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In this second of a pair of papers I emphasize 
the impact of recent developments on the problem of 
understanding irreversibility, as summarized in the 
Second Law of Thermodynamics, and speculate on 
the applicability of these same ideas to quantum 
systems. 

I. Irreyerslblllty from Tlme-Reyerslble Many­
Body Mechanlcs-Nose's Modification of 
Hamiltonian Mechanics 

Molecular dynamics replaced a generation of 
cumbersome, inadequate, approximate one-body 
and two-body theories with simple, accurate many­
body computer experiments. But appropriate 
analyses of these experiments required new ideas 
suited to computation. This had to wait for a new 
generation of scientists brought up to use the 
computer as a tool, for which new techniques could 
be specially designed. 

An advance was made by setting aside the 
irreversible stochastic approximations well-suited to 
slower hand calculations. but not so well-suited to 
understanding deterministic trajectory development 
far from equilibrium. The classical Langevin and 
Fokker-Planck equations had previously been used 
to impose temperature. but these approaches are 
time-irreversible. The simplest derivation of the 
Fokker-Planck equation[1]. for instance, assumes an 
acceleration proportional to the momentum gradient 
of a local entropy: 

~(dp/dt) 0< Vp{ln[f(p)/fequlllbrlum(P)]}. 

Reversing the sign of the time leaves the left side 
unchanged while changing the sign of the right side. 
revealing the time-irreversible approximate character 
of the Fokker-Planck equation. 

NOSe. from Japan, but working in Canada 
with Mike Klein. made the necessary conceptual 
breakthrough. Nose[2] discovered a reversible 
deterministic form of Hamiltonian mechanics which 
reproduces the thermal canonical distribution. His 
temperature-dependent reversible equations 
describe something like a microwave oven. but 
capable of cooling reversibly as well as heating. 
The Hamiltonian basis of his work is important for two 
different reasons. First, the equations of motion. 
either at or away from equilibrium. are time­
reversible. making possible an exact analysis of 
thermodynamically-irreversible processes. Second. 
the Hamiltonian basis suggests extensions of Nose's 
classical ideas to quantum dynamics and quantum 
statistical mechanics. Despite these two advantages. 
his original derivation was unnecessarily complex. 
But the result is simple. a set of many-body equations 
of motion, containing the equilibrium temperature T 
and at least one friction coefficient ,: 

dp/dt = F(q) - 'p . 

where the friction coefficient ,. rather than being 
constant, is itself determined by a temperature­
dependent time-reversible integral feedback 
equation: 

dQdt =L [(p2/mkT) - 1 V't2 • 

with an arbitrary relaxation time 'to Thus the friction 

. coefficient, increases in those parts of phase space 

with above-average temperafUre and decreases in 

those parts where the temperature is below average. 

Nose's derivation of his equilibrium equations 
of motion was relatively complicated. A simpler way 
to derive these same equations of motion is to ask 
the question Brad Holian posed: "What friction 
coefficient' generates the canonical distribution[3]?" 
A whole series of "Nose-Hoover" equations of 
motion, based on the various velocity moments 
<p2n> can similarly be derived[4]. 
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At equilibrium, or in the nonequilibrium linear­
response regime, Nose's ideas simply reproduce 
Newtonian mechanics, with time-averaged 
macroscopiC deviations of order 1/N for N-particle 
systems[5]. But Nose's ideas can also be used to 
drive many-body systems away from equilibrium, 
with external forces, into thermostatted 
nonequilibrium steady states maintained by one or 
more Nose thermcistats[6j. Then concepts and 
methods borrowed from nonlinear dynamics can be 
used to determine and describe the structure of the 
resulting phase-space distributions. Once Nose 
announced his discovery, Ashurst's work was 
recognized as a special case of Noss's more-flexible 
feedback recipe. 

