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Morriss [Phys. Rev. A 39,4811 (1989)] recently published a stimulating study of a nonequilibrium 
Lorentz gas. He measured a multifractal "spectrum of singularities" f(a) describing the "coarse
grained" phase space-representation of a time-reversible, two-body, space- and time-periodic shear 
flow. The measured function f(a) is the "Hausdorff dimension" of attractor singularities whose lo
cal bin integrals vary as the ath power of the bin length. Morriss found a spectrum of singularities 
f(a) very different from those familiar to nonlinear dynamical systems theory. Here we consider a 
closely related, but simpler, two-body time-reversible atomistic system. It is also a Lorentz-gas 
problem, a nonequilibrium diffusive flow, periodic in space but stationary in time. This system ap
pears to be both mixing and ergodic, even far from equilibrium. We use the Chhabra-Jensen tech
nique to show that the phase-space singularity spectrum !(a) for this nonequilibrium flow more 
closely resembles those of dynamical systems theory. 

I. INTRODUCTION 

Molecular-dynamics simulation of nonequilibrium 
steady-state flows with reversible equations of motion be
gan about 15 years ago. 1 Diffusive, viscous, and conduct
ing flows were all simulated. Transport coefficients were 
generated for gases, liquids, and solids using a variety of 
equilibrium (fluctuation) and nonequilibrium (driven) 
methods. Both kinds of results were in good agreement 
with experimental data and the usefulness of the comput
er experiments was thereby established. 

More recently, atomistic computer-simulation work 
has focused on connecting microscopic dynamical rever
sibility with macroscopic second-Iaw-of-thermodynamics 
irreversibility in time-averaged steady states.2 This con
nection has been made possible through the development 
of time-reversible equations of motion which describe the 
interaction of microscopic dynamical degrees of freedom 
with macroscopic heat reservoirs. 1- 5 

The mechanism underlying second-law irreversibility 
lies in the Lyapunov instability of the equations of 

12motion.6- Stationary nonequilibrium flows develop by 
generating "multifractal" strange-attractor objects in 
phase space.2,12-14 These objects have zero "volume" 
relative to the corresponding equilibrium states, and their 
phase-space "dimensionality" varies with the deviation 
from equilibrium. The volume collapse is rapid, on the 
time scale of the collision rate. The phase-space objects 
we study are always represented by computer-generated 
time series of phase-space points. The number of these 
points is limited by computer size and speed. Typical 
series contain a million to a billion points. Discrete time 
series can be analyzed directly,15 but the coarse-grained 
phase-space Objects analyzed by mathematicians are gen
erally more abstract l4 static structures, consisting of un
countably many points. This difference in the data's 

______ structure can lead to misunderstanding and confusion. 
Because the definitions of multi fractal dimensionality
!Dq j are intricate we have collected operational 
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definitions, appropriate to the time series we analyze 
here, in the Appendix. The time required to generate 
multifractal information is relatively long, on the time 
scale of Poincare recurrence. 

The simplest and most fundamental static measure of 
fractal phase-space dimensionality is the "information" 
dimension D I' This dimension weights all points equally 
and corresponds to the visual information in a phase
space picture. Kaplan and Yorke conjectured that D J is 
linked to the time-averaged spectrum of dynamic 
Lyapunov exponents. The nature of the Lyapunov ex
ponents, which describe the divergence and convergence 
of phase-space flows, has been clarifi~ by measuring 
their spectrum for a variety of nonequilibrium systems. 
The local time variation of these exponents reflects the lo
cal (phase) space variation of fractal dimensiop. Because 
visualization of phase-space multifractal· geometry 
remains difficult, we believe it is important to character
ize the simplest possible systems. These simplest systems 
include Lorentz-gas two-body shear and diffusive flows, 
as well as three-body heat-conducting flows. 

