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1. INTRODUCTION 

The basic concepts-mass, force, and acceleration-were first correctly 
interrelated by Newton. Three hundred years ago he explained the regular 
motion of the planets about the Sun on the basis of pairwise-additive 
gravitational forces. The possibility of solving Newton's equations of 
motion for N-body systems of atoms or molecules had to wait unti11953, 
when suitable computers had become available at Los Alamos. 

On a human time scale, the night sky has a relatively stable appearance. 
It is amusing that, from a mathematical viewpoint, gravitational N-body 
systems are much less "stable" than the molecular systems studied by 
molecular dynamics. Mathematical stability can be monitored by observ
ing the separation between two neighboring trajectories. In a stable case, 
the separation grows linearly with time. In the typical unstable case, this 
distance increases exponentially with time. This "Lyapunov" instability is a 
ubiquitous feature of interesting dynamical systems. Whether or not it 
affects other properties of such systems in any important way is a 
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fascinating unresolved problem. Interest in astronomical problems, the 
original focus of many-body studies, is still an active field of research 
(Lightman & Shapiro 1978). 

Molecular dynamics has come to mean the numerical solution of 
classical differential equations of motion for many-body problems. The 
number of particles N has varied from 2 to the current world record of 
N = 161,604 (Abraham et al. 1984). The first serious efforts in this field 
involved simple one-dimensional systems with N = 16. These studies were 
suggested by Fermi (Fermi et al. 1955). 

Fermi's early calculations (Tuck & Menzel 1972) were designed to 
illustrate the approach toward equilibrium of an anharmonic one
dimensional chain. The failure of such chains to equilibrate led to a still
growing industry: chaos, solitons, and catastrophes. Fermi et al. evidently 
also solved some two-dimensional dynamical problems in their exploratory 
work (Miller 1964, 1971). Within five years, both solid-phase (Gibson et al. 
1959) and fluid-phase (Alder & Wainwright 1956) simulations in three 
dimensions appeared. Recent "large" dynamic simulations (Meiburg 1985) 
of 40,000 flowing gas particles, 59,573 vibrating solid particles (Kinney & 
Guinan 1982), and 161,604 adsorbed atoms (Abraham et al. 1984) on a 
graphite substrate are about four orders of magnitude "larger" than those 
Fermi inspired in 1953. 

The deterministic nature of the underlying differential equations sim
plifies intercomparisons and checks of the work, but this determinism 
should not be taken too seriously, since Lyapunov instability interferes. 
Thus the "true" trajectory is not followed for long. Lyapunov instability 
complicates the lives of physicists seeking help from mathematicians in 
analyzing their problems. Mathematicians suspect that the instability is 
responsible for whatever bizarre behavior the physicist finds (Fox 1983). 
Physicists know that no significant features of the systems they study can be 
grossly altered by this sensitivity to small perturbations. 

G. A. Bird's "direct-simulation method" takes advantage of the macro
scopic insensitivity to exact microscopic details. With this approach and its 
many variants (Nanbu 1983a), pairs of particles collide statistically rather 
than deterministically. The resulting simulations are somewhat cheaper 
than those of true molecular dynamics. Millions of gas-phase particles can 
be treated with these techniques (Potter 1973). 

As with any computer technique, molecular dynamics can furnish 
excruciating detail (Ravech6 et al. 1972). Any reproducible features of the 
calculations can be used to test and expand theories and to curtail 
misguided hunches. 

Molecular dynamics, when coupled with graphic displays, is useful in 
unraveling unexpected phenomena and mechanisms that are not under
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stood (Erpenbeck 1984). Flow visualization is simplest in two-dimensional 
systems. In three-dimensional systems, a slow rotation is useful in 
presenting solutions in movie form. 

In comparing molecular-dynamics results with true laboratory experi
ments, not only forces but also boundary conditions must be specified. Even 
in the largest simulations, the fraction of surface particles would be a few 
percent if a real boundary were present. For this reason, techniques 
reducing the influence of boundaries, or eliminating them altogether, have 
been extensively studied. This effort has generated interest in many familiar 
ideas: viscous damping, smoothing, and Gaussian noise. Many of the 
schemes used to <larry out constant-temperature or constant-energy 
simulations are straightforward examples of "control theory." Even so, a 
lack of diligence, candor, or curiosity has led to a wide variety of ill
conceived techniques, which G. Stell refers to as "setbacks in physics." 

Systems "far from equilibrium" occur whenever nonequilibrium prop
erties vary in just a few mean free paths or over a very few collision times. 
Most of the nonequilibrium simulations using molecular dynamics are far 
from equilibrium. Otherwise, the interesting flow phenomena being studied 
would be obscured by thermal and statistical fluctuations. In fluid 
mechanics, typical examples include Knudsen gases and shock waves, as 
well as interfacial regions bounding rapidly vaporizing or condensing 
phases. If such systems could be explained from a theoretical point of view, 
then there would be no point in simulating them. So far, theory is oflittle use 
in predicting the nonlinear aspects of flows far from equilibrium. 

