional crystals(19). First, 
the frequency distribution diverges, weakly, at two characteristic frequen
cies. Second, the mean-squared displacement of an atom about its lattice 

site, computed from the frequency distribution, diverges~ 

<r2> = (2kT/m)<w·2> ~ O(lnN), [3J 

for large N-atom crystals. This well-known divergence is a consequence of 
the relatively large number of low-frequency modes. According to the two

dimensional Debye model {correct for long waves) the number of frequencies in 
a range dw about w is proportional to w. Thus the average ofw·2, over all 
frequencies. diverges logarithmically in the low-frequency limit. 

A more detailed look (See Figure 4) indicates that this divergence is 

too weak to have macroscopic consequences. The reZative rms displacement, 
relative to a macroscopic length that scales with crystal size, does approach 

1 '2 zero. as N- I for large N. 

Dean's zero-stress calculation can be generalized to other densities(20t_ 

The results are surprising. First, the thermal contribution to the pressuri 
computed classically, from the density-dependence of the vibrational fre
quencies, is negative(2l) .. Thus the crystal contracts on heating. The nega
tive contribution of the thermal motion to the pressure increases in magnitude 

~ 

~-----------------------------------------
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Figure 4. Mean-squared atomic displacement, relative to the Einstein-model 
prediction, for periodic triangular crystals with the unit cell illustrated. 

Figure 5. Frequency(1ow branch only) versus k-vector at the instability den
sity in the triangular lattice. There are six zero-frequency valleys. 
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with increasing density and diverges at a density 16/9 times the stress-free 
density. Under these conditions an investigation of the dispersion relation 
(See Figure 5) reveals that all the transverse shear modes corresponding to 
the parallel motion of close-packed rows of atoms develop zero frequency, so 
that the resistance to shear disappears at high density. It is interesting 
that this high-density mechanical instability is the same mechanism suggested 
for melting on the basis of movies made of the highly anharmonic motion of 
two-dimensional hard disks(22). The Hooke's-Law mechanical shear instability 
seen in Figure 5 is not melting and is actually headed off by an intervening 
solid-solid phase transition. The details of the phase diagram depend on w. 
For the case we have chosen to investigate in detail, w = O.15d ' the trio 
angular lattice recrystallizes in a square lattice(where second.neighbor 
interactions stabilize the high-density form). 

The high-density instability just described is not peculiar to the tri
;r

angular two-dimensional lattice. The three-dimensional cubic and hexagonal' 
close-packed lattices both exhibit similar instabilities, at a density 1.728 
times the stress-free density. 

Two- and three-dimensional crystals also become unstable at low density. 
First of all, thermodynamic stability precludes states of tension. Such 
states are unstable relative to two-phase mixtures including a low..<:Jensity 
gas. Second, even if the gas phase were excluded, to allow tension, the nu
cleation of vacancies would severely limit the tensile states that could be 
achieved. The importance of vacancies in the solid phase can be estimated 
from the Einstein model, in which the vibrations of each particle are computed 
independently of the motion of its neighbors. This simple picture includes, 
approximately, the competition between the increased energy of atoms neighbor
ing a vacancy and the free energy of mixing, including the pressure-volume 
work required to insert a vacancy into an otherwise-perfect crystal. At zero 
pressure, the Einstein model predicts a vacancy fraction of 

2(n/N)Einstein = (27/8)exp(-3Kw /kT), [4J 

which, with an estimated melting temperature of O.OlKd;, is 0.004 at the melt
ing point. Both Cook and Huckaby have explored improvements on the Einstein 
estimate. Cook's work(23) predicts a larger fraction(l .27 times larger) by 
taking into account the effect of the vacancy on the vibrational free energy, 
obtained from the force-constant matrix(24). Huckaby(25) used the systematic, 
cell-cluster theory approach, including two-, three-, .. , particle correla-

! 

tions in the crystal free energy. Huckaby's estimate is nearly twice that of 
the Einstein estimate [4J. Neither of these calculations takes the effect of 
pressure into account. This effect is easily included(26), and the corres
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ponding Einstein calculation suggests that, even at very low temperatures, the 
relaxation of tensile lattice energy would overcome the increase in lattice 
binding energy due to the introduction of vacancies, at a density about 5% 
less than the stress-free density. 