In a very recent and extremely stimulating paper Mor
riss12 studied the multifractal spectrum of singularities 
!(a) for a simple nonequilibrium two-body shear flow. 
This Lorentz-gas flow problem was introduced in 1983. 16 

The two-body shear-flow problem17 is equivalent to a 
one-body problem: finding the motion of a point mass 
moving in a constantly shearing lattice of scatterers. 
(The periodic geometry of the problem is indicated in 
Fig. 1.) Because the shear flow is periodic in time, induc
ing a time-periodic flow, a stationary state is never 
reached. Morriss found time-averaged velocity distribu
tions that did not agree well with Boltzmann-equation 
predictions18,19 as well as a m ultifractal singularity spec
trum !(a) with a cusplike structure unlike those previ
ously characterized for maps and dynamical systems. 15,20 

(See Fig. 2.) 
In this paper we examine the multifractal nature of 

two-body isokinetic diffusive flow for a hard-disk Lorentz 
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Periodic Shear Lorentz Shear 

FIG. 1. Two views of the geometry in the two-body shear
flow problem. The two particles interact, in Morriss's calcula
tions, with a shifted repulsive Lennard-Jones interaction, so that 
the potential and its first derivative (but not its second deriva
tive) are continuous. The motion is periodic in both space and 
time. The left view shows a symmetric two-body version in 
which the velocity of each particle is represented as a systematic 
part (horizontal component of velocity) plus a fluctuating part 
with the fluctuating parts summing to zero. The right view 
shows an equivalent one-body version in which the velocity of 
the filled-circle particle is taken relative to that of the open
circle particle at the origin. 

gas21 - 24 (also equivalent to a hundred-year-old one-body 
problem, the Galton board). In our isokinetic version of 
the Galton-board problem a single particle moves 
through a stationary array of fixed hard-disk scatterers 
under the influence of a constant external field. The 
motion occurs at fixed speed, imposed by applying 
Gauss's principle of least constraint5,25 to the motion. 
The complicati'On of time periodicity is eliminated be
cause the boundaries do not move. 

The two-body periodic problem indicated in Fig. I 
could be described in an eight-dimensional phase space 
[x,y,Px,Py ]' but there are five constants of the motion 
(center-of-mass location, center-of-mass velocity, and ki
netic energy). Thus the two-body problem can further be 
described in a three-dimensional phase space. The 

3 

2 
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FIG. 2. Spectrum of fractal dimension found by Morriss for 

equivalent one-body problem can likewise be described in 
a three-dimensional phase space including two relative 
space coordinates and an angle giving the direction of 
motion. By tabulating only the geometry of successiv/~ 
collisions (because the smooth trajectory between col· 
lisions can be worked out anlytically) the two problems 
can be reduced to two-dimensional ones. It is that ap
proach which we follow here. 

We previously found23 that the two-dimensional cross 
section of the three-dimensional phase-space distribution 
is typically multifractal, with a "correlation dimension" 
D2 between 1 and 2, but that for selected ranges of the 
external driving field the dimensionality drops to zero in 
the two-dimensional cross section, representing a stable 
one-dimensional limit cycle in three dimensions. 

Here we analyze the multi fractal phase-space singulari
ties of this relatively simple Galton-board problem, using 
Chhabra and Jensen's very recent extension2o of the ideas 
of Grassberger,26 and Hentschel and ProcacciaY 

II. MODEL AND RESULTS 

The two-body field-driven isokinetic Lorentz gas pro
duces the simplest atomistic nonequilibrium stationary 
state. The collisional forces are impulsive, corresponding 
to hard-disk collisions. Similar dynamics could be gen
erated with very smooth forces, using functions based on 
exp( -1 Ir), but because we view the hard-disk case as 
simpler we study it here. 

In the coordinate system of Fig. 3 (reproduced from 
Ref. 23) with a field of cOnstant strength E parallel to thf'~ 
x axis, the Gaussian isokinetic equations of motion can bl 
solved analytically for a particle of mass m with the con
stant speed P 1m. The distance traveled during the inter
val Ilt separating successive hard-disk collisions is the 
vector (llx,lly): 

Ilx = _(p2 ImE)ln(sinelsineo) , 

Ily = _(p2 ImE)(e-eo) , 

Ilt = - (P I E)ln[ tan(e 12) Itan( eo 12 )] 

The angle e gives the direction of the motion relative to 
the field direction 

Px=pcose, 	 Py=Psine. 

oC?oo 

E~°0 

the system of Fig. 1 by projecting a four-dimensional phase FIG. 3. Galton-board problem, showing the definition of the 
space distribution onto a three-dimensional subspace. angles a and f3 which define a hard-disk collision. 
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To see that these one-body motion equations are time 
reversible, note that reversing a collision corresponds to 
replacing e by eo-1T and eo by 0-1T, correctly changing 