In this review, we begin by considering the current state of the theory and 
pointing out directions in which it might soon be improved. The computer 
simulations play an important role in furnishing detailed information on 
which theoretical developments can be based. We next describe the 
simulation techniques, emphasizing the relatively new idea of constraining 
macroscopic variables at fixed instantaneous or average values. 

As an illustration, we apply several (nine) techniques to the simulation of 
heat flow in the simplest possible system, a three-particle one-dimensional 
chain. From this simple model some features common to the more complex 
systems of interest far from equilibrium are revealed. 

We then focus on problems-shock waves, shear flow, and heat flow-in 
which the result is in doubt from a continuum viewpoint. An area of interest 
in this sense is the principal of material frame indifference (Lumley 1970, 
Jaynes 1980). This "principle," really just an approximation, has led a long 
life, in large part owing to the difficulties in performing unambiguous 
experimental tests. Molecular dynamics furnishes such tests. Finally, we 
close this review, which reflects mainly the areas of our own research 
interests, with speculations on future developments. 
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2. THEORY OF SYSTEMS 
FAR FROM EQUILIBRIUM 

So far, little is known about systems far from equilibrium. Even the 
Boltzmann equation, which applies at densities low enough that three-body 
collisions and two-body correlations can be ignored, has to be solved 
numerically in all but the simplest cases. 

Of course, very general scaling or similarity arguments can be applied to 
nonequilibrium systems, yielding restricted forms of the principle of 
corresponding states. The idea of scaling, and scale models, is familiar in 
mechanical engineering. Consider a material in which stress depends only 
upon strain. In this case the macroscopic equation of motion, 

p du/dt V' 0", (1) 

can be written in a scaled form by multiplying by a characteristic 
macroscopic length L. If the time is scaled by the same multiplicative 
factor-proportional to a sound traversal time-then the scaled equation 
of motion is independent of L. Thus the fact that scale models do not exactly 
mimic full-scale experience is a consequence of exceptions to the assumed 
dependence of stress on strain. The effects of strain rate and temperature on 
stress complicate real behavior. 

The microscopic equations of motion are ordinary, rather than partial, 
differential equations, but these too can satisfy scaling relationships. If the 
coordinates and velocities in two systems differ by only a scale factor, and if 
the forces also give the same scaled accelerations, then the detailed time 
developments of the trajectories in the two systems will correspond. A 
similar correspondence, but with a scaled time, holds if the coordinates and 
accelerations differ by independent scale factors. The two scales can be 
combined if the force law is an inverse power. The usual range runs from 
Maxwellian particles (inverse fourth-power potential) to hard spheres. 

To obtain corresponding microscopic trajectories in the most general 
nonequilibrium case, each of the terms in the nonequilibrium equations of 
motion, 

(2) 

must obey the same scaling relation. Here Fa indicates the "applied" forces 
derived from an interparticle potential <1>, Fb the "boundary" forces, Fe the 
constraint forces, and Fd the driving forces. 

It would be appealing if J. W. Gibbs' equilibrium statistical mechanics 
could be easily extended to the nonequilibrium case. Jaynes (1980) has 
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rightly suggested that nonequilibrium ensembles could be constructed by 
restricting the phase space to regions consistent with macroscopic know
ledge. In practice, this prescription is somewhat barren because it is not 
easily applied. For instance, consider a system undergoing planar Couette 
flow with an average shear stress (v) = (P",y)' Jaynes' prescription leads 
to a phase-space distribution function somewhat different from the 
equilibriumfo: 

fifo exp( - ),v), (3) 

where }, is a Lagrange mUltiplier chosen to reproduce the average stress 
(v). We know that this distribution function (3) is oversimplified. The true 
steady-state distribution function 

f(t 00 )/fo = exp[ -('IV/kT) t'" v( - t) dt] (4) 

for the special case of adiabatic plane Couette flow has been known since 
the work of Yamada & Kawasaki (1967). For dilute gases, the correspond
ing Boltzmann equation result has been known since 1935 (Chapman & 
Cowling 1970). If an external field Fe induces a dissipation 

dHo/dt = JF., (5) 

then it is possible to show that the nonequilibrium distribution function 
takes the form 

f(t)/fo = exp[ - J: {JJ( -s)Fe ds], (6) 

where {J = 1/kT. Surprisingly, this formal expression remains valid even in 
thermostated systems (Morriss & Evans 1985). In this case the thermostated 
field-dependent equations of motion must be used to compute J( - s) from 
the initial coordinates and velocities. 