The frequency distribution for a defect-free crystal can be used to find 
the macroscopic elastic equation of state. Because explicit calculation of 
the sol id-phase Hugoniot shockwave equation of state(l?) shows that thermal 
contributions are small, we quote here the Lam~ constants, A and n. Poisson's 
ratio, A/(),+2n), and the longitudinal and transverse sound speeds. all calcu
lated for a static, zero-temperature lattice: 

v = (veq + A\I·u)I + n(Vu + vu t ) 

AVo = (3NKd~/8)(5pl/2_4) 

nVo (3NKd~/8)l4-3pl/2) 
A/(A+2n) = (5p1/2_4)/(4_p 1/2) 

c~ = (Kd~/8mp)(12-3pl/2) 
c~ = (Kd~/8mp)(12-9pl/2) [5J 

The vanishing of the shear modulus n and the transverse sound speed coincides 
with the shear instability at p = 16/9, where we use p to indicate the density 
relative to the zero-stress density, p =VolVo 

The thermal properties of the lattice, ignored in equation [5J, can be 
described exactly, using the strain-dependence of the frequency distribution 
function(27) , or, approximately, in terms of the Einstein and Debye models. 
According to any of these approaches, the thermal part of the pressure can be 
expressed in terms of the "Gruneisen gamma", -y dlnw/dlnV, averaged over the 
distribution of normal-mode frequencies. In the Einstein case: 

YE = (4_8p-l/2 r l. [6EJ 

Two different versions of the Debye model can be used. If two separate 
branches, one longitudinal and one transverse, are added together: 

Y5 (3/8)[(3_12p-l/2)-1+(3_4p-l/2)-lJ. [65J 

In the more conventional Debye model, with all the frequencies combined to 
give a single distribution, a different gamma results: 

[6C] 

Figure 6 compares the three approximate treatments [6J with the exact gamma 
calculated from the density-dependent frequency distribution function. In 
view of the two singularities in that function(5ee Figure 3), it is not 
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Figure 6. Comparison of three approximate models for the Gruneisen gamma [6J 
with an exact calculation from reference 20. The vertical arrOi~ at the upper 
right indicates the instability density. The abscissa is Vo/V p/po' 

surprising that all the approximations are poor. Analysis(20) near the in
stability density, with op = (16/9) - p, shows that the pressure diverges as 
op-l/2. The Oebye models, on the other hand. predict incorrectly 8p-l 

Brittl e fracture has also been invest; gated for our Hooke t s-Lalv model 
triangular lattice(28). Both the velocity and the entropy associated with 
brittle-crack motion and structure have been characterized(See Figure 7). It 
was found that cracks, like dislocations, propagate at speeds near the sound 

Figure 7. B.rittle crack propagating in a triangular-lattice crystal. 
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speed, provided that the stress is sufficiently great. Some approximate 
lattice models have incorrectly predicted that crack propagation is reversi
ble. The dynamical computer experiments show that cracks can propagate in a 
regular, orderly way, but heal only with difficul Because brittle cracks 
require tension for stability, they are not expected to be important in high
pressure flows. 

The fracture work just described led to an interest in surface(Rayleigh) 
waves because continuum theories of fracture use superposed Rayleigh waves to 
represent traveling cracks. The Rayleigh-wave investigation revealed the ex
pected dispersion, with high-frequency waves trailing low-frequency ones, as 
well as the unexpected result that the zero-stress dispersion relation has 
the same form as that found for the one-dimensional harmonic chain. 

0">. 

- " 

Figure 8. Continuum displacement field, in a strip with :ixed bounda~ies, for 
an edge dislocation in an elastic ~trip(30). By prOp~gat1ng to ~he r1gh~, the 
dislocation reduces the shear stra1n by d/h, where d 1S the latt1ce spac1ng 
and h is the crystal height. At the top of the figure the continuum solu~ion 
is shown, plotted as a series of displacement vectors computed for the p01nts 
of a triangular lattice. At the bottom of the figure the solution is shown 
again, but with circles used to indicate the locations of trye d~splaced . 
lattice points. This continuum solution is ~ useful approx:mat1on to th~ d1S
placement field found in atomic crystals uSlng the relaxat10n methods dlS
cussed in Section III. 
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III. PROPERTIES OF SINGLE EDGE DISLOCATIONS VIA MOLECULAR DYNAMICS 