~.	the signs of Ax and Ay without changing At. The motion 
described by these equations corresponds to that of a par
ticle moving, at constant kinetic energy, under the 
influence of a field E aligned parallel to the x axis. In 
Hamiltonian mechanics the energy provided by the field 
would cause the mean kinetic energy to rise. By using a 
Gaussian thermostat (based on Gauss's principle of least 
constraint5

•
25

) this energy is extracted at exactly the same 
rate as it is produced so that the particle "falls" (or 
at constant speed. It has recently been shown that exact
ly the same (time-reversible) coordinate-space motion re
sults from purely Hamiltonian mechanics if the field 
strength has an exponential dependence on the x coordi
nate.24 

It is possible to generate 15 million collisions per hour 
on a CRAY-1 computer with an accuracy of seven 
significant figures. 23 Such calculations provide a time 
series of the angles a and {3 which describe the hard-disk 
collisions. If these data are accumulated in "bins" corre
sponding to equal numbers of increments in a and sin{3, 
with linear dimensions proportional to the "bin size" 8, 
then the fractal spectrum of singularities f(a) can be cal
culated by working out the limiting bin-size dependence 
of the one-parameter family of sums over bins: 

Dq= [ln~pq l/Onoq-l), 

-'where q can be positive, negative, or zero. These sums, in 
the limit that 0 becomes sufficiently small, approach cor
responding integrals of singular coarse-grained probabili
ty densities. The integrated bin probability p for sam
pling a particular bin centered on (a,sin{3) is normalized, 
with the sum over bins, D = 1. Chhabra and Jensen20 

discuss the singularities of the integrated bin probability. 
For sufficiently small bins the singularity is local, with in
tegrated probability varying as the ath power of the bin 
size o. Chhabra and Jensen showed that "singularity 
strength" a (here denoted by a rather than a to avoid 
confusion with the angle defined in Fig. 3) and the corre
sponding singularity spectrum f (a) can both be deter
mined directly from the family of q-dcpendent normal
ized probability measures /lq =pql'2,pq: 

f 	 <In(/lq ) >q Ilno , 

a = 	<In(p) ) q Ilno = <In(/ll ) >q /lno , 

where the angular brackets indicate sums weighted with 
the q-dependent measure /lq. 

The geometric meaning of the singularity spectrum is 
intricate. We again refer to the Appendix for more de
tails of multifractal dimensionality. The main idea is to 
consider a stationary phase-space attractor as a family of 
superposed or "interwoven" sets of singular fractal ob
jects. In the neighborhood of any part of the attractor 

,-. the integrated (coarse-grained) small-o probability is typi
cally singular, varying as the ath power of the bin size 8. 
For an attractor (as opposed to repeller) this power is 
typically less than the embedding dimension, signifying 

the shrinkage associated with dissipation. The set of bins 
with the same singular probability dependence has a lim
iting Hausdorff bin-counting dimension f (a). This 
means that the number of occupied bins of singularity 
strength a varies as 0 - [(a), for small O. 

To study the fractal dimension of the singularities f (a) 
for a typical nonequilibrium situation we arbitrarily 
chose a field strength of E 3P2 Ima for detailed investi
gation. P 1m is the constant speed, and a is the scatterer 
diameter, chosen arbitrarily to give a scatterer density of 
four-fifths the close-packed value. Numerical work23 sug
gests that the motion is chaotic on a strange attractor 
without any regular regions. The dynamical evolution 
generates a fractal object. We characterize the multifrac
tal dimension using a range of q from 0 to 10. Outside 
this range the results are relatively slow to converge. A 
typical multi fractal cross section is shown in 4. The 
cross section shown there has23 an apparent correlation 
dimension D2 of about 1.6. This means that the number 
of pairs of time-series points within a distance 0 of each 
other varies as 0 - L 6. From the visual standpoint the in
formation dimension D 1 is more relevant. For this same 
attractor the information dimension D 1 is approximately 
1.8, meaning that the number of time-series points within 
a distance 0 of an arbitrary point (not necessarily a point 
on the attractor) varies as 0-1.8. Cross-section dimen
sionalities of 1.6 and 1.8 correspond to phase-space-object 
dimensionalities of 2.6 and 2.8. 