At eqUilibrium Nose discovered a new way to 
generate the equilibriuTn phase-space distribution fN. 
In the more complex cases away from equilibrium, 

,something more interesting happens. In any such 
case he.a1 is exchanged. It can then be proved that 
any such nonequilibrium steady state always 
produces a fractal phase-space dimensionality, with 
an occupied phase-space dimension reduced below 
the equilibrium dimensionality[7-9]. The amazing 
resul1 that these distributions never become 
continuous, no matter how fine the scale of 
observation, is, for the many-body problem, as 
exciting and surprising a development as was the 
discovery of chaos in mechanics. And that discovery, 
which dates back to Poincare, is viewed by many as 
revolutionary for physiCS today[10-13]. 

What are these ubiquitous fractal objects that 
characterize nonequilibrium systems? Fractal 
objects have been used in films to represent 
mountains, clouds, and water. A recent computer­
generated magazine cover using fractals as a tool, is 
shown in Figure 1. A simpler fractal object is the 
Sierpinski sponge[14], shown in Figure 2. In any 
fractal the number of pairs of points varies in a 
regular way with distance. If one defines a 
dimensionality for such an object, by asking for the 
number of pairs of points lying within a radius r, that 
dimensionality is typically not an integer. For the 
sponge of Figure 2 the number of pairs of points 
within a small distance r of each other varies as 
r2.727. Thus the sponge is said to have fractal 
dimensionality of 2.727. The object behaves like a 
fractional-dimensional "fractal" Object. That these 
strange objects describe phase-space flows was 
probably unknown to Boltzmann. They are 

beautifully illustrated and described in Gleick's book 
on Chaos[10j. 
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Figure 1. Computer-generated snake or 
computer-generated fractal backgrounC1 

Figure 2. Sierplnskl sponge generated from 
a cube by repeatedly removing 7/27 of the 
remaining mass. The mass remaining after 
N such removals Is (20/27)N. As N diverges 
the resulting object becomes a zero-volume 
fractal object with a fractal dimensionality of 
2.727. 



Figure 4 shows two separate ensembles, 
each with 2500 separate Galton Boa~ds developing 
in time. Initially the ensemble members are 
distributed uniformly over two quadrants of the 
square phase-space cross section. The successive 
images show the ensemble members after 1, 2, 3, 5. 
and 10 collisions. Note that the ensembles' cross 
sections are approaching the single-trajectory 
Poincare section shown in Figure 3. Similar 
calculations have been carried out for a low-density 
shear-flow analog of the Galton Board, using both 
molecular dynamics[16] and the Boltzmann 
Equation[17j. 
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Figure 3. Galton Board trajectory Poincare section showing the- history of successive collllsions for a 
single mass point moving through the board. The Board geometry and a unit cell are shown to the right. 
Each point In the phase-space section on the left IndIcates a collision. The abscissa angle a measures 
the location of the colliSion relative to the field direction. 0 and It correspond respectively to collisions 
at the bottom and the top of a scatterer. The ordinate measures the (sine of the) angle I), relative to 
the normal, of the movIng particle's velocity after each collllsion. Glancing colliSions correspond to 
angles of 7tl2 or -7tl2. A head-on collision corresponds to Ii =O. The "hole" corresponds to an exceptional 
and Interesting Isolated set of quasiperiodic Kolmogoroff-Arnold-Moser collisions which are not 
connected to the main chaotic phase-space. 

Developing and demonstrating these ideas 
required high-speed computer graphics. Even so, 
phase-space fractals are hard to display in the many­.~ f body case. About the simplest steady-state phase­

r 	 space fractal distribution illustrates the one-body 
Galton-Board example[15] shown in Figure 3. In 
this example a single mass point falls through a 
periodiC array of scatters. The accelerating 
"gravitational" field is downward, and the motion is 
made isokinetic. with the particle falling at constant 
speed. by applying Gauss' Principle of Least 
Constraint [4.15]. The resulting phase space is only 
three-dimensional. In the Figure a phase-space 
croSs section representing 10,000 successive 
~lIisions is shown. The distribution of distances 
between pairs of points in the cross section is 
consistent with a fractal dimensionality of about 1.5. 
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Figure 4. Two Galton Board ensemble Poincare sections showing the time­
development of two ensembles, each with 2500 mass points moving Independently 
through Galton Boards of the same type, and with the same field as shown in Figure 
3. The development of the ensembles after 1, 2, 3, 5, and 10 collisions Is shown. 
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Nose's idea, generalized to nonequilibrium 
systems, made possible the marvelous marriage of 
three parties, mechanics, nonlinear dynamics, and 
irreversible thermodynamics[7-9]. The new 
mechanics, with Nose's computational thermostats 
built in, showed that nonequilibrium phase-space 
distributions are typically fractal, just like the one­
body Galton Board problem illustrated above. The 
necessary geometric concepts are not so new. The 
basic idea of phase-space mixing was known to 
Poincare and the mathematics of strange sets had 
been around for about fifty years when Nose pointed 
the way toward a new synthesis. 