One of the important families of relations that has been discovered for 
transport coefficients is that due to M. S. Green & R. Kubo. The Green
Kubo relations relate a transport coefficient L, where J = to the decay 
of equilibrium fluctuations: 

L:::::: Ia'Xl (J(t)J(O»o dt. (7) 

As we shall see, these expressions have played a major role in the 
development of algorithms for computing transport coefficients. 
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The Green-Kubo relations suggest an obvious strategy for computing 
transport coefficients from computer simulations. One could simply 
perform an equilibrium simulation and by time averaging compute the 
required time correlation function (J(t)J(O»o. It turns out that such an 
a pproach is very inefficient. The results depend strongly and nonmonotoni
cally on system size (Holian & Evans 1983). Furthermore, such calculations 
must be carried out to very long simulated times in order to achieve 
convergence of the Green-Kubo integrals (Evans 1981a). 

3. ATOMISTIC SIMULATION TECHNIQUES 

In equilibrium molecular-dynamics simulations, periodic boundaries are 
used to reduce finite size effects. With this choice, the size dependence of the 
energy per particle and the pressure is typically liN. In nonequilibrium 
systems, special boundaries have to be considered if mass, momentum, or 
energy are to be introduced at a physical boundary. A convenient way of 
adding mass in dense systems has yet to be developed. Momentum and 
energy can be added in several ways. The most rudimentary technique is to 
reset the velocities of particles colliding with the "wall" (Lebowitz & Spohn 
1978). New velocities are chosen from a Maxwell-Boltzmann distribution 
with specified mean and mean-squared velocities. A more sophisticated 
approach is necessary in dense fluids to combat the tendency of particles to 
order parallel to such boundaries. For this purpose, Ashurst (1973) used 
"fluid walls" in which the velocities of a few dozen wall particles were 
constrained to have fixed first and second moments. This was done by an ad 
hoc scaling process equivalent to using a constraint force Fe = A +B •v, 
with A(t) and B(t) chosen to maintain the first and second moments 
unchanged. 

An alternative is to use additional "stochastic" forces in reservoir regions. 
The reservoirs impose a mean temperature (through the second velocity 
moment) on the reservoir particles. This approach has been used success
fully by Karplus and his coworkers (Brooks & Karplus 1983). 

More recently, homogeneous techniques using periodic boundaries 
have been used both to drive and thermostat nonequilibrium flows. 
Homogeneous algorithms are particularly useful in reducing the number 
dependence of computed results. 

For both heat and momentum flow, the simulation methods can be 
viewed as employing fictitious driving forces Fd' These forces homo
geneously interact with the molecules in such a way as to mimic precisely 
the bulk response of a real system to externally imposed temperature or 
velocity gradients. Statistical-mechanical theory is used to prove the 
equivalence (Evans & Morriss 1984a) of (a) the mechanical response to the 
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driving force and (b) the thermal response to the applied thermodynamic 
gradient. The latter is described, at least in the linear regime close to 
equilibrium, by a Green-Kubo relation. This represents one of the most 
useful applications of these relations. For shear flow it has been possible to 
develop exact homogeneous methods for simulating flows far from 
equilibrium. 

These methods have been successfully applied to fluids and solids over 
the entire range of temperatures and densities (Ladd & Hoover 1983, 
Hanley 1983, Hoover et aL 1984, Gillan & Dixon 1983, Evans 1982a, 
Hoover et aL 1982). 

4. CONTROL OF HYDRODYNAMIC AND 
THERMODYNANIIC VARIABLES 

"Feedback" allows the regulation of a "control variable" Cin terms of an 
error variable Ll(t). The simplest dependence is linear in Ll and its time 
derivative or integral: 

C= a dLlfdt+bLl+c rLl(s) ds, (8) 

where the coefficients a, b, and c could be chosen either arbitrarily or so as to 
satisfy a variational principle such as Gauss' (Pars 1979). A series "RLC" 
circuit is described by Equation (8). In this case, Ccorresponds to voltage 
and Ll to current. The coefficients a, b, and c describe inductive, resistive, 
and capacitive circuit elements, respectively. 

A damped oscillator is another simple illustration. If the oscillator 
velocity were to be controlled, then b would be a friction coefficient and a 
would correspond to an effective mass. Linear relations of the form (8) have 
been studied extensively because they can be solved easily with Laplace 
transforms. 

Consider now a many-body system to be studied at constant kinetic 
energy. If the kinetic energy is calculated in a comoving "Lagrangian" 
coordinate frame, then fixing the kinetic energy is equivalent to controlling 
the temperature. Gauss' principle (Pars 1979) suggests that the appropriate 
control variable is the friction coefficient C, where Newton's equations of 
motion are extended to 

dp/dt = F(q)-Cp. (9) 

If Cwere a control variable, then the simplest energy-based relations for 
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its time development would be 

d'idt cc d[E(t) - EoJ/dt, 

cc [E(t) - EoJ, (10) 

oc J
1"[ 

0 [E(s) - EoJ ds. 