Because the motion between collisions proceeds 
smoothly, the analysis of the singularities in the three
dimensional phase-space probability density reduces to a 
two-dimensional analysis normal to that motion. The 
motion can be described as a time series of (a,sin{3) pairs 
describing the position and relative velocity of successive 
collisions. The motion normal to the (a,sin{3) plane cor-

E =3.00 p2/mcr 

co. 
c 
r.n 

FIG. 4. Multifractal phase-space probability-density cross 
section found for a field strength of 3p 2 /ma. The 10000 dots 
shown represent 10000 successive collisions. The calculations 
used in the text incorporate 100 000 000 such collisions. 
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responds to the time between successive collisions. This 
function is piecewise smooth. The variation in collision 
times, from the shortest possible to the longest possible 
free paths, is typically a factor of 10. In the equilibrium 
case, the relative weight of a differential element of area 
in the (a,sin/3l plane dad sin/3=da cos{3d{3 gives the rel
ative frequency of collision at (a,/3l. 

To implement the ideas of Morriss, Chhabra, and Jen
sen we spanned the (a,sin{3) space by a 1024 X 1024 grid 
and accumulated occupation probabilities over a se
quence of one hundred million hard-disk collisions. To 
suggest the improved resolution over that shown in Fig. 
4, we show 640000 points on an 8 X 8 grid in Fig. 5. 
With the corresponding bin probabilities we could then 
calculate the singularity strength a (q) and its fractal di
mension I(q) using the Chhabra-Jensen recipe given 
above. (See Fig. 6.) We found that convergence is rapid 
for q corresponding to the information dimension (q = 1) 
and the correlation dimension (q = 2), as well as for 
larger q, up to about 5, which describes the clustering 
tendency of triplets, quadruplets, and quintuplets of 
phase-space points. Convergence for q 10 is relatively 
slow. 

Smaller values of q emphasize the less frequently visit
ed parts of the attractor. Of the corresponding dimen
sions, Do the capacity or "box-counting" dimension 
which approximates the Hausdorff dimension, has an ap
parently simple meaning. It gives the dependence of the 
number of cells visited on bin size, with the logarithm of 
this number varying as -DainS. Do is relatively more 
delicate to compute and slower to converge than Dr or 
D 2 • (See again the Appendix.) For a fixed number of col-

FIG. 5. Multifractal phase-space probability-density cross 
section of Fig. 4 but with an enhanced resolution using 640000 
dots on an 8 X 8 grid. The original computer-generated picture 
is a 1-m square. 

2.0 .---r---,-~~~.--~ 

f 1.0 

o 

10 
-"5 lorentz gas I 

singularity spectrum 
E=3p 2/mcr 

C 1024x1024 
o 512 x512 

III 256x256 


1.0 1.5 2.0 2.5 3.0 
a 

FIG. 6. Spectrum of fractal dimension I(a) found here for 
the nonequilibrium system of Figs. 4 and 5 using a field strength 
of 3p2/mO' and 100000000 collisions. Points shown are la
beled according to the number of bins spanning (a,sin/3l space, 
2562

, 5122
, and 10242• The q in the range from 0 to 10 

are indicated, except for q 

lisions a sufficiently refined grid can always lead to a van
ishing fraction of occupied bins, and hence to a vanishing 
Do. We found that for a practicable fixed grid (that is, up 
to 1024 X 1024 bins) we could occupy nearly all the bins. 

It appears that every bin would become occupied pro
vided that sufficiently many collisions could be generated, 
though we were unable aetually to fill all bins beyond the 
256 X 256 case. This ergodicity is strongly suggested by 
the details shown in Fig. 5, reduced from a large (square
meter) computer-generated plot of 640000 points. Vari
ous logarithmic plots of empty bin fraction as a function ~ 
of the number of collisions imply that the fraction 
definitely vanishes for large, but finite, collision numbers 
(of order 109 or so for the 1024 X 1024 case). This eon
clusion that no bin is empty is only conjecture, but we be
lieve it to be extremely plausible. If, for instance, the 
Hausdorff dimension were 1.99 rather than 2.00, this 
would suggest a number of empty bins, out of 2562