The static structure of defects such as dislocations can be determined 

by a straightforward modification of molecular dynamics. Including a fric

tional force, proportional to each particle's velocity, or alternatively, 

setting particle velocities equal to zero whenever the kinetic energy reaches 

a maximum, are two useful methods. Calculations for crystals containing a 

single dislocation indicate that the dislocation core structure varies in a 
qualitative way as w/d varies from 0.10 to 0.18, with the simplest structure o 
occuring near 0.15. For this reason we have adopted that value for plasti

city calculations. Substantially smaller or larger values of w/d lead to o 
more complex core structures with increased dependence on system size. Sim

ilar calculations for the truncated Lennard-Jones 12-6 potential, which in

corporates realistic anharmonicity, are sensitive to system size too(17). 

The dislocation simulations are easily initiated by using the elastic- r 
theory displacements for a continuum, but applied at the sites of a perfect 

lattice, as shown in Figure 8. Eshelby(29) derived the displacements for a 
dislocation, at (x,y) (0,0), moving at velocity (v,O) in an infinitely-
extended continuum: 

U {d/n)(c /v)2[tan- l (yy/x) - 0:2 tan -l (Sy/x)Jx t 
u (d/n)(c /v)2[Yln(x2+y2y2)1/2_(0:2/S)lnCx2+S2y2)1/2]y t 
22222 20: 1 - (1/2)(v/c ) ; S = 1 - (v/c ) ; y = 1 - Cv/c l ) . [7Jt t 

Static-lattice displacements follow from the low-velocity limit of [7J. 

In practice, it is necessary to specify boundary conditions in any com
puter simulation. A particularly convenient choice(See Figure 8) involves 

fixing the top and bottom crystal boundaries. With crystal height hand 

Burgers' vector b=d the crystal energy density far from the dislocation is 

(n/2)[E~(d/2h)J2. Passage of the dislocation reduces the shear strain by 

exactly d/h. Thus motion of the dislocation a distance d reduces the stored 

elastic energy by exactly nd 2, and generates an equivalent heat, initially in 

the form of lattice vibrations localized near the dislocation core. The ir
reversible dislocation motion, converting work into heat, proceeds at con

stant energy, without any work being done because the boundaries are held 

fixed. The lattice deformation is more complicated if fixed stress, rather 
displacement is used as a boundary condition. See Figure 9. (~ 

The several annoying difficulties present in Eshelby's solution of the 

linear elastic equations are all absent in the molecular dynamics simulations: 

(i) there is no divergence of the dislocation energy density at infinity; 
(ii) there is no ambiguity in the relative displacement of atoms just below 
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Figure 9. Propagation with w=O.lBd and constant stress of 0.04K. Note the 
Rayleigh waves generated by the moving dislocation. 

and just above the glide plane(present in Eshelby's solution because d is 
taken infinitesimal); (iii) there is no divergence of the dislocation energy 
density for small distances; and (iiii) the solution of the equations of mo
tion is, unlike Eshelby's, irreversible. Dynamical instability in the equa
tions of motion prevents a dislocation from converting heat back into work. 

The dynamical calculations show that, for a cold crystal, velocity 
varies nearly linearly with strain(See Figure 10). The indifference of the 
calculations to the chosen timestep, for small enough steps, indicates that 
the approximation of the differential equations of motion by equivalent 
difference equations is valid. For large enough strains new phenomena ap~ 
pear. Vacancy formation is shown in Figure 1. In the anharmonic Lennard
Jones 12-6 case two distinct branches of the velocity-strain relation have 
been observed(See Figure 10}. It is possible that the high-speed branch 
corresponds to the isolated high-speed solution of the continuum equations 
of motion found by Eshelby. 

The single-dislocation simulations provide detailed particle trajector
ies for comparison with the corresponding predictions of continuum dynamics. 
To make the comparison it was necessary to generalize Eshelby's solution to 

!If"t>.: the fixed-boundary case(30}. Figure 11 shows that, apart from reversibility, 
. the continuum trajectories closely resemble the atomistic trajectories, for 

Hooke's-Lawatoms. In the anharmonic case the agreement is relatively poor. 
In the next two sections we discuss microscopic and macroscopic gener

alizations o~ the single-dislocation calculations to many dislocations. 