Relations similar to these have been used for carrying out "isothermal" 
molecular dynamics (Hoover et aI. 1982, Evans 1983) (in which kinetic 
energy K rather than total energy E is fixed). The control variable , is 
proportional to the negative time derivative of the potential energy <D. 
Ashurst (1974) used an equivalent "velocity-scaling" technique in his 
extensive study of dense-fluid transport properties. Alternatively, , could be 
chosen to be proportional to the kinetic-energy error K - Ko as in 
Berendsen's more recent effort (Berendsen et al. 1984), or to the time integral 
of the kinetic-energy error as in Nose's (1984a,b) method. The Nose 
relations are of special interest because in an ergodic system they should 
generate the canonical distribution. Of the three choices, only Berendsen's 
is not time reversible. This irreversibility leads to substantial theoretical 
difficulties. For instance, the equilibrium distribution generated by time
averaging Berendsen trajectories is not known. The time-dependent prop
erties of Berendsen dynamics are also very difficult to analyze. In 
contrast, the fundamental statistical properties of isothermal dynamics and 
Nose dynamics are basically understood (Morriss & Evans 1985, Evans & 
Morriss 1984b, Evans & Holian 1985). If, in the absence of external fields, 
any of these schemes is applied to total energy, rather than to kinetic or 
potential energy, the equations of motion eventually generate the micro
canonical ensemble. 

An alternative to the steady-state approaches was developed by Ciccotti 
et al. (1979). They suggested analyzing the linear response to very small 
external driving forces. The random noise that would normally make such a 
calculation impossible was reduced by performing pairs of simulations, 
with and without the external driving field. Differencing the response 
from the two calculations substantially reduces the short-time noise. 
Unfortunately, the intrinsic Lyapunov instability requires substantial and 
computationally expensive ensemble averaging over the initial phases 
before even reasonably accurate results can be obtained. These difficulties 
become insurmountable at longer times. 

It is possible that this long-time difficulty with "differential non
equilibrium molecular dynamics" could be alleviated by constraining 
the system to eliminate unwanted fluctuations. It would probably be 
worthwhile to also consider the response of systems to the simultaneous 
application of both a momentum gradient and a heat flux. 
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In the following section we apply the three types of control-differential, 
proportional, and integral-to the one-dimensional heat-flow problem. 
This problem is artifidal, but interesting nonetheless. 

5. AN EXAMPLE: HEAT FLOW IN A 
THREE-BODY PERIODIC CHAIN 

With Hooke's law forces, the Hamiltonian H for a three-particle chain is 

(11) 

where the Xi are the displacements from equally spaced rest positions. This 
system has two independent normal-mode vibrations, 

Xl = A sin (wt), X2 = Asin(wt±2I1/3), X3 = A sin (wt±4I1/3), (12) 

which represents right-moving (minus signs) and left-moving (plus signs) 
phonons. 

Ifwe set the stress-free interparticle spacing, the force constant K, and the 
atomic mass m all equal to unity, the phonon wavelengths are 3 and the 
frequency is w = 3. A convenient property of the phonons (12) is that their 
kinetic and potential energies are constants of the motion. Thus the 
phonons (12) are solutions of the control relations (10) specifying steady 
values for the kinetic, potential, or total energies. 

In the presence of a driving force Fd, the three methods (integral, 
proportional, differential) lead to different results. Consider the force used 
by Evans and Gillan to generate a heat current (Gillan & Dixon 1983, 
Evans 1982b). In the one-dimensional case, this force depends on the 
contribution of each particle to the energy and to the pressure tensor: 

(13) 

where tlE is the difference between the ith particle's energy and the mean 
EIN E13. Likewise, tlp<li is the contribution of each particle to the 
potential part of the pressure tensor, again relative to the instantaneous 
value <p<li) = L P~xl3. If the three-particle chain were in a state of motion 
corresponding to the right-moving phonon (12), then the pressure-tensor 
terms from (13) would drive the motion of each particle with a frequency 
twice the normal-mode frequency. 

This driving force gradually excites the phonon (12) with minus signs and 
causes the chain to heat up. The heating can be prevented in nine different 
ways, according to the suggestions displayed in (10). That is, the total, 
kinetic, or potential energy can be stabilized by a derivative, proportional, 
or integral thermostat. 

