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Dynamic ensemble theory is tested numerically for an ensemble of 1000 classical one-dimensional 
oscillators obeying canonical "Nose-Hoover" dynamics. This dynamics couples each oscillator to a 
canonical heat bath characterized by a temperature and a relaxation time. Some initial oscillator 
conditions correspond to regular phase-space orbits of the Kolmogorov-Arnol'd-Moser torus type 
while others generate wider-ranging chaotic trajectories. Among the regular oscillator orbits is a set 
of trajectories resembling "double bedsprings," with "quantized" values of the oscillator energy and 
mean-square displacement. The number which indexes these orbits corresponds to the number of 
coils between turning points. Despite the existence of this relatively complex mixture of regular and 
chaotic trajectories, the Liouville equation correctly describes phase-space flows, in both the steady 
equilibrium eanonical-ensemble case as well as in the nonsteady cases which evolve from strongly 
nonequilibrium initial conditions. The source of apparent irreversibility seen in the non steady evolu
tion of the oscillator ensemble is identified as a "second-law" attractor, usually characteristic of 
large thermodynamic systems. The attractor is that relatively small but highly probable portion of 
phase space for which observation times exceed recurrence times. 

I. INTRODUCTION 

The Liouville equation, which describes the flow of 
probability density in phase space, is the dynamical basis 
of classical statistical mechanics, both at and away from 
equilibrium. The existence of highly irregular structures 
in phase space-strange attractors-which are neither 
smooth nor continuous, calls into question the usefulness 
of smooth probability densities which obey continuity 
equations such as Liouville's. Although these structures 
are typically associated with dissipative sets of equations, 
such as those developed by Lorenz,l there is no reason to 
rule out the existence of similar structures in systems 
described by Hamiltonian dynamics. 2,3 The complex and 
irregular structure of such attractors, present even on the 
smallest length scales, suggested that Liouville's theorem 
might be invalid for dealing with the dynamics of chaotic 
systems. 1 We report here the results of the first numeri
cal test of ensemble theory for an ensemble of dynamical 
systems. 

The test addressed three fundamental questions. Is the 
Liouville equation valid as it stands for chaotic systems? 
Does the Liouville equation properly describe the irrever
sible behavior typified by the Boltzmann equation and the 
second law of thermodynamics, or must it be supplement
ed with stochastic terms, or by coarse graining? Is it 
necessary that a system behave in a chaotic way in order 
for ensemble theory to be applied correctly? 

We begin by reviewing the basic concepts of ensemble 
thoory.4,5 The goal of this theory is to describe the result 
of a measurement on· a dynamical system of particles 
which interact with specified interparticle and boundary 

forces. It is assumed that such measurements are suffi
ciently reproducible and insensitive to the initial condi
tions, even if the underlying dynamics are Lyapunov un
stable ("sensitive" or "chaotic"). The ensemble approach 
is introduced with the hope of simplifying the averaging 
process, making it unnecessary to follow the detailed 
dynamics of the many of freedom present in a 
macroscopic thermodynamic system. 

To simulate the ensemble approach with molecular 
dynamics we follow the motion of each of the N systems 
in the ensemble. Each system is allowed to evolve under 
the influence of identical equations of motion with equili
brium or nonequilibrium boundary conditions until equili
brium or a nonequilibrium steady state is attained. Usual
ly the ensemble viewpoint is macroscopic, with the goal of 
describing results of measurements on thermodynamic i;systems with many degrees of freedom. Computer storage 

and speed impose strict limits on computer simulation. 


, Because only a few many-body systems can be followed, 

the many-body few-system results would require extrapo

lation in order to compare them to theoretical infinite

system predictions. 

Here we will not be concerned with this interesting 
large system limit, but rather the opposite extreme, a one
body system,. the one-dimensional Nose-Hoover oscilla

10tor. 6- By choosing such a simple system it is possible 
to consider a relatively large ensemble. We use up to 1000 
members, all with slightly different initial conditions, but 
all evolving under the same equations of motion and with 
the same boundary conditions. 