= 
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http:EXY=0.06
http:V/CL=0.29
http:RMRX/D=1.30


PLASTIC DISLOCATION MOTION 289 

1111. EDGE DISLOCATION INTERACTIONS VIA NONEQUILIBRIUM MOLECULAR DYNAMICS 

In computer simulations of bulk properties it has been usual to make 
the system boundaries TJ""T'7J)/'rlJ' to mi ni mi ze effects. This is necessary 
with long-range interactions, such as the long-range interaction between two 
dislocations, which varies as l/r. A typical periodic system, containing 
dislocations, is illustrated in Figure 12, where the basic volume, with 125 

interacting atoms, is shown surrounded by six displaced, but otherwise 

'" '~-. 
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Figure 12. Periodic boundary conditions, used to eliminate edge effects in 
atomistic simulations. At the top seven identical copies of a 125-atom 
system are shown. At the bottom these copies have been joined to emphasize 
the periodic geometry. Careful inspection of the figure will reveal three 
separated dislocations and a dislocation pair. The defects can be found by 
locating atoms linked to five or seven{rather than six) neighbors. 
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identical images of that same volume. 
It might appear necessary to manipulate actual physical boundaries. such 

as those in Figures 7 and 9, to impose stress on a system. In fact. it is 

possible to strain a periodic system, without boundaries, in an adiabatic way, 
by carrying out a continuously-varying deformation of the coordinate system 
in which the atomistic molecular dynamics takes place. The equations of mo
tion which correspond to such adiabatic deformations, described below. have 
been used to determine the shear and bulk viscosity coefficients of fluids(31). 

Adiabatic irreversible deformations are carried out by including a per
. turbation coupling Oollis Tensor(32,33), Lqp, where q and p are the atomic 

coordinates and momenta, to the strain-rate tensor, vu, where u is the macro
scopic stream velocity. The microscopic Hamiltonian, from which the equations 
of motion follow, has the following form: 

H ¢(q) + K(p) + Iqp:vu; ~ = aH/ap; p -aH/aq. [8] 
(' 

A uniform dilation of the system with dlnV/dt = 2£, 

corresponds to the strain-rate tensor shown just to 

the right. If the system were instead undergoing a 

shear deformation, expanding in the x direction and 

contracting in the y direction, then the strain-

rate tensor would include a minus sign in the lower 

righthand entry. It is easy to verify that the equations of motion [8J dis
tort the system in a way consistent with the specified strain-rate tensor. 


It is also true that the "external" work which must be expended to cause the 

distortion is exactly that consistent with macroscopic thermodynamics: 


dE/dt '" Va:vu, [9J 

where E is the internal energy of the volume V which has strain rate vu, and 

where the microscopic stress tensor 0 contains both kinetic and potential 
contributions: 

[lOJ 

The exact thermodynamic relation [9] serves as a useful check on the nu
merical integration of the equations of motion [8]. In most of our work the 
strain rate varies sinusoidally with time so that the parameters characteriz
ing a calculation include the initial thermodynamic state, the amplitude, and 
the frequency of shear. The periodic system shown in Figure 12 has, after .~ 
one-half cycle of adiabatic shear, reached a temperature near the melting 
temperature and contains several dislocations (recognizable as nearby atoms 
with five and seven neighbors). The temperatures are defined by the kinetic 
part of the internal energy, (N-l)kT Lp2/2m. 
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Figure 13. A configuration, from reference 14, created by rapid heating of a 
Lennard-Jones 12-6 crystal, near the solid-phase triple-point density, to a 
temperature just below the triple-point temperature. The many dislocations 
and voids seen in the figure are artifacts and do not correspond to equili 
brium defect concentrations. Compare with figure 2 of reference 13. 

Equilibrium thermodynamics suggests that the number of dislocations in 
a crystal can be expected to be very small. The elastic energy of a dislo
cation is of order (Kb2/4TI/3)lnj, where j is the number of lattice planes 
separating two neighboring dislocations; this energy exceeds the kinetic 
energy per particle, at the melting point, by an order of magnitude, for 
reasonable densities of dislocations. Nevertheless, some computer simula
tions have shown large numbers of dislocations. See Figure 13 above. It is 
interesting that Toxvaerd's calculation(13), under nearly identical thermody
namic conditions, shows no dislocations. Thus the defect population is a 
sensitive function of thermodynamic path. 