In Figure 1 we exhibit the results of numerical calculations using these 
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Figure 1 Trajectories for heat flow in a one-dimensional three-particle chain, with periodic 
boundaries. Numbering the particles from left to right, the abscissa corresponds to the 
coordinate of particle 1, and the ordinate represents the velocity of particle 2. The amplitude of 
the displacements is initially 1/15, where the particle masses, force constants, and average 
interparticle spacings are all set equal to unity. The driving force on each particle has the form 
O.l(AE+Ap'l>V). The initial conditions are given by Equation (12) with plus signs (correspond
ing to a left-moving phonon). The three simulations shown in the first column were carried out 
with the total (E), kinetic (K), or potential (<1» energies constrained at their initial values. The 
last of these calculations is unstable, which is indicated by the gradual divergence of the 
amplitude of particle 2's velocity. This calculation was followed for a reduced time of 100. The 
others were all followed to 1000. In the second column, each of the three energies in turn obeys 
the "Berendsen" relaxation equations suggested by the Rayleigh and van der Pol equations. In 
the final column, the friction coefficient is calculated by integrating the total, kinetic, or 
potential energy with respect to time. 
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nine techniques. Those that have been used before-Gauss (E or K), 
Berendsen (K), and Nose (K)-to stabilize the total or kinetic energy all 
work in this case, as do all but one [Gauss ($)] of the rest of the methods 
stabilizing the total or potential energies. Ifthe potential energy is stabilized 
by the differential method (Gauss' method) and is made a constant of the 
motion, the coupling to the chain's kinetic energy is not strong enough to 
prevent the rapid divergence of the total energy. This is evidenced by the 
relatively rapid kinetic-energy increase shown in Figure 1. Of the other 
techniques, the relaxation technique used by Berendsen allows somewhat 
greater fluctuations than the rest. It is interesting that this technique, 
applied to a one-dimensional harmonic oscillator, results in the Rayleigh 
equation if the kinetic energy is controlled, 

d2 x/dt2 = -x-dx/dt[(dx/dt? IJ, (14) 

and in the van der Pol equation if the potential energy is controlled: 

(15) 

These two equations are closely related and have been intensively studied. 
The van der Pol equation (for the velocity rather than the coordinate) 
results if the Rayleigh equation is differentiated with respect to time. 

In the simple example studied here, all of the convergent methods for 
generating steady flows gradually force the three-body system into a nearly 
pure state corresponding to a phonon propagating in the positive direction. 
In Figure 1, this corresponds to a nearly elliptical orbit with foci in the first 
and third quadrants. In the more physically reasonable examples where a 
scattering mechanism allows energy to flow out of excited modes, this 
natural decay would be offset by the driving force F d' Here the driving force 

and the thermostat Fe balance because no decay mechanism is present in 
harmonic systems. 

Calculations of transport and thermodynamic properties of steady states 
are much more complex for three-dimensional systems. There is evidence 
that the temperature is best stabilized by Gauss' differential method in three 
dimensions. This method is about one order of magnitude more efficient 
than the proportional or integral methods (Evans & Holian 1985). 

6. EXAMPLE APPLICATIONS TO 
FLUID MECHANICS 

6.1 Strong Shock Waves 
Molecular dynamics has been successfully applied to the simulation of 
simple fluid shock waves (Klimenko & Dremin 1980a,b, Niki & Ono 1977, 
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Holian et at. 1980, Yen & Ng 1974). In this work chemical reactions, 
radiation transport, and electronic transport are all omitted. In the most 
comprehensive simulation (Holian et al. 1980), a twofold compression of 
liquid argon, starting at the triple point, was simulated. A periodic 
rectangular parallelepiped, with an aspect ratio of about 20 and containing 
4800 particles, was compressed, with periodic images of the system used as 
pistons. The resulting pair of 400-kbar shock waves ran toward the box 
center. The density, heat flux, and pressure tensor were measured in 
coordinate frames moving along with the shock waves. Comoving profiles 
of the longitudinal and transverse temperatures were also accumulated. 

The results indicated that the effective viscosity and thermal conductivity 
at the shock-wave center exceed the Newtonian and Fourier values by 
about 30%. In this region the longitudinal temperature exceeds the 
transverse temperature by a factor of two. Because the gradients in such a 
strong shock wave are so much larger than those found in other flow 
problems, it can be concluded that truly nonlinear transport coefficients are 
relatively small. 

In dilute gases the Boltzmann equation can be used to describe highly 
nonlinear flows, such as shock waves. The equation can be solved directly, 
by introducing suitable grids in velocity and coordinate space (Yen 1984). 
The equation can also be "solved" in G. A. Bird's more physical way, by 
introducing gas particles in macroscopic physical zones and allowing these 
to undergo "stochastic" long-range collisions. Because the Boltzmann 
equation describes the collisions of particles at the same space point, Bird's 
longer-range collisions between pairs are carried out in an approximate 
way. Particles in the same space zone are allowed to collide, with a 
randomly chosen impact parameter and a collision probability propor
tional to their relative velocity and cross section. Between stochastic 
collisions, the particles are advanced along noninteracting trajectories 
described by the streaming terms in the Boltzmann equation. (The 
trajectories are straight lines in the absence of gravitational or electro
magnetic fields.) For an example application to shock-wave propa
gation, through a mixture of gases in the presence of a wall, see the paper by 
Schmidt et aL (1984). 