As the number of systems N in thc ensemble ap
proaches infinity we can imagine describing the time 
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development of the trajectories by a continuous probabili
ty density or ensemble distribution function f( r,t) in the 
phase space (r space contains the coordinates and mo
menta of the particles as well as the time-dependent fric
tion coefficient z described in Sec. Ill. A smooth density 
function f (r, t) must satisfy the continuity equation 
known as the Liouville equation: 

(1) 

Provided that the equations of motion, which give r as a 
function of rand t, are reversible in the time, then 
Liouville's equation is likewise time reversible. 

The Langevin and Boltzmann equations, as well as the 
hydrodynamic equations incorporating diffusion, viscosi
ty, and conductivity, are all irreversible. The solutions of 
these approximate equations approach equilibrium only in 
the direction of increasing time, in agreement with our ob
servations of the real world. One of the main tasks of our 
numerical work is to reconcile the apparent paradox, em
phasized by Boltzmann, that irreversible behavior can be 
described by reversible dynamics without invoking numer
ical or external causes for the irreversibility. Some sys
tems, such as those composed of hard disks or spheres, are 
inherently unstable, without even a finite neighborhood of 
stability in the vicinity of reentrant phase-space trajec
tories. 11 To avoid such an unstable model we choose a 
relatively stable system, the harmonic oscillator, which 
does have finite KAM-like tori (Kolmogorov-Arnol'd
Moser), regions of stability in phase space which enclose 
reentrant periodic trajectories. 10 

A second task is to understand the usefulness of the 
Liouville equation at equilibrium. If we start with an en
semble of systems distributed according to the equilibrium 
distribution function f(r, t =fo(r), is this distribu
tion stationary? This can be tested by studying the time 
dependence of any observable B (r) which depends on the 
phase variables r. At equilibrium the ensemble average 
(B> should be a constant of the motion. Away from 
equilibrium (B >varies with time: 

<B(t) > f drf(r,tlB(r) 

= f dr f(r,O)B[r(t)] 

""".1 iB(ri(t). (2) 
N j=1 

The first line of Eq; (2) expresses the Schrodinger or Eu
lerian picture, where the probability flows into fixed cells 
in phase space, while the second line expresses the Heisen
berg or Lagrangian equivalence, where trajectories of en
semble members are followed through 'phase space;9 the 
last line is the finite ensemble approximation, having 
chosen elements with initial weights f(r j,O)dri =l/N. 
We will study the time development of the potential and 
kinetic energies as well as two functions which reduce, at 
equilibrium, to the thermodynamic entropy. 

Finally, we wish to understand the relationship between 
ensemble averages and time averages along individual tra
jectories. With B; =BCrj(t), we define the latter to be 

Bi= lim [~ J,ldsBj(s) I. (3) 
1-->00 t 0 

Must (B > and Bi be equivalent for ensemble theory to 
hold? If the dynamical system of particles is quasiergod
ic, then each trajectory (1,2, ... ,N) covers the relevant 
part of phase space and Bj = (B >, except for a possible 
subset of trajectories of measure zero. 

We emphasize that quasiergodicity is not required in 
order for the Liouville equation to hold. Quasiergodicity 
is often assumed to be essential, so that only a single time 
average is required, but in fact ensemble theory can be 
used as a method for insuring that averages do not depend 
on initial conditions. Thus here we investigate a system 
which is patently nonergodic. This Nose-Hoover oscilla
tor system is described in Sec. II. The nonergodicity is 
demonstrated in Sec. III. In Sec. IV we then study the 
question "Does the Liouville equation, and ensemble 
theory, describe the nonequilibrium time development of 
such a system?" The characteristic feature responsible for 
the irreversible behavior of the Nose-Hoover oscillator is a 
"second-law attractor." This feature of the phase-space is 
described in Sec. V. 

