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Lyapunov spectra are measured for a three-dimensional many-body dense fluid. not only at equilibrium, but also in the presence 
of an isoenergetic nonequilibrium field generating a pair of equal and opposite currents. The Lyapunov spectra bear a strong 
resemblance to the Debye spectrum of solid-state physics. 

The spectrum of Lyapunov exponents {AJ 
describes the comoving deformation of a phase-space 
hypersphere made up of neighboring phase-space 
trajectories. For a recent comprehensive review ref. 
[1 J should be consulted. The largest Lyapunov 
exponent AI describes the exponential growth rate of 
a one-dimensional line joining two neighboring tra­
jectories. Adding the next-largest exponent A2 
describes the exponential growth rate, A! +A2, of an 
area defined by joining three neighboring trajecto­
ries. The sum of the first 11 exponents likewise 
describes the growth rate of the corresponding 11­

dimensional volume. The largest of the Lyapunov 
exponents was characterized numerically by Benet­
tin, Galgani and Strelcyn [2] and the general 
approach to the Lyapunov spectrum was described 
by Shimada and Nagashima [3]. Alternative meth­
ods, based on the analysis of time series, have recently 
been used to calculate the three largest Lyapunov 
exponents [4]. 

We have developed an approach most closely 
related to that of ref. [3]. We use Lagrange-multi­
plier constraints to measure the Lyapunov spectrum. 
Because the equations governing the growth of infin­

itesimal phase-space hypervolumes can be linear­
ized, the exponential growth can likewise be 
prevented by using linear Lagrange multipliers [5,6 J. 
Denoting the unperturbed newtonian motion of the 
ith phase-space basis vector (jj (where i runs from 1 
to 6N- 6) by the linearized equation of motion 

j;(newtonian) =D·(jl , 

where D is the 6NX 6N dynamical matrix, the con­
strained motion, with the basis vectors forced to 
remain orthonormal, becomes 

=(j}·D·/)j. 

The ith Lyapunov exponent }~i is given by the time­
averaged value of the ith diagonal element of the 
lower-triangular array 

For realistic many-body systems nothing is known 
about the form of the Lyapunov spectrum. In the 
present work we apply the Lagrange-multiplier 
numerical method to the study of Lyapunov spectra 
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Fig. 1. Equilibrium spectra of Lyapunov exponents for three eight­
particle dense-fluid states using the potential function described 
in the text. Only the positive half of the spectrum is shown. The 
total energy for each calculation is indicated as a sum ofpotential 
and kinetic parts. The runs covered dimensionless times of IOO.OO, 
using a fourth-order Runge-Kutta lime step of 0.001 or 0.002. 
The total energy remained constant to 7 or 8 figures throughout 
the calculations. Exponents in power-law fits to the data shown 
range from 1/2 at an energy of 12 to 113 at an energy of 3. 

for both equilibrium and nonequilibrium many-body 
systems. 

Farmer, Ott and Yorke [7] emphasized that the 
primary difficulties in spectrum characterization are 
numerical rather than conceptual. The rcquired 
computer time varies roughly as N 4 for N particles. 
The Lyapunov spectrum of a three-dimensional N­
body system requires that 6N- 5 trajectories be fol­
lowed in 6N-dimensional phase space. For hamil­
tonian systems the symmetry of the spectrum [I] 
allows a reduction to 3N- 2 trajectories, through 
which the non-negative half of the exponent spec­
trum can be determined. 

By applying this Lagrange-multiplier approach, as 
outlined earlier [5], we discovered [6] that the form 
of the spectrum is amazingly simple for many-body 
systems. It bears a generic resemblance to the solid­
state Debye frequency distribution, with the number 
ofexponents lying in a range dl varying as (21 
but the exponent a, 1I3 for the Debye spectrum, var­
ies slowly with energy, as shown in fig. 1. The curves 
shown there fit the 21 largest exponents 
(00::::; 1- h:; 20) within the 1-2% fluctuations 
remaining after computer simulations of 105 time 
steps. The data refer to a dense periodic fluid, at 

roughly half the freezing density. The lowest-energy 
results are fitted quite well by the Debye distribu­
tion. The highest-energy results are described better 
by a square-root relationship. Thus, at equilibrium, 
the spectrum of coefficients has much less structure 
than the vibrational frequency spectrum of a simple 
solid. 

Nose discovered equations applicable to isother­
mal and isobaric systems and applied these to equi­
librium many-body systems [8,9]. This approach has 
been extended to a variety of nonequilibrium flow 
problems involving mass, momentum, and energy 
currents [10-12]. We began by studying a three-atom 
chain, with a "hot" atom at one and a "cold" atom 
at the other, with the temperatures maintained by 
two independent Nose thermostats. The phase space 
for such a three-atom system is eight-dimensional: 
three space coordinates, three momenta, and two 
Nose friction coefficients. Because in the hamilto­
nian formulation of Nose mechanics the friction 
coefficients correspond to momenta, the equations 
of motion, 

q=p/m, p=F( {q}) -(p, t (K-Ko)/Kor2, 

are time-reversible. In the reversed motion the 
momenta p and the friction coefficients ( change sign. 
Unfortunately, the three-body energy current varies 
in an irregular way with the temperature gradient and 
the initial conditions. Therefore, despite considera­
ble historical interest in such chain problems for 
longer chains [13], we sought a more physically rel­
evant three-dimensional problem. 