With Nose's dynamics the phase-space 
deformation of nonlinear dynamics, the heat 
reservoirs of nonequilibrium molecular dynamics, 
and the inexorable entropy increase of irreversible 
thermodynamics could all be linked together. The 
logical connections among these three concepts 
involve the three steps indicated in Figure 5: 

(I). Conservation of comoving probability in 
mechanical phase-space flows, relating the time­
rate-of-change of the many-body distribution function 
to the corresponding time-rate-of change of phase 
volume. 

(II). Steady time-development of phase­
volume from nonlinear dynamics, relating the sum of 
the Lyapunov exponents to the sum of Nosa's friction 
coefficients through Nose's equations of motion. 

(III). Linking the diminishing phase-space 
volume with thermodynamics through the heat 
reservoirs implicit in Nose's equations of motion. 
This last step establishes that the impossibility of 
phase-space growth, in the steady state, is 
equivalent to the macroscopic Second Law of 
Thermodynamics. 

Figure 5. Three steps linking mechanics, 
dynamics, and irreversible thermodynamics. 

I and II: 
dlnf/dt + dlil®/dt :: 0;J-~~~1 2:S+2:A: 0; 

®L q 

S 

III: 

2:A<O =:>2:S>O. 

2: [d<;:dt] = 2: S=d(~ik)} 

To begin with step I, any mechanical flow in 
phase space satisfies a "continuity equation", with 
conservation of the total number of systems studieC",,-_ 
To illustrate, consider the continuity equation of fluid 
mechaniCS, 

ap/()t + a(pu)/dx = 0 , 

where p is the mass density and u is the stream 
velocity. The typical textbook derivation of the 
continuity equation proceeds by setting the change 
in mass in a fixed "Eulerian" volume element dxdydz 
equal to the flow through the boundaries. This flow is 
proportional to the flux pu. The only additional 
assumptions required to derive the continuity 
equation are (i) the differentiability of the flow velocity 
and density and (ii) the lack of sources or sinks. 
From the continuity equation the comoving density 
derivative (that is, the "Lagrangian" derivative 
following the motion) can be computed: 

dp/dt :: ap/()t + u(ap/ax) = -p(au/ax) , 

Dividing by the density gives a more elegant 
logarithmic form: 

dlnp/dt = -(au/ax) 

The divergence of the velocity, dU/dX, the sum of the> 
orthogonal strain rates, is also the logarithmic rat 
volume change: 

(aU/dX) :: dlnV/dt . 

Thus the continuity equation for fluid flow takes the 
form: 

dlnp/dt = -dlnV Idt . 

or 

dlnp/dt + dlnVldt = o. 

Exactly the same idea can be applied to the flow of 
many-body probability fluid in the many-body phase 
space. In that case the density function p is replaced 
by the N-body probability density fN and the volume 
V is replaced by the 6N-dimensional phase-space 
hypervolume 181. Then the corresponding "continuity" 

equation for the flow of phase-space probability can 
be written 

dlnftt'dt + dln®/dt =0 , (I) 

where fN® is the total number of systems in the 
phase-space hypervolume ®. 
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In the second step II above, the Lyapunov The resulting conclusion 

exponents used in analyzing many-dimensionalllows[18] 
are introduced in order to describe the time-averaged --III IOIAL UITIOPJ MUSI 
expansion and contraction 01 the phase-space volume 0. UI«:IIAIII-­
The exponents give the time-averaged rates of stretching 
and shrinking of the principle axes of a deforming is made possible only through the simple structure of the 
hyperellipsoid in the phase space. In nonlinear chaotic Nose equations of motion. This total entropy includes that 
systems the stretching and shrinking occur exponentially of the heat reservoirs in which any Nose system is 

I fast in time, varying as exp[:A.t]. See again the last Figure 
in Paper I of this pair of papers. The sum of these i exponents { :A. } gives the rate at which ptlase-space 
volume changes: 

dln®/dt =LA . 