II. NOSE-HOOVER OSCILLATOR 
(REFS. 6-10) 

Consider first a single oscillator maintained at constant 
temperature by an integral control (feedback) mechanism. 
The control mechanism is characterized by a relaxation 
time r. The oscillator coordinate is x. The oscillator tem
perature is proportional to the time-averaged mean
squared momentum y2. The control variable, or "friction 
coefficient" is z. For convenience we choose the oscillator 
mass and force constant, as well as Boltzmann's constant, 
equal to unity, Thus the fundamental frequency is unity 
and the period is 217'. 

The time development of such an oscillator takes place 
in three-dimensional phase-space r=(x,y,z) and is 
governed by three first-order ordinary differential equa
tions: 

x=y, 

y -x -zy/r, (4) 

z= 1)/7. 

From the standpoint of dynamical systems theory the set 
of equations (4) has no fixed point. Because the diver
gence of the phase-space velocity, 

is nonzero, the probability density varies along any system 
trajectory: The Liouville equation (1) can be written in 
the Lagrangian form dIn! /dt where d/dt
=a/at +r·(a/an. 

The integral feedback thermostat works as follows. If 
the time-averaged kinetic energy exceeds the equilibrium 
value the friction coefficient z increases, tending to 
reduce the momentum y. If the time-averaged kinetic en
ergy is too low, less than then i decreases, so that the 
friction coefficient z can become negative, leading to an 
increase in the magnitUde of y. 

An alternative control mechanism, differential control, 



34 NUMERICAL TEST OF THE LIOUVILLE EQUATION 4231 

results if Gauss's principle of least constraint 12 is applied 
to keep the kinetic energy constant. This form of dif
ferential control is not useful for a single degree of free
dom. The resulting oscillator, with constant kinetic ener
gy, can have no turning point. Proportional control13 is 
ruled out on different grounds. If the momentum 
response is proportional to the deviation from the mean 
kinetic energy, as in the Rayleigh and van der Pol equa
tions, the resulting equations of motion are not time rever
sible. 

The internal energy of the oscillator, kinetic plus poten
tial, is 

(6) 

It is useful to define the total energy, including a contri
bution from the feedback thermostat, to be 

H =(X 2+y2+z2)f2 , 

and we note from (4) that its rate of change is 

=-Z/T. (8) 

(We shall reserve the symbol E (H) for the ensemble 
average of the total energy.) The equations of motion (4) 
are not Hamiltonian; that is, they can not be derived from 
the energy function H. Indeed, comparing (5) and (8) we 
see that iI = n is not identically zero, as it must be for 
Hamiltonian dynamics. 

The equations of motion (4) can be derived from the re
quirement that the canonical distribution function 

(9) 

be a stationary solution of the Liouville equation (I) 
({3= l/kT = 1). This can be checked by inserting (9) into 
(1) with the equations of motion (4). The original Nose 
approach, as discussed in Refs. 6-8, is more complicated 
and will not be explained in detail here. Suffice it to say 
that Nose dynamics is derived from a Hamiltonian in a 
four-dimensional phase space which includes a time
scaling "coordinate" s and its conjugate momentum. In 
the Nose-Hoover dynamics (three-dimensional phase 
space) t the constant of the motion becomesJ. ds z(s)/r. 

Frorii the equilibrium distribution function we can see 
that the linear and quadratic moments of the phase vari
ables are 

(x (y >0= (z )0=0 , 
(0)

2 (2) _ ( 2) -1(x )0= y 0- z 0- . 

Throughout this paper we use the angular brackets to in
dicate an average over an ensemble of systems, a finite en
semble in the case of our numerical work. The theoretical 
infinite ensemble at equilibrium is indicated by a subscript 
zero. 

