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By analyzing time-reversed trajectories from irreversible dissipative systems, we effectively reverse the order and signs of all 
the Lyapunov exponents. This reversal makes it possible to obtain the most negative Lyapunov exponents relatively easily. We 
illustrate the validity ofthis idea by studying the Lorenz model ofRayleigh-Benard instability. 

1. Introduction 

The Lyapunov exponents [1] describe the expo
nential divergence or convergence of phase-space 
objects: one-dimensional lengths, two-dimensional 
areas, three-dimensional volumes, and so on. The 
largest Lyapunov exponent, ;. b describes the time
averaged separation rate of two neighboring trajec
tories separated by the length 6L : 

(1) 

Thus }.j measures the rate at which one-dimen
sional phase-space objects grow. The rate at which a 
two-dimensional area OA (defined by three neigh
boring trajectories) diverges or converges requires 
an additional exponent ;'2, 

(2) 

Likewise, the sum of the first n Lyapunov exponents 
describes the divergence or convergence rate of an n
dimensional phase-space volume. Provided that at 
least one Lyapunov exponent is positive, so that 

neighboring trjaectories diverge, the phase-space 
motion is called "chaotic". Unstable chaotic motion, 
as detailed by the Lyapunov exponents, is the mech
anism which underlies the irreversibility of the sec
ond law of thermodynamics [2,3 J, and so has been 
studied intensively. 

Benettin, Calgani, and Strelcyn pioneered the nu
merical calculation of Lyapunov exponents in 1976 
[4]. They time-averaged the rate at which a "sat
ellite" trajectory moves away from a "reference" tra
jectory. A more primitive approach had already been 
successfully applied to a two-dimensional many-body 
fluid by Stoddard and Ford [5]. The corresponding 
treatment of the complete spectrum was elaborated 
by Shimada and Nagashima [6]. To validate their 
numerical technique Shimada and Nagashima stud
ied the "Lorenz" equations [7], 

x=a(y-x) , 

y-xz, 

(3) 
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The Lorenz example problem, treated below, fur
nishes a crude description of unstable fluid flow. The 
unstable fluid exhibits "Rayleigh-Benard" instabil
ity. The Lorenz model (3) is a set of three coupled 
equations describing the Fourier analysis of the ve
locity and temperature in a fluid heated from below 
in a vertical gravitational field. Close to equilibrium 
the fluid is motionless, and temperature decreases 
linearly with height. For a sufficiently large top-to
bottom temperature difference, vortices develop. The 
Lorenz variables x, y, and z describe the clockwise 
speed of vortex rotation, the horizontal variation in 
temperature, and the fluctuating variation in vertical 
temperature, all truncated to the first nonvanishing 
Fourier component. The positive parameters (1, r, and 
b correspond respectively to the fluid's Prandtl num
ber, the Rayleigh number, and the aspect ratio of the 
vortices. Popular interest in these Lnrentz equations 
(3) and the corresponding Lorenz attractor (see fig. 
1) spawned "chaos" as a popular and legitimate field 
of study. In this sense chaos is the dynamical be
havior of Lyapunov-unstable systems. 

Very recently, borrowing ideas from nonequilib
rium molecular dynamics [8], we pointed out that 
a continuous version of Benettin's rescaling idea al
lows the Lyapunov spectrum to be determined by a 
Lagrange-multiplier method [9]. The Lagrange
multiplier method is efficient for small systems and 
shows very directly that the Lyapunov spectrum 
changes sign for reversible equations of motion. By 
using both Benettin's classical method and the more 
elegant Lagrange-multiplier method, we established 
the relatively simple form of the Lyapunov spectra 
for realistic many-body systems, both at, and away 
from, equilibrium [3]. The simple nature of the 
spectra suggests that a fairly complete characteriza
tion can be obtained if the first few positive and neg
ative Lyapunov exponents are known. Here we show 
how to calculate negative Lyapunov exponents by 
analyzing, in reversed time order, stored points, pre
viously generated along a forward-time phase-space 
trajectory. These negative Lyapunov exponents are 
of particular interest away from equilibrium, where 
the (negative) exponent sum is directly related to 
the irreversible entropy production [2]. The method 
illustrated here for ordinary differential equations can 
just as well be applied to irreversible equations such 
as the Navier-Stokes equations or to time series de-
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Fig. I. Lorenz attractor trajectory corresponding to a time inter
val from 50 to 250 taken from a 300000-step run with timestep 
dt=O.OOl with the parameters listed in eq. (4) and initial point 
(11, 16, 28). The Lorenz variable z as well as the Lyapunov ex
ponents;( I and;(3 are plotted as functions of the Lorenz variable 
x. 
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Fig. 2. Probability density for A1 and for A3 taken from the for
ward and backward versions of the attractor segment shown in 
fig. 1. The moments of the AI distribution constitute the usual 
"spectrum of multifractality". 