Nose's equations of motion satisfy identically the relation 

dlnfNi'dt :: L~ . 

Combining these results with <I) above relates Nose's 
friction coefficients to the Lyapunov exponents: 

L~ =dlnfN/dt =-dln®/dt =-D. (II) 

Nose's equ.ations of motion also show directly that the 
time-averaged friction coefficients <I'»~ and the 
corresponding instantaneous temperatures <{p2/mk}> are 
uncorrelated: 

Thus, the left hand side, the summed rates of heat 
extraction of the Nose thermostats divided by the 
corresponding temperatures, {<p2/mk>}, is exactly equal 
to the sum of the Nose friction coefficients. The last step 
III, then links dynamics to the Second Law of 
Thermodynamics through the friction coefficients I'} in 
Nose's equations of motion: 

-dlnfNi'dt = -L' =-(dS/dt)/k ,(III) 

where the sum is over aU such friction coefficients. The 
observation that the steady logarithmic rate of volume 
change. dln®/dt, cannot be positive, and must vanish at 
equilibrium, leads to the conclusion 

0> dln®/dt 

away from equilibrium. This continuous decrease of 
phase-space volume in the nonequilibrium steady state 
establishes that Gibbs' equilibrium N-body entropy 
definition, S =-k<lnfN>, cannot be used in such 
nonequilibrium steady states because the corresponding 
nonequilibrium S would approach minus infinity. 

The steadily-decreasing phase-space 
hypervolume implies the full chain of relations 

embedded. The Gibbs' entropy diverges for any 
nonequilibrium steady state. To see this, notice 
particularly that the many-body probability density 

fN(qN,pN.~,t) diverges[8]. The Second Law of 
Thermodynamics, from the standpoint of Nose mechanics, 
becomes equivalent to the observation that a steady-state 
distribution function must occupy a Lyapunov-unstable 
subspace with reduced dimensionality, a zero-volume 
"strange attractor". For such nonequilibrium systems, the 
Second Law of Thermodynamics is not simply a high­
probability statement, as with Gibbs' Paradox, but instead 
a probability-one statement. This follows from the fact that 
the non equilibrium distributions are zero-volume fractal 
objects. 

To see this consequence of the fractal many-body 
distributions in more detail. consider time reversibility and 
Loschmidt's Paradox. Because the many-body equations 
of motion are time-reversal-invariant it is certainly true 
that the phase space must also contain a reversed 
"repellor" region. just like the attractor but with reversed 
velocities, in which the Second Law is violated. Despite 
the undoubted existence of the repellor the Second Law 
cannot be violated by observable motions[7-9]. This is 
because the reversed "repellor" solution ~ rather 
than .at.tr.a2m nearby trajectories, and thereby acts as a 
phase-space source rather than a sink. It is an unstable 
phase-space object. Hence the reversed repellor 
trajectories. which would theoretically violate the Second 
Law of Thermodynamics, can never be observed using 
Nose's mechanics. 

Thus Nose's mechanics sheds new light on. and 
extends, Boltzmann's treatment of irreversible processes. 
In this extenSion, the relevant distributions are many-body 
rather than one-body distributions. The underlying 
dynamics is the exact many-body dynamics rather than 
Boltzmann's approximate one-body dynamics. With 
Nose's mechanics the statements that (1) entropy 
production is positive, that (2) heat flows from hot to cold, 
and that (3) transport coefficients are positive, all 
correspond to rigorous consequences of the equivalent 
geometric observation that phase-space hypervolumes 
cannot grow in nonequilibrium steady states. 