The equations of motion provide less information. The 
stationarity of the time averages dXi/dt 

gives Yi =0, Y 7= 1, and Xi for 
every system in the ensemble. It is therefore possible to 
detect nonergodicity of a trajectory if (x >0=0. 

III. EQUILIBRIUM RESULTS 

We choose 1000 initial conditions from a Gaussian dis
tribution in x, y, and z by using the Box-Muller transfor
mation. 14 A pair of random numbers S,71 distributed uni
formly on the unit interval generates a pair of Gaussian 
distributed numbers X and Y: 

X (-2InS)1!2 cos(21T71)' 
(11) 

Y=(-2Ins)1I2'sin( 21T71) . 

It is straightforward to show that in the infinite
ensemble-size limit the odd moments of X and Y vanish 
and that the even moments correspond exactly to those 
from a Gaussian distribution, with <X2k)o= (1 )(3) 
(5)· .. (2k 1). Choosing 1500 uniformly distributed S71 
pairs leads to 1000 x-y-z triples with a Gaussian distribu
tion. In our numerical work, we replace the equations of 
motion with a centered difference approximation, where 
the error is of order at4

: 

(x+ -2xo+x )/(at)2= -xo-zo(x + -x )/(2Tat) , 

(z + -zo)/at = {[(x + -xo)/at]2-lj /r , (12) 

where the time step at is very small relative to unity (typi
cally 0.01 or less). We have checked the moments of the 
x-y-z distribution dynamically, from the first through the 
eighth. The calculation was carried out for a time for 
10 000 corresponding to nearly 1600 oscillator periods. 
This was done for three values of the thermostat's relaxa
tion time: 1"=0.1, 1, and to. Apart from the expected 
fluctuations the ensemble moments remain Gaussian, as 
shown in Fig. 1, where the first four moments are 
displayed in the case T= 1. The fluctuations increase with 

2 

<xn(t» 
n~2 
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o 50 200 

FIG. 1. Ensemble-averaged Nose-Hoover oscillator coordi
nate moments (Xli) for a lOOO-member ensemble. The equili
brium values are 0, 1, 0, and 3 for n = 1, 2, 3, and 4. Note the 
increasing fluctuation size with n: (11 N)l12, (21N)lI2, 

(1SIN)I!2, and (96IN)1/2. In our time units, the Newtonian 
period is 21T. 



(a) 

(b) 
FIG. 2. Stereo projections of the Nose-Hoover oscillator trajectory, accumulated at integral times 1,2, ... ,10( 

coil "double-bedspring" (KAM-like) orbit looking down the z axis onto the xy plane. (b) 7=0.1, chaotic trajec1 
viewpoint as in (a). (c) I, regular KAM-like orbit with x <0. (d) 7=10, KAM-like orbit looking down the 
plane. Flow is clockwise and down the z axis through the "doughnut" hole, and up around the outside. 

the order of the moment, as expected. 
Thus the canonical distribution is preserved by the 

equations of motion, just as was predicted by the Liouville 
equation. The Newtonian equations of motion share this 
property. But in the Newtonian case the motion of the 
swarm of points resembles that of a rigid body circling 
the origin at a constant state-independent frequency, with 
all of the moments repeating at integral multiples of the 
oscillator period 21T. It is easy to show that in the 
Newtonian case the second moments fluctuate as sin(2t) 
with an average amplitude of order 1/N. 

The Newtonian dynamics, although it preserves the dis
tribution, would likewise preserve any distribution which 
was a function of energy and in a completely nonergodic 
manner, never deviating from the original circular orbits 

appear in the Nose-Hoover thermostattc 
finite 7 provide at least the possibi1it~ 
consistency. That is, there may be no] 
which time and ensemble averages coinci 

To address the questions of ergodicit~ 
sider a swarm (phase-space cloud) of er 
These might coalesce into inhomogeneo 
still preserving the canonical moments. 
suggested by the many incredible KAM 
type shown in Fig. 2(a), a IS-coil "doubl 
ular orbit. Figure 2(b) shows an irregu 
[A computer movie of this particular t 
strates that the nature of the chaos is n 
very long times, such as the accumulal 
2(b). On a smaller time scale, such as tl 



(c) 

(d) 
FIG. 2. (Continued). 