, equal 
to 2562[1 (11256)°·01], which is greater than 3500. 
Thus, because we found no empty bins we believe that 
our numerical evidence strongly suggests that the Haus
dorff dimension of the attractor is equal to the embedding 
dimension 2.0 and that the motion is ergodic: All regions 
of phase space are accessible in this nonequilibrium 
steady state. Because the occupied phase-space volume is 
identically zero, these results suggest that the Hausdorff 
dimension is not a useful concept for describing dynami
cal attractors. At the same time the probability is 
sufficiently singular (a greater than 2), so that the occu
pied phase space, weighted with its probability, has an in
formation dimension of only D j = 1. 8. The Kaplan
Yorke dimension, which can be estimated from the 
Lyapunov spectrum and is thought to be equal to the in
formation dimension Dr, is likewise known to be strictly 
less than the equilibrium phase-space dimension in all 
deterministic and time-reversible nonequilibrium steady 
states.2 

The functions I (a) for three different bin sizes and "-' 
field strength 3p21m a are displayed in Fig. 6. The 
curves summarize 108 collisions, collected into 4n bins, 
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with n =8, 9, and 10. This choice of collision numbers TABLE 1. Information and correlation dimensions D J and 
provides 1 % or better estimates for the bin-counting di D2 for 100000000 hard-disk collisions using 512X512 bins. 

mensions D q' with 5 ~ q ~ O. The spectra show no shoul- ders, cusps, or fine structure. These results should be 
compared to those of Morriss, which are reproduced in 
Fig. 2. 

For comparison, and as a check of our numerical work, 
we show in Fig. 7 exactly the same calculation but car
ried out at equilibrium, in the absence of an accelerating 
field. (For technical reasons the data were generated at a 
field of 0.001p2/m (J", rather than zero.) The spectrum 
deviates from the 8-function analytic result (a =2 and 
1=2) for this system only because the finite-bin popula
tions have fluctuations around their equilibrium values. 
The phase-space "attractor" cross section is mixing and 
ergodic at equilibrium with an integrated cross-sectional 
bin probability varying as 82

. Thus both a and I should 
be exactly 2 in this case. The numerical results suggested 
that fluctuations in bin numbers should lead to inaccura
cies in the dimensionality estimates for Do, D!, and D2 
less than 1%. 

Kaplan and Yorke connected a fractal dimension 
D Ky to the spectrum of Lyapunov exponents, 
11,] =(A1)'2,A3,·· .). The exponent sums, A1,A\+A2,A, 
+A2 +A3, ... , describe the exponential time rates of 
change of 1-, 2-, 3-, ... , dimensional phase-space objects. 
Kaplan and Yorke estimated the dimensionality 
D Ky ~Dl by estimating, with linear interpolation, the 
dimensionality of a phase-space object in which the ex
ponential rates of change sum to exactly zero. II the un
derlying Lyapunov exponents used in the Kaplan-Yorke 
estimate vary in an analytic way with the deviation from 
equilibrium, then one expects to find that the fractal di
mension DKy varies quadratically with field strength. A 

1.995 5 

Zero-field 
singularity spectrum f 1.985 

o 512 x512 
• 256x256 

100 million "collisions" 

a 
FIG. 7. Apparent spectrum of fractal dimension for the 

librium situation, with no external field, using 100000000 "col
lisions." The (analytic) known spectrum is a 15 function with 
both averages, j(a) and a equal to the cross-section dimension 
2. This result requires infinitesimal bin sizes and an infinitely 

~.. 
long sequCilce of collisions. These zero-field results were gen
erated randomly. Comparison for 100000000 collisions shows 
that the results closely resemble true collision chains for a field 
ofO.OOlp2/ma. 

The a value corresponding to the correlation dimension 
a2(q=2) is shown also. The "fit" results for these dimensions 
all give the result of a quadratic dependence between zero field 
and E =p2 /ma. For comparison, the results for E =3p2/ma 
are also shown, though these exhibit significant deviation from 
the small-field behavior. ' 

Dimensionless field strength: Ema /p2 
0.000 0.250 0.500 0.750 1.000 3.000 

D1 2.000 1.998 1.995 1.988 1.979 1.832 
Fit 2.000 1.999 1.995 1.988 1.979 1.81a 

D2 1.999 1.994 1.980 1.955 1.920 1.583 
Fit 2.000 1.995 1.980 1.955 1.920 1.28 
a2 2.000 1.995 1.985 1.966 1.940 1.656 
Fit 2.000 1.996 1.985 1.966 

"The extrapolated result for the information dimension D I with 
an infinite number of bins is also 1.81. 