An arbitrary limit of 40 CRAY hours per problem 
limited us to a three-dimensional eight-body prob­
lem (12 particles in two dimensions or 24 in one 
dimension would be nearly as time-consuming). We 
chose to minimize numerical errors by using a finite­
range potential, 

with three vanishing derivatives at the cutoff, (Y. 

Despite the formal reversibility of the nonequilib­
rium equations of motion, such systems invariably 
possess positive transport coefficients, as required 
by the second law of thermodynamics [14]. We 
studied diffusion by using an external field driving 
force ± Fd to accelerate four particles to the right and 
the remaining four to the left. A gaussian constraint 
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-(p was used to keep the internal energy 
constant. The results were surprising. The 

form of the spectrum appeared little changed from 
the equilibrium Debye-like case. 

Unfortunately it is not possible to carry the non­
equilibrium simulation out for very long times, so 
that we cannot rule out small changes in the shape 
ofthe spectrum at times very long compared to a lat­
tice vibrational period. Nevertheless the results from 
runs of over 1000 time steps suggest that the spec­
trum is insensitive to the presence of nonequilib­
rium currents with velocities of the same order as 
thermal velocities. 

At the highest of the energies shown in fig. 1 and 
with a strong field, Fd = ± 1, in units where e is 100, 
and the particle mass m and collision diameter (J are 
both unity, a drift current of order 1 results, corre­
sponding to a dissipative power loss of the same 
order. This power loss corresponds to the rate at 
which the field does work, or alternatively, to the rate 
at which the constraint force Fe extracts heat from 
the system [12]. On the other hand the Kolmogorov 
entropy [15], that is the rate at which information 
is generated by the Lyapunov-unstable dynamics, is 
about 50 for the states in question. This is just the 
sum of the positive Lyapunov exponents shown in 
fig. 1. Thus the "far-from-equilibrium" current pro­
vides a perturbation to the equilibrium phase-space 
motion which is of order 1 %. This strongly suggests 
that perturbation calculations will be useful far from 
equilibrium, just as they have been for equilibrium 
fluids and solids [16]. 

The Kaplan-Yorke conjecture [1,15] relates the 
strange-attractor fractal dimensionality to the Lya­
punov exponents. Our exploratory calculations for 
the one-dimensional chain indicated a typical attrac­
tor dimensionality of about 5 in the eight-dimen­
sional phase space. The three-dimensional fluid 
calculations suggest also a reduction of no more than 
a few in the dimensionality of an attractor far from 
equilibrium. 

In response to a helpful referee's comment we add 
three remarks: 

(i) For many-body systems the numerical 
approach [2,3] is faster than the analytic method 
developed here. But the analytic equations for the 
Lyapunov exponents are usefuL They show directly 

that the spectrum changes sign if the motion is 
reversed. 

(ii) The reversibility property just discussed shows 
that the sum of the Lyapunov exponents is negative 
on the dynamically-stable (contracting) zero-vol­
ume strange attractor which characterizes the steady 
states obeying the second law of thermodynamics. 
On the corresponding zero-volume repellor the 
exponent sum is positive, corresponding to dynam­
ical instability (expansion). Because the sum cor­
responds to the irreversible entropy production S/k, 
we expect that small-field exponents react quadrat­
ically, rather than linearly, to the external field. This 
is in harmony with the small spectral shifts seen "far 
from equilibrium". 

(iii) The reduction in phase-space dimensionality 
demonstrated here for small steady-state systems is 
generic and extensive for dissipating many-body sys­
tems driven by Nose or Nose-Gauss reservoirs. Thus, 
for large systems, the reduction approaches the bulk 
contribution, independent of the type of driving res­
ervoirs. Thus the sam loss applies to real systems. If 
we use a typical collision frequency II as an estimate 
for the maximum Lyapunov exponent the nonequi­
librium dimensionality loss becomes S/kll. Applied 
to a simple substance like water the restriction that 
the loss be somewhat less than the full dimensional­
ity restricts gradients of In T (where T is the tem­
perature) to be less than about 108/cm and the strain 
rate to be less than about 1012 Hz, in agreement with 
simple physical reasoning. 

We thank Bill Moran for computational support, 
Brad Holian for being helpful, and the National Sci­
ence Foundation for a generous travel grant. The 
work carried out at the Livermore National Labo­
ratory was performed under auspices of the Depart­
ment of Energy through University of California 
Contract W-7405-Eng-48. 
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