,Ie-bedspring" orbit, typified by Fig. 2(a). 
aracterized by gradual transitions in the 
between turning points.] But computer 
,tion of a swarm of a thousand ensemble 
, tendency for localization or segregation 
,rding to their regular or chaotic nature. 
~braic way to distinguish between ordered 
s1 One might expect that the time aver
nergy Hi, would help. However, Hi has 
,ution with a somewhat greater density 
e average value of so that this func
for characterizing the nature of a partic

ut the mean square displacement xl or 

sy of the oscillator (1 +xl)/2 does pro
ngly useful discriminant (remember 

'rovided that the thermos tatting response 
ly small, less than about 1T', the ensemble 
sorted into discrete quantized levels, im
inuum background composed of chaotic 

trajectories, as shown in Fig. 3. It appe 
averages for the chaotic trajectories evenl 
an ergodic fashion to a common value 
than unity, in a time much greater than 1 

The "quantum number" n associated 
corresponds to the number of coils arour 
between the turning points in x. Tl 
Poisson-like with a peak just below the f 

as shown in Fig. 4(b). As T is increase 
levels is reduced, and, for T greater than 
be only KAM-like tori, as shown in Fig. 
we see [Fig. 2(C)] a dramatic demonstrat 
godicity of the oscillator: there are tori 
not zero. There tori exist in pairs, one 
and one with negative, both immerse, 
chaotic sea. 

In spite of these tremendous inhc 
nonergodicities in the individual trajectol 
to see that Liouville's equation accurat 
equilibrium dynamics of this dynamica 
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T= 0.1 0.2 0.5 1.0 2.0 5.0 10.0 
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FIG. 3. Distribution of mean-squared displacements xl 
time-averaged over a time of 10 000 for the classical thermostat
ted oscillator ensemble. The individual trajectory values are 
plotted as 1000 dots for each value of 7: 0.1, 0.2, 0.5, 1, 2, 5, 
and 10. Note that the "quantum" nature of the coalescence into 
ordered levels occurs as the coupling to the thermo
stat becomes stronger, as the relaxation time decreases. The 
quantized level numbers, corresponding to coils in the "double 
bedsprings" [see Fig. 2(a)], are indicated for 7=0.1. For 7 less 
than about. 11' there is also a continuous spectrum, at least for 
early times, due to chaotic trajectories. In all cases the ensemble 
average (x 2 

), is 1, as shown in Fig. 1. 

for ordinary observables like the energy. The moments re
tain their Gaussian values and the Gaussian appearance of 
the distribution remains unchanged. 

IV. NONEQUILIBRIUM RESULTS 

The most demanding test of the Liouville equation is its 
ability to describe far-from-equilibrium dynamics and the 
approach to equilibrium. We have accordingly studied 
experiments with initial temperatures To» 1 and experi
ments with To« 1, beginning with Gaussian distribu
tions which are spherically symmetric in xyz space:

liT . 
1(0)-10 0. Qualitatively these two kinds of experi
ments correspond to rapid cooling (contraction of phase 
space, or the "Big Shrink") and heating (phase-space ex
pansion, or "Big Bang"). To relate the time dependence 
to the predictions of Liouville's equations we consider the 
development of the information-theory entropy:15,16 

Sinfo=- f drllnl=-(1nl), (13) 

for which the Liouville equation predicts 

Sinfo - (d lnl/dt ) ( n ) = <z ) IT , (14) 

where integration by parts is used to convert derivatives of 
I into integrals weighted by I and where it has been as
sumed that I vanishes as the phase variables approach in
finity.5,9 The information-theory entropy production (14) 
has little to do with the true nonequilibrium entropy as 