linear variation is ruled out by symmetry. The numerical 
evidence for quadratic dependence, based on the informa
tion and correlation dimensions, D] and D2 is shown in 
Table 1. Just as in our "color conductivity" many-body 
simulations,8,25 it appears that the one-body far-from
equilibrium Galton board studied here does show a quad
ratic variation of dimensionality for D] and D 2• 

III. CONCLUSION 

The multifractal distrihutions found here, for the sim
plest possible mixing and ergodic non equilibrium atomis
tic flow, resemble those found in the study of nonlinear 
dynamical systems. The main difference is the asym
metry of the dependence of fractal dimension I (a), on a, 
with most of the singularity strength just below the 
dimensionality of the phase-space cross section 2. At the 
value of a corresponding to a well-behaved smooth prob
ability density a = 2 the corresponding Hausdorff dimen
sion I (a = 2) is about 1.94, significantly less than the 
embedding dimension. 

Experience with molecular-dynamics time-series mul
tifractals is limited, but the lack of symmetry most likely 
reflects two facts. First, as emphasized by Morriss, 
atomistic systems are already chaotic at equilibrium and 
become less so, rather than more so, when driven away 
from equilibrium. Second, because almost all phase
space trajectories obey the second law of thermodynam
ics,2 the phase-space singularity strengths tend to be at
tractive, with dimensionality less than that of the embed
ding space. Nevertheless, for q less than about h the 
singularity strength is greater than 2, indicating spread
ing rather than contraction. 

The Chhabra-lensen approach makes accurate calcula
tions possible. Our results show none of the fine struc
ture found by .Morriss in his shear-flow simulations. We 
thought that the reason for this difference could possibly 
lie in the periodic time dependence of Morriss's shear 
fiow. 12 In that flow the shape of the unit cell passes 
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periodically between rectangular and triangular lattices. 
This periodic change in symmetry proceeds with a time 
period equal to the inverse of the shear rate. Formally, 
this means that the phase space acquires an additional di
mension, as is discussed in Ref. 9, a time variable that 
spans one complete period of the motion. Morriss's aver
age over all values of the time projects his four
dimensional results onto a three-dimensional subspace 
from which the time variable is absent, changing the frac
tal nature of the underlying distributions. 

Our own two-body diffusive flow problem exhibits a 
phase-space singularity structure with the familiar20 

smooth structure leading to a featureless maximum. This 
qualitative resemblance strongly suggests that the phase
space structures for many-body nonequilibrium flows 
bear a family resemblance to those found in studies of 
nonlinear dynamical systems. 

It is extremely interesting that the apparent Hausdorff 
dimension of this strange attractor is 3 in the full phase 
space (2 in the cross section investigated here), the same 
as that of the embedding space, and in fact, even filling 
the embedding space. By symmetry, those states corre
sponding to a time reversal of the attractor, the "repell
er" (which violates the second law of thermodynamics), 
have an exactly similar distribution (obtained by replac
ing sin{3 by -sin{3). This leads to the perhaps surprising 
conclusion: Arbitrarily close to every attractor point 
there is a repeller point and vice versa. 

The situation is analogous to two nearby lines in three 
dimensions, but much more complex because the objects 
which are "close" to each other in the three-dimensional 
Lorentz-gas phase space have information dimensions 
just below that of the space itself, 2.8 in the case of a field 
of strength 3P 2 / m a. 

The dynamics of the Lorentz gas is time reversible. We 
believe that this feature is fundamental for the phase
space-filling structure found here. Time reversibility is 
nevertheless neither necessary nor sufficient for ergodici
ty. The randomness of the Langevin equation establishes 
that time reversibility is not a necessary condition. The 
Kolmogorov-Arnold-Moser theorem further establishes 
that time reversibility is not a sufficient condition for er
godicity. 

Why then, is time reversibility important? Because 
time-reversible trajectories can in principle be extended 
either forward or backward in time, time reversibility im
plies that an initial condition exists somewhere in the 
finite bounded phase space, which will lead to any desired 
state at any desired time in the future or in the past. To 
see that this guaranteed accessibility makes it plausible 
that any phase-space bin can and will be occupied, sup
pose a bin were vacant in the steady state, i.e., vacant for 
all time. The time-reversed dynamics (going backward in 
time) from such a hypothetical vacant bin must eventual
ly converge to the repeller, a widely dispersed multifrac
tional object, looking just like and filling just as many 
bins as the attractor, and intersecting it along the line 
{3=0 which corresponds to head-on collisions. (To con
struct the Galton-board repeller simply reflect the attrac
tor shown in Figs. 4 and 5 about the line {3 = 0.) 