Of course, Nose's treatl'Jlent of nonequilibrium 
boundaries is not the only possible treatment. But it is 
important to recognize that hydrodynamic flows can be 
generated and maintained by a variety of equally-valid 
boundary conditions. Those features that are common to 
a variety of boundaries will be shared by Nose's choice. 
His is simply the most useful because it simplifies the 
corresponding theoretical analysis. 

(dS/dt)/k =L' = +<:llnfN/dt =-dln®/dt = -LA. > O. 
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II. Speculation: Quantum Irreyersibility 
using "Gaussian" Time-Reversible 
Schr03dinger Mechanics. 

Gauss formulated mechanics on the 
basis of a single principle, his "Principle of 
Least Constraint"[19]. Gauss' Principle states 
that any dynamical constraint should be 
implemented by using the least possible force: 

L(Fc2/2m) minimum, or L(FcoFdm) = 0 

The sum runs over all degrees of freedom in 
the constrained system. 

It is interesting that this Principle, when 
used to implement Isothermal conditions, by 
constraining the kinetic energy, produces 
exactly the same motion equations 

dp/dt = F - Y, , 

as does Nose's isothermal mechanics, but 
with a definite value for Nose's relaxation time 
't, zero. . 

The current interest in chaos has led to 
extensive speculation on "quantum chaos", 
that is the quantum behavior of systems with 
classically-chaotic Hamiltonians[13,20]. The 
Schroodinger equation is not well suited to 
these studies so that a variety of efforts have 
been made to extend it to apply to 
non equilibrium open systems[21-23J. 

First, the SchroodinQer Equation is 
linear, so that steady solutions can only 
oscillate in time. Second, it describes only 
thermally-isolated systems, while the simplest 
interpretations of irreversibility in classical 
systems involve open systems in which work is 
converted to heat through the operation of 
Nose thermostats. 

We can take Gauss' least-constraint 
idea[19J over into quantum mechanics by 
restricting the solution of a constrained 
SchrCBdinger Equation, which incorporates 

the least possible change in the quantum 
equation of motion . 

(d",/dt)Gauss = (d",/dt)Schltl!dinger - L(AiVCI) , 

where the {Ai} are Lagrange multipliers 
chosen to satisfy the constraints {CI}. 
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To illustrate, consider the quantum 
version of the simple problem introduced in 
Figure 3, a mass point moving through a Galtor, 
Board under the influence of an external field[15]. 
Then the Gaussian constraints {CI} correspond 
to fixing the total mass, momentum, and energy 
in the Board. The Gaussian Lagrange 
multipliers {AI} perform work and extract heat. 
The steady-state nonequilibrium Schroodinger 
equation then describes a steady flow of 
probability current with fixed mass and energy. 
The generalized forces expressed by the 
Lagrange multipliers provide momentum at 
exactly the rate required to offset the scattering 
by the Board. The more-general fluctuating 
constraint technique introduced by Nose could 
alternatively be used, controlling generalized 
Lagrange parameters with integral feedback and 
allowing the mass, momentum, and energy to 
fluctuate about prescribed mean values. Here 
we consider explicitly the special case in which 
these flow quantities are fixed. 

It is convenient to solve the Galton Board 
problem on a hexagonal finite-difference grid. To 
use such a grid approach, the spatial 
derivatives are replaced by finite differences. 
Then the Gaussian equations of motion become 
a set of coupled nonlinear first-order ordinary ..~ 
differential equations. These equations can t.,,, 
solved using the same Runge-Kutta method that 
applies for classical problems. Sample 
solutions, on a 41 x41 grid, both transient and 
time-averaged, are shown in Figures 6-8 on the 
next page. 

Numerical study of the time development 
of pairs of such solutions, initially close together 
in '" space, shows that 'I' itself does not develop 
in a chaotic way. The separation between such 
a pair of solutions increases more rapidly than 
linearly, but less rapidly than exponentially, in 
time. This intermediate time dependence 
appears to have no simple power-law behavior. 
Thus neither the equilbrium nor the 
nonequilibrium steady-stat~ behavior of '" 
provides an analog for classical chaos. 