2 
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FIG. 4. "Quantization" of the x ~ for the classical thermo

statted oscillator with 7=0.1. (a) x 2 vs level number (coils in 
the bedspring between turning points). An analysis of the 
motion for 7« 1 with y = 1+0 cos(wt), where 0 is smail, gives 

w=2112h, so that x 2 approaches (n1T7)2/6 for large n. (b) 
Population of levels at equilibrium for 7=0.1. There are 422 
ordered trajectories out of 1000 chosen from the equilibrium 
Gaussian distribution. 

has been noted previously.4,5 
Zubarev suggested an alternative definition of entropy, 

based on the equilibrium distribution function17 

(15) 

This definition produces exactly the same "entropy" for 
the Nose-Hoover oscillator, as the more-usual 

4 
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information-theory definition. From the equilibrium dis
tribution Zubarev's entropy gives 

(16) 

which is consistent with a constant value of the free ener
gy. In the general case SZub cannot be correct. In an 
isokinetic (constant kinetic energy) system of two hard 
spheres undergoing shear flOW,18 for instance, SZub has 
the same value far from equilibrium as in the equilibrium 
case. 

The time dependence of the energy for the Nose-Hoover 
oscillator can be developed in a Taylor series: 

E -rTo-t(To-l)(thi 

+ i2To(To-l)(t/·d+··· (17) 

With To 100 and 7= 1 the series 1-0.33t2+5.5t4 de
scribes the time development of the "Big Shrink" within 
0.1 % up to t =0. I, as expected (see Table I). After that 
the decay toward equilibrium appears to be approximately 
exponential, with a decay time of roughly ten times 7, as 
shown in Fig. 5. Similar results were found for 7=0.3, 
0.6, and 5. From (15) and (16) we see that Sinfo and SZub 

both decay from a large initial value toward a smaller 
equilibrium value, contrary to our expectations of the 
behavior of the entropy. The resolution of this apparent 
paradox is likely to be found in the assumption that a 
given Lagrangian phase-space trajectory can be followed 
indefinitely in time, without worrying about the difficul
ties associated with distortions of the volume element and 
phase-space mixing. 

50 

FIG. 5. Time dependence of the ensemble-averaged second 
moments for the "Big Shrink" initial condition, To= 100 
(N = 1000, T 1,1'= 1). The momentum y converges in a time 
of order 1, the thermostatting coefficient z expands and then 
both x and z decay toward equilibrium on a characteristic' time 
scale of -10-1'. The continuous curves for an ensemble of 1000 
members can be distinguished from the discrete symbols which 
describe the case N 10. 

TABLE I. Early-time behavior of the energy of the Nose
Hoover oscillator ensemble (N 1000, l'=1, T 1) for the "Big 
Shrink" experiment and with an initially spherically symmetric 
Gaussian distribution in the phase space, corresponding to 
To = 100. The calculated value is the Taylor series (17) of the 
text. 

E (calculated) E (observed) 

0.00 150.0000 150.0000 
am 149.9951 149.9950 
0.02 149.9803 149.9803 
0.05 149.8814 149.8811 
0.10 149.5875 149.5687 

The dynamical approach to the equilibrium distribution 
is imperfect. Although x 2 and y2 approach 1, Z2 con
verges to a larger value because y4 preatly exceeds the 
equilibrium value of 3. This is because the initial distri
bution greatly emphasizes the chaotic trajectories relative 
to the regular ones. On the other hand, when 7 is very 
large, is enhanced by the overabundance of large-radius 
tori. 

Similar disparities result from "Big Bang" simulations. 
The final dynamical phase-space distribution is not homo
geneous and isotropic. These nonequilibrium distributions 
are not failures of the Liouville equation but rather stem 
from the nonergodicity of the Nose-Hoover oscillator. 
Apart from these discrepancies the approach to equilibri
um is apparently irreversible, at least on the time-scale 
reasonably accessible to computer simulation. 