It seems to us highly implausible that the entire past 

history of any bin could be completely empty. Thus we 
believe, on the basis of our numerical results, which sug
gest this conclusion, that the Galton-board motion is er
godic in the full phase space, coming arbitrarily close to /--, 
any point. This ergodic space-filling motion is very 1. 

different from Cantor-set examples or the example of 
Chhabra and Jensen because here the mapping from one 
collision to the next is both stationary and reversible, 
shrinking the volume and the information dimension but 
not the Hausdorff dimension. 

We believe that the reversible dynamics studied here, 
obeying the second law of thermodynamics, leads to the 
following phase-space properties: 

(i) Symmetry breaking in the spectrum of Lyapunov 
exponents, with the sum negative. 

(ii) Ergodic mixing flow, both forward and backward 
in time. 

(iii) Hausdorff dimension equal to the equilibrium 
embedding dimension. 

(iv) Information and correlation dimensions less than 
the equilibrium dimension with the information dimen
sion related to the thermodynamic dissipation through 
the Kaplan-Yorke conjecture. 

Of these four properties only the first is firmly estab
lished. It follows directly from the equations of motion.2 

The remaining three properties are all indicated strongly 
by the present simulations, though the utility of the 
Hausdorff dimension for uncountable sets is uncertain. 
Confirmation for other dynamical systems would be wel
come. 

It still remains to forge a computational link between 
the fractal dimensions studied here and the local 
Lyapunov spectra. Preliminary work in that direction28 

is very promising, but not yet definitive. 

Note added in proof We have now generated the mul
tifractal spectrum of the hard-disk analog of Morriss's 
soft-disk system. The successive hard-disk trajectories 
and collisions can be evaluated analytically. The analysis 
takes place in the three-dimensional "Poincare cube" 
describing successive collisions as a function of boundary 
phase. The resulting spectrum is a featureless curve like 
that in Fig. 6, but with a maximum of f =3. We there
fore found no explanation for Morriss's (soft-disk) cusps. 
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APPENDIX 

Imagine a set of N points, sampled from a multifrac
tional object located in an "embedding space." The 
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points are representative of the object and are imagined 
to be generated by a deterministic process. Mathemati
cians introduce the notion of covering balls or hyper
cubes and define the dimensionality of the underlying ob
ject in terms of the cover in the limits that the number of 
the covering objects and the number of points sampled is 
large. It is clear that, for a fixed number of points, the 
covering objects must be much less numerous than the 
number of points. From the operational point of view we 
use hypercubes all of the same size, thus introducing 
(perhaps) a difference between what we cal1 the bin
counting dimension (q =0 in the text) and the capacity or 
Hausdorff dimension in which a variety of sizes of cover
ing shapes is used.14 

For example, consider an ordinary object in three
dimensional space. In this intuitive discussion we wish to 
avoid wildly wrinkled objects with infinite areas or curves 
of unbounded variation [like sin( l/r) near the origin, for 

PIG. 8. Sierpinski sponge, with fractal dimension 2.727, ob
instance]. Then a three-dimensional solid object requires tained by repeatedly removing 17 of the remaining material in 
a number of covering cubes varying as 8-3• A two

an initially homogeneous unit cube. 
dimensional object requires a number of cubes varying as 
8-2, and a one-dimensional object (a curve) requires 8- 1. 

It is natural to extend these integer results to define a 
general fractal dimensionality in the same way. The Sier
pinski sponge shown in Fig. 8, for instance, requires 20n 

cubes of sidelength (+)N for cover, so that its capacity or 
bin-counting dimensionality Do is In20Iln3=2. 727. 

To generalize this idea of fractal dimension to muI Thus a characterization of the Hausdorff dimension for 
tifractals imagine first a fractal set of points in two di 102, 104, or 106 zones requires roughly 5, 9, and 14 times 
mensions. The fractal nature of the points means that the the number of zones for complete coverage, N ~Z InZ. 
number of points contained in a small bin 82 varies as the The Hausdorff dimension, as usually defined, is zero 