Bird's stochastic-collision approach, elaborated by Nanbu (l983a,b, 
1984), conserves energy and linear momentum but not angular momentum. 
Two spatially separated particles traveling clockwise around a point in 
their common cell can suffer a head-on "stochastic" collision and travel 
counterclockwise after that collision. Meiburg (1985) carried out an 
interesting comparison of Bird's technique with molecular dynamics on a 
large-scale problem-40,OOO hard spheres flowing past an inclined plate. 
Figure 2 shows the resulting flow, calculated using the two differ~nt 

methods. Molecular dynamics reveals vortex generation at the plate 
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boundaries. The vortices did not appear using the stochastic-collision 
approach. Hybrid methods (using molecular dynamics where small vortices 
are important, and stochastic collisions elsewhere) could combine the 
realism of the molecular-dynamics model with the efficiency of Bird's 
approach. 

6.2 Plane Couette Flow 
Of all the flows involving shear, plane Couette flow (with Ux = yy, 
for instance) is the simplest. The volume remains constant. Periodic 
boundaries taking the strain rate y into account are easy to implement. 
Simulations in which boundary regions induce the flow can be used 
(Tenenbaum et aL 1982), but they lead to greater dependence of the stress on 
system size and to a layering of particles parallel to the walls. 
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Figure 2 Flow patterns generated using (a) molecular dynamics and (b) G. A. Bird's 
stochastic-collision modeL In both cases a dilute hard-sphere gas flows past an inclined plate 
and is confined, at the top and bottom of the channel, by reflecting boundaries. The vortices 
shown in the molecular-dynamics simulation are absent in the stochastic model. In both cases 
the arrows represent averages of the velodty directions of the particles occupying the 
corresponding spatial zones. 
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The periodic and rigid-wall simulations have provided reliable viscosities 
for a variety of short-ranged force laws. For a recent corresponding-states 
treatment of the linear viscosities, see Rosenfeld (1977). Systems with long
ranged Coulomb forces are harder to treat. A straightforward cutting off of 
the potential's range leads to substantial number dependence, even in 
equilibrium simulations. It seems likely that P. P. Ewald's technique could 
be used to carry out corresponding shear simulations for plasmas, metals, 
and ionic melts. 

In the nonlinear regime the flow becomes so rapid that the viscosity is 
changed-usually decreasing with higher rates-and the pressure tensor 
becomes anisotropic, with Pyy > Pxx > Pzz• The details of the thermostat 
used to impose steady-state conditions can affect the normal-stress results 
(Ladd & Hoover 1985). An isotropic constraint force 

(16) 

produces normal stresses consistent with the Boltzmann equation and with 
nonlinear-response theory(Ladd & Hoover 1985, Evans & Morriss 1984b). 
The friction coefficient ( depends upon time in such a way as to make either 
the temperature or the energy constant. "Temperature" is proportional to 
the second moment of the velocity-distribution function 

(17) 

There are many other interesting flows to study in elucidating the 
nonlinear dependence of shear and normal stresses on the mode and rate 
of deformation. Hess (1984) considered the relaxation of fluids initially 
deformed by twofold longitudinal compression. The volume-preserving 
transverse expansion was treated in two different ways, which Hess 
promises'to compare in a later publication. 

Other flows, incorporating more complicated rotations than does plane 
Couette flow, could be studied using either Bird's or Meiburg's (1985) 
approach. "Four-roller" periodic flow is an interesting possibility. 

Recently, Rainwater et al. (1985) used another approach to model flows 
that are more complex than planar Couette flow. Their approach is to take 
planar-flow simulation data and to use these as inputs to strictly 
macroscopic hydrodynamical calculations of flow properties in more 
complex geometries. One of the interesting results of their work is the 
realization that conventional rheological hydrodynamics fails to take any 
account of shear dilatancy-the isothermal/isobaric expansion of fluids 
under shear. Conventional rheological theory is cognizant of normal-stress 
differences in non-Newtonian fluids but fails to recognize that the trace of 
the pressure tensor is also dependent upon strain rate. 

Even for planar Couette flow, a complete explanation of the nonlinear 
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effects revealed in the computer simulations is still lacking. Simulation 
results suggest that the effective nonlinear viscosity of atomic fluids varies 
as the square root of the strain rate. Although this functional dependence is 
predicted by mode-coupling theory, the observed amplitudes are orders of 
magnitude larger than conventional theory predicts. These "enhanced 
long-time tail effects" have been observed in a wide variety of related 
phenomena (Hanley 1983). They seem to be related to the divergence of 
shear viscosity at the glass transition. Kirkpatrick (1984), Das et aI. (1985), 
Leutheuser (1984), Keyes (1984), and Tokuyama (1984) have each suggested 
different mode-coupling approaches to the shear-thinning phenomena seen 
in computer simulations, but these various suggestions have not yet been 
elaborated in a generally accessible or accepted form. 

Shear-flow simulations have been carried out on solids as well as fluids 
(Evans 1982a, Hoover et aL 1982, Tanaka 1983). The results so far available 
are consistent with the power-law variation of stress with strain rate used by 
metallurgists. The dependence becomes stronger at high temperature. 