The large-relaxation-time limit, with 7» I, leads to in
teresting behavior for the large-scale tori, such as is shown 
in Fig. 2(d). There are extremely short periods of large
amplitude oscillations in the oscillator variables x and y, 
followed by periods of quiescence with x and y executing 
very small spirals as z progresses at speed 1/7 down its 
axis. This "flushing" process, from large z to negative z, 
takes a characteristic time 2X07 where Xo» 1 is the am
~tu~ of the torus. It is easy to show that 
x =y = 1. 

V. IRREVERSIBILITY 

How is it that irreversibility comes from these reversi
ble equations? This can be understood by considering the 
relative probability of volume elements in the phase-space 
dx dy dz. If we use the abbreviation r for the distance 
from the origin in this space, then the relative probability 
at equilibrium is proportional to exp( r 2/2). 
Equivalently the recurrence time for such a state is of or
der exp( + r 2/2), exceeding the age of the universe if the 
simulation is carried out on the Cray, with 109 states per 
second, for r > 11. 

We suggest calling the phase-space object traced out by 
a dynamical trajectory in a finite amount of computer 
time a second-law attractor: Such an attractor has four 
characteristics: 

(l) The equations of motion are deterministic and re
versible. 
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FIG. 6. Approximate Poincare recurrence of the energy E 
for the Nose-Hoover oscillator ensembles with T 1,1'=5, and 

For N greater than ten members the energy appears to 
approach a steady value near 3 rather than the eanonical value 
of -}. With five members in the ensemble an approximate re

eurrence appears at time t =350. A two-member ensemble has 
an approximate recurrence time of 40. 

(2) The phase space occupied by the attract or is infinite 
in extent. 

(3) 	 The probability distribution,converges rapidly. 
(4) 	 (lnf) is finite. 
n differs from the usual strange attractors of dynami

cal systemsl9,20 in the first two properties. This is a direct 
consequence of the logarithmic form of Nose's thermo
statting potential, which makes it possible for the other 
variables to range over an infinite portion of the phase 
space. 

It seems possible that the irreversible behavior stems 
from the presence of chaotic trajectories. To test this idea 
we examined the case with r= 5, too large for chaotic tra
jectories to appear. In Fig. 6 we display the number 
dependence of the time history of the energy for ensem
bles of 2, 5, 10, 20, 50, and 100 members. The recurrence 

phenomenon appears for the smaller ensembles of 2, 5, 
and 10 members, but takes too long to be seen for the 
large ones. This means that the cycle times are relatively 
incommensurate for the various tori, making it highly im
probable for the elements of the ensemble to regroup as 
they were at the initial time. For smaller values of r the 
cycle time is increased. This view of cycle time and Poin
care recurrence in its relation to ensemble size is analo
gous to the dependence predicted for one-dimensional har
monic chains as the number of masses increases. Because 
the elements of an ensemble are strictly noninteracting the 
analysis is simplified. The approach to equilibrium is 
only apparent, not mathematically rigorous. Nevertheless, 
it appears very probable that as N becomes infinite the re
currence time rapidly diverges too. For the Nose-Hoover 
ensemble, the final state is not the equilibrium state. This 
is an artifact of the nonergodicity of the system. 

VI. CONCLUSIONS 

A numerical test of ensemble theory for the patently 
nonergodic Nose-Hoover oscillator shows that the Liou
ville equation describes the equilibrium distribution, as 
characterized by its moments and its shape. The Liouville 
equation also describes the relaxation of mechanical ob
servables from a nonequilibrium initial state, but gives 
paradoxical results for the entropy. 21 The nature of the 
irreversibility found in this finite and relatively stable os
cillator ensemble stems from the incommensurability of 
cycle times. The latter greatly exceed the Newtonian 
value as the thermostat time becomes smaller than ri. 
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