With the Doll 's-Tensor perturbation providing adiabatic flow, the prin
~cipal difficulty in interpreting the results of molecular dynamics simulations 

is the irreversible heating of the crystal due to dislocation motion. This 
heating can be avoided by using isothermal molecular dynamics(34) , rescaling 
the atomic momenta to make the kinetic internal energy a constant of motion. 
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Denis Evans has recently described a LaGrange-multiplier method for imple
menting dynamic constraints in the microscopic equations of motion. 

We are presently carrying out a systematic exploration of the constitu
tive properties of Hooke's-Law solids under adiabatic shear. This project 
involves, in addition to studying the usual number-dependence, analyzing the 
dependence of the energy, stress, and plastic strain on the temperature, 
amplitude, frequency, and dislocation density. Analyses of the deformed 
structures in terms of triangles(these would be tetrahedra in three dimen
sional problems), such as those shown in Figure 12, make it possible to iden
tify'dislocations and vacancies and to define local stresses and strains. The 
identification of local variables proceeds by using a bilinear fit within each 
triangle. It was shown previously that the energy and stress calculated in 
this way are identical, for small deformations, with those calculated directly 
from the Hooke's-Law spring forces(28). 
- ---- --- ----------- -- ---- ----- --- ---- --- ---- ---- -- ---- ---- -- -- ---- -- --------l-

V. EDGE DISLOCATION INTERACTIONS VIA NONEQUILIBRIUM CONTINUUM DYNAMICS 

From the intermediate-scale continuum viewpoint, dislocations are point 
defects which react to local stress. The nonequilibrium molecular dynamics 
simulations indicate that the motion has negligible inertia, so that a simple 
first-order equation of motion, giving dr/dt in terms of local variables, can 
be used. How should the periodic boundaries be treated? Li(35) showed that 
it is possible to work out the stress field for an infinite static column of 
edge dislocations. This calculation can easily be extended to the dynamic 
case by using the sums discussed on page 670 of reference 7 together with the 
stress-tensor components displayed on pages 166-7 of that reference. In 
practice the convergence of the column and row sums is sufficiently rapid 
that only a few adjacent columns or rows need to be summed to obtain an ac
curate representation of the stress due to an infinite hexagonal array of 
moving dislocations. That stress can then be used in conjunction with the 
intermediate-scale equation of motion(from Figure 10, for instance) to simu
late the motion of many interacting dislocations. In keeping with the under
lying approximation of linear elasticity, the Burgers' vector is assumed to 
be infinitesimal, so that the macroscopic shape of the crystal is unchanged 
in these calculations. External stress can be superposed on that due to the 
interacting dislocations. The strain measured in these calculations, by 
summing the effects of the moving dislocations, is plastic strain. 

Whenever two dislocations approach each other cl.osely, the interaction 
between them diverges. Physically we expect that two such dislocations will 
either annihilate or form a new dislocation via Burgers '-vector addition. We 
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have observed both processes in atomistic simulations. In intermediate-scale 
continuum dynamics we allow a dislocation reaction to occur whenever two dis
locations approach within one Burgers'-vector length d 1 2 3 4 5 6 
of each other. If we indicate the six kinds of dislo 1 
cations possible in the triangular lattice by the in 2 

3tegers 1-6. numbered counterclockwise, then the matrix 4 
of possible reactions has the form shOl>ln at the right: 5 

6By studying the nonequilibrium molecular dynamics 

- - 206 
3 0 

2 - 4 ~Io 3 
604 
- 1 0 5 

simulations described in Section 1111 the creation rates for these defects can 
also be expressed as functions of the strain, strain-rate, and dislocation 
density. 

Once we complete the current study of soft potentials, the more complica
ted problems of anharmonicity and three-dimensional plastic flow can be at
tacked with confidence. We believe that this program will ultimately lead to 

~~a comprehensive understanding of plastic flow, by linking together the 
microscopic, intermediate. and macroscopic descriptions of plasticity through 
computer simulations. 
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Warning: 
In the Figures d and d are used interchangeably to indicate the stress

free interparticle spacing. o In Figures 9 and 10 the force constant K appears 
as k. In Figure 2 the length w is given in units of do' The relation linking 
the two frequencies wand v is w 2nv. Finally, u is used to indicate both 
the elastic displacement(Equations [5J and [7J) and the stream velocity(in 
Section IIII) while the variable p is everywhere dimensionless and indicates 
the ratio of the density to the stress-free density. 
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