Work on granular materials, in which the "particles" are extended bodies 
rather than mass points, is underway (Walton 1982), but little quantitative 
information is available. The particles' interactions include elastic, inelastic, 
and frictional components. 

6.3 Steady Heat Flow 
The flow of heat between reservoirs was treated by Ashurst (1973). Related 
smaller-scale studies have also been carried out recently (Tenenbaum et aL 
1982, Ciccotti et aL 1979). This work demonstrates that the thermal 
conductivity 

K ~ Q/VT (18) 

can either increase or decrease with IVTI, depending upon the thermo
dynamic state. 

Evans and Gillan discovered a way to simulate heat flow in a homo
geneous periodic system, which thus makes the reservoirs at physical 
boundaries unnecessary (Evans 1982b, Gillan & Dixon 1983). In this 
method an external driving force coupled to the particle energies and the 
potential part of the pressure-tensor contributions, 

Fd = ,.1,(AE +AP~V, AP~yV, AP~zV), (19) 

produces a heat current Qx fully consistent with the Green-Kubo linear
response theory. It is interesting to note that the Evans-Gillan method 
succeeds in calculating the thermal conductivity in the absence of a 
temperature gradient. We should point out here that there are slight 
differences between the Evans and the Gillan schemes. Gillan measures the 
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energy and pressure differences (19) relative to the ensemble average. This 
means that the Gillan equations are not momentum preserving. 
Momentum in the Gillan scheme is only conserved on a time-average basis. 
This in turn leads to further difficulties, in that the so-called "adiabatic 
incompressibility of phase space" (Evans & Morriss 1984a,b) is not 
satisfied. These errors are not present in the Evans method, which is 
rigorously momentum preserving and which satisfies the "adiabatic 
incompressibility" condition (Evans 1982b, Evans and Morriss 1984a). 

The same method can be applied to solids (Hoover et al. 1984). In such an 
application, the driving force can be simplified slightly to include only 
pressure-tensor contributions. 

The conductivities obtained with the new homogeneous and periodic 
simulations are consistent with the earlier direct-simulation results. All the 
conductivities can be correlated through a corresponding-states relation 
linking conductivity to entropy (Grover et al. 1985). This connection can be 
understood by noting that both properties depend upon the frequency at 
which particles collide-a frequency of the order ofthe solid-phase Einstein 
frequency. The correlation provides conductivity predictions correct to 
within about 10% over a wide range of fluid densities and represents 
an improvement over D. Enskog's model. Rosenfeld's (1977) correlation 
of viscosity with entropy can be motivated in exactly the same way: 
Neighboring particles exchange momentum at the Einstein frequency. This 
correlation provides viscosities accurate to within about 30%. It is most 
interesting that nonlinear-response theory (Evans & Holian 1985, Morriss 
& Evans 1985) predicts a simple form for the nonequilibrium steady-state 
distribution function obtained with Nose's constraint force (thermostat) 

Fc = ,p, d'idt oc K - Ko (20) 

and the Evans-Gillan driving force 

Fd = .ti(6.E + 6.P~xV, 6.P~yV, 6.P~zV). (21) 

The resulting distribution function, 

In UI/canonical] (JVlkT)I Qi -s) ds, (22) 

and the analogous result for shear flow, 

In UI/canonical] = (yVlkT)I Pxi -s) ds, (23) 

are equally simple (Evans & Holian 1985, Evans & Morriss 1984b, Morriss 
& Evans 1985). Although both of these expressions are fully consistent 
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with linear-response theory and also with Kubo's original power-series 
representation of the nonlinear response (Kubo 1957), they are relatively 
difficult to evaluate, test, and understand far from equilibrium. 

6.4 Rotating Flows and Tests ofM alerial Frame 
Indifference 
An often-invoked approximation (Lumley 1970, Soderholm 1976, Ryskin 
& Rallison 1980) in continuum mechanics is that the constitutive properties 
of a material are unchanged by rotation (after taking into account, of 
course, the density increase resulting from centrifugal forces). Both the 
centrifugal and the Coriolis forces are responsible for the breakdown of this 
"principle." This has been clearly illustrated in one dynamical simulation, 
and it can be clearly seen by considering a thought experiment. 

Consider the rotation of a cylinder of material about its axis. Assume that 
appropriate heat reservoirs are applied, ensuring a purely radial tem
perature distribution. If the system is at rest, or is undergoing uniform 
translation, then the heat-flux vector will also be in the radial direction. The 
principle of material frame indifference asserts that the direction and the 
magnitude ofthe heat-flux vector remain unaltered if the system is rotating, 
say, about its.own axis. Because such a rotating system is a noninertial 
coordinate frame, Newtonian mechanics is in conflict with this "principle." 
Einstein showed that the equations of motion satisfied locally, in an 
accelerating frame of reference, are identical to the equations one would 
derive in an inertial frame subject to an equivalent gravitational field. There 
is no way of distinguishing inertial forces, such as the Coriolis force, from 
gravitational forces. Such forces inevitably give rise to an angular heat-flux 
vector component in the problem described above. In a straightforward 
simulation (Hoover et al. 1981) of this problem, an angular heat current that 
was close to the predictions of kinetic theory was found. 