rived from differential equations or experimental 
data. We illustrate the reversal idea here by applying 
it to the Lorenz model (3) with the same parameter 
choice studied by Shimada and Nagashima. The new 
method greatly reduces the time required to obtain 
negative Lyapunov exponents for systems with many 
degrees of freedom. 

2. Lorenz model calculations [6,7] 

In all of our calculations we use the parameter val
ues from ref. [5] to describe an unstable Rayleigh
Benard fluid in the chaotic regime: 

x= 16(y-x) , 


)i=40x-y-xz, 


z= -4z+xy. (4) 


The largest Lyapunov exponent }, 1 is found by con
sidering the motion of a "satellite" trajectory con
strained to remain near a "reference" trajectory. We 
choose initial conditions near the attractor, shown in 
fig. 1, at the point (x, y, z) = (11, 16,28). The di
rection of the satellite trajectory relative to the ref
erence trajectory is specified by the veetor i5= (8x , 8y , 

8z ). The subsequent motion of the "unconstrained" 
displacement could then be calculated by solving the 
linearized equations of motion derived from (4): 

Jxu= 16(8v -8x ) , 

JyU -8y -xc5z 

Jzu -48z +x8y +Yc5x . (5) 

A Lagrange parameter A, given by 

X=Ju 'ou /02, (6) 

when used in the new "constrained" equations of 
motion 

J

iixc J= -Mx , 


Jyc =Jyu -My, 


zc -Xoz , (7) 


keeps the offset between the satellite and reference 
trajectory eonstant in time. The forward-time-aver
aged lagrangian multiplier <A. >f is the largest Lya
punov exponent A1. For small systems, this Lagrange
multiplier procedure is more efficient than Benet
tin's equivalent procedure of rescaling the vector 
8u ::::: (8x , OV' oz) at every timestep. 

At a series of times equal to those chosen by Shi
mada and Nagashima, we recorded the time-aver
aged Lyapunov exponent in the forward direction of 
time, <X> l' Then, the 409601 stored trajectory 
values of x, y, and z were analyzed in reverse order. 
We show that the results are independent of the ini
tial orientation of the reference-to-satellite vector 0 
by carrying out three separate calculations, with the 
initial direction of the vector 0 chosen parallel to the 
x, y, and z axes, respectively. We found that in the 
forward direction of time our largest Lyapunov ex
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Table I 
The largest and smallest Lyapunov exponents, ). j and A3, found using basis vectors initially oriented in the x, y, and z directions as a 
function of time for the Lorenz model of eq. (4) of the text. The equations were solved with 409600 fourth-order Runge-Kutta timesteps 
of 0.01 and with initial conditions close to the attraclOr (x, y, z) = ( II, 16, 28). The entries bxr'O=f, and b,,,.·bzf give the forward
direction basis-vector dot products for the three different initial vectors, and indicate the rapid convergence of the satellite trajectory 
directions to the direction specified by the largest Lyapunov exponent, A j. 