So far we know that solutions of such 
quantum problems must lead to distributions 
approaching the fractal classical ones. 
Further study of the quantum time­
development will eventually reveal the 
quantum analog of Lyapunov instability which 
underlies the Second Law of 
Thermodynamics and the irreversibility 11. 
Boltzmann found to be so fascinating. . 



Mass 

Figure 6. Mass distribution in a steady-state solution of the quantum Galton Board using the 
nonequilibrium form of Schrcedinger's Equation described on the previous page. The 41x41 
grid is centered on a scaHerer which excludes 613 of the 1681 sites from occupancy. The 
time-dependent Gaussian modification of Schrcedlnger's equation Is then solved for the 1068 
nonvanishing values of the real and imaginary wave-function. In the flow illustrated here, the 
average flow velocity is about half the thermal velocity, which Is In turn about ten times less 
than the maximum thermal velocity allowed by the finite-difference grid. The quantum­
momentum wavelength corresponding to this solution is about 40% of the cell width. The left 
view is a snapshot of the mass distribution. The right view is a time average over two wave­
traversal times. 

Momentum 

Figure 7. Momentum distribution in the steady-state solution of the quantum Galton Board, as 
shown In Figure 6, using the nonequilibrium Schrcedlnger equation described on the previous 
page. The left view is a snapshot of the momentum distribution. The right view is a time 
average. The current flow is primarily negative so that the plotted values lie below the zero 
associated with the 613-slte elastic scatterer. 

Energy 

Figure 8. Energy distribution In a steady-state solution of the quantum Galton Board, as 
shown in Figure 6 using the nonequilibrlum Schrcedinger equation described on the previous 
page. The left vl';w Is a snapshot of the energy distribution. The right view is a time 
average. Note the similarity of this time average to the mass average shown in Figure 6. 
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III. Summary. 

The averaging introduced by Maxwell and 
Boltzmann disappeared for a while, with fast 
computers, but eventually reappeared with a 
vengeance when both trajectories, described by 
ordinary differential equations, and distributions, 
described by partial differential equations, could be 
found for the same problems. The intercomparison 
of these two approaches, using ideas based in 
computation rather than in hand calculation, has led 
to exciting advances in physics. 

The distribution-function analysis of 
Boltzmann could be tested by the trajectory 
calculations of Fermi, Alder and Wainwright, 
Vineyard, Rahman, and Verlet, and, for the first time, 
validated in cases where the force law was known. 
The molecular dynamics calculations superceded 
the interest in approximate one-body and two-body 
distribution functions and stimulated the 
advancement of two-body perturbation theory as a 
wfiY for "understanding" many-body systems. At the 
same time the realism introduced by Vineyard 
broadened the audience and has helped make 
molecular dynamics a useful tool for understanding 
far-from-equilibrium processes in such diverse fields 
as catalysis, drug design, fluid dynamics, and 
materials science. 

Nonequilibrium calculations have 
demonstrated both the power and the limits of linear 
transport theory and showed that the boundary 
conditions are crucial in simulating and describing 
far-from-equilibrium systems. Finally, Nose's novel 
approach made it possible to link deterministic 

microscopic mechanics with phase-space 
distributions and irreversible thermodynamics, in a 
way which Boltzmann would have enjoyed. 

Where is atomistic computer simulation 
headed today? A major trend is toward parallel 
processing, to avoid the speed and capacity limits of 
a single processor. This approach promises rapid 
orders-of-magnitude increases in speed and 
capacity. Another direction in which improving 
capacity may lead is toward Simulating far-from­
equilibrium quantum systems. The new techniques 
may well simplify the treatment of quantum systems 
which show chaos. It is for this reason that I append 
Erwin Schrcedinger to the list of precomputer 
architects of molecular dynamics shown in Figure 9. 
Boltzmann, Gauss, Hamifton. Lyapunov, and 
Newton. 
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Figure g. Boltzmann, Gauss, Hamilton, Lyapunov, Newton, and Schrmdlnger. 
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