Centrifugal forces also frustrate the usefulness of the "principle of 
material frame indifference." In our rotating cylinder, the centrifugal 
potential's nonlinear character [ (mr2w 2)/2] causes, for instance, homo
nuclear diatomic molecules to orient preferentially in a radial direction. 
This means that such a fluid would be birefringent, requiring a generaliza
tion of the usual Navier-Stokes constitutive relations for fluids. The 
rotation rate required to achieve a 1% alignment is of order 1 THz. For 
macromolecules, the effect is much larger and should be observable at 
modest rotation rates. 

The Reynolds number for neutrally buoyant particles of radius r, 
rotating at frequency w in a medium of kinematic viscosity 11/p, is pwr2 /11. 
Thus, the viscous and Coriolis forces for millimeter particles in water are 
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comparable at frequencies of order 1 Hz. Small molecules, on the other 
hand, would again require terahertz frequencies. 

The fact that the "principle of material frame indifference" has survived 
so long indicates that nonlinear transport coefficients are small and that 
their measurement from experiment is often highly model dependent and 
therefore ambiguous. 

7. THE FUTURE 

Atomistic simulations have gradually been applied to larger systems, bigger 
molecules, and more complicated boundary conditions, in keeping with 
the growing capabilities of computers. This work involves difficulties in 
the formulation of thermodynamic quantities (Ladd 1984, Marechal & 
Ryckaert 1983, Evans 1981b), in the integration of the equations of motion 
(Evans 1977, Evans & Murad 1977), with both fast and slow time scales, 
and in the enhanced dependence of the results on boundary conditions 
(Ryckaert et al. 1977) as the size of the molecule approaches the size of the 
computational cell. The challenging nature ofthese problems, coupled with 
the rewarding nature of medicine and drug design, is contributing to the 
extensive developmental effort in this field. Protein dynamics has been 
reviewed by McCammon (1984). The protein models, liquid fragmentation 
simulations (Blink & Hoover 1985), and simulations of aerodynamic flows 
all show that molecular dynamics can play a role in fluid mechanics 
complementary to the finite-difference and finite-element methods. The free 
competition among the proponents of various techniques can be relied 
upon to lead to the best use of available computing capacity. 

The new methods make it possible to design more flexible fluid-flow 
models. So far, little has been tried along the lines of local definitions of 
thermodynamic and hydrodynamic variables. But this is necessary for the 
treatment of flows containing vortices and other localized inhomogeneous 
fluid features. 

The discovery ofqualitatively new rheological effects, producing ordered 
phases at high strain rates, is reminiscent of the equilibrium nematic and 
smectic phases (Erpenbeck 1984, Heyes et al. 1985). These new observa
tions should stimulate interaction between rheologists and computational 
physicists. Theoretical advances will be required in order to understand the 
dimensionless flow parameters at which these new dynamic phase trans
itions occur (see Figure 3). 

Two-dimensional fluids exhibit an apparent instability at low strain 
rates, where the mode-coupling approaches predict an obviously unstable 
negative shear dilatancy and diverging viscosity (Evans & Morriss 1983). 
Hydrodynamic analyses of these instabilities, coupled with computer 
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simulations designed to measure the macroscopic currents and vortices 
generated in two dimensions, may prove useful in stimulating an experi
mental search for these phenomena. 

The mechanical simulations, which preceded molecular dynamics, are 
advancing too. This work began with J. Hildebrand's gelatin-ball study of 
the pair-distribution function of hard spheres and with the bubble-raft 
studies of crystals carried out by L. Bragg and J. F. Nye (Feynman et al. 
1964). Pieranski's recent, highly evolved study of melting, dislocations, and 
vacancy motion (Pieranski et al. 1978) sets a high standard. This latter work 
makes possible quantitative comparisons with (computer) experiments. 
The resemblance of the data collected to those reported by Alder & 
Wainwright (1962) is striking. The density interval found for ball-bearing 
melting agrees well with the computer-experiment hard-disk analog. For 
some problems, these simulations, as well as analogous nonequilibrium 
simulations using plastic spheres (Clark & Ackerson 1980, Ackerson & 
Clark 1983) may well prove cheaper than computer simulations. Their main 
drawback at present is the lack of a quantitative stress measurement. 

Figure 3 Instantaneous picture of the two-dimensional soft-disk fluid under high shear 

10]. The fluid particles order parallel to the streamlines. There is essentially no 
lateral diffusion perpendicular to the streamlines. The undulating vertical strings of highly 
overlapping particles are not understood (Reyes et al. 1985). 
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