Time (.l.)" <;, )vf ().) zf <A)xb 0·) 7b 

2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 
ref. [5]: 

0,669 
1.146 
1.323 
1.156 
1.348 
1.356 
1.361 
1.367 
1.375 
1.377 
1.378 
1.377 

L293 
1.535 
1.518 
1.254 
1.397 
1.380 
1.373 
1.373 
1.378 
1.379 
1.378 
1.378 
1.374 

1.553 
1.645 
1.573 
1.281 
1.410 
1.387 
1.376 
1.375 
1.379 
1.379 
1.378 
1.378 

-22.302 
-22.470 
-22.453 
-22.385 
-22.404 
-22.388 
-22.381 
-22.377 
-22.376 
-22.376 
-22.377 
-22.377 

21.930 
-22.284 
-22.360 
-22.339 
-22.380 
-22.377 
-22,375 
-22.375 
-22.374 
-22375 
-22.376 
-22.377 
-22.37} 

-21.960 
-22.299 
-22.368 
-22.342 
-22.382 
-22,378 
-22.376 
-22.375 
-22.374 
-22.375 
-22.377 
-22.377 

Time 0.;1"0" °n'o:, J""J=f 

2 -0.9906 +0.9992 -0.9992 
4 1.0000 + 1.0000 - 1.0000 

ponent, A], agrees precisely with the Shimada
Nagashima value, see table I. In the reversed time 
direction the largest apparent Lyapunov exponent 
becomes the negative of the most negative forward
time exponent, <A) In this case also table 1 
shows agreement with the Shimada-Nagashima re
sults. It has since been emphasized that the direc
tions corresponding to the Lyapunov exponents are 
also local variables [11]. We verified this property 
by showing that the fin a!' vector (OX) Oy, oz) is in
dependent of initial condition. Though we do not 
show the detailed results here, we have also verified 
numerically, using three orthonormal basis vectors, 

Table 2 

Coordinates and basis vector components in the forward and re

versed directions at time 2048 at (x. y, z) ( 7.030, -4.111, 

37.737). 


J,,= (+0.535, +0.278, -0.798) 
( -0.535, -0.278, +0.798) 

J=f= ( + 0.535. +0.278, -0.798) 
Jxh (+0.937, -0.322, +0.132 ) 
<>vb (-0.937, +0.322, -0.132) 
J:b = (+0.937, -0.322, +0.132) 

that the entire spectrum of Lyapunov exponents, not 
just the largest one, is given correctly by analyzing 
the time-reversed trajectory. We have likewise ver
ified the method for time-series data. 

In table 2 we list the direction and location of these 
vectors at time 2048 going both forward and back
ward in time, These results are independent of the 
initial orientation of the vector 0;;: (ox, 0", oz)' It is 
noteworthy that there is no simple relationship be
tween the orientations of the basis vectors in the for
ward and backward time directions for this 
dissipative system. In summary, we have shown that 
a reversed-time analysis of trajectory data (or time
series data) can be used to obtain negative Lyapu
nov exponents as well as the positive ones. 

The time savings can be considerable. Our recent 
200000 timestep Lyapunov-spectrum simulations of 
three-dimensional 27-body shear flow required ap
proximately 200 CRAY -1 hours each. The more than 
25000 ordinary differential equations necessary to 
obtain the full spectrum can be reduced to a few 
hundred by using the stored-trajectory idea. That is, 
the trajectory data can first be processed forward, to 
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find the first few positive exponents, and then back
ward, to find the most negative exponents. 

3. Discussion 

Our results demonstrate that negative Lyapunov 
exponents can be determined as quickly and easily 
as positive exponents, simply by analyzing trajectory 
data in reverse order. We emphasize that it is not 
necessary for the equations of motion to be time-re
versal-invariant. Of course our procedure can be ap
plied in, the time-reversible case too. It is only 
required that the time derivatives can be calculated 
from the current state, so that either the future or the 
past can be generated. Even through the reversed tra
jectory has no physical significance, the replacement 
of contractions by expansions makes the negative 
Lyapunov exponents relatively easy to compute. In 
the many-body systems studied so far the Lyapunov 
spectra have a relatively simple shape, often a power 
la w [3). In such a case the first few positive and neg
ative exponents are enough to characterize the com
plete distribution. 

It is interesting to consider the situation in which 
data come from time series rather than analytic 
equations of motion [10-12). In such a case the an
alog of equations of motion can be determined by 
considering the relative deformation of points on 
neighboring trajectories. Locally the deformation 
corresponding to an elastic strain-rate tensor, which 
describes the deformation of a phase-space hyper
sphere into a hyperellipsoid. Provided that sufficient 
data are available to construct deformation matrices 
analogous to eq. (5) of the text, the negative Lya

punov exponents can thus be obtained from time 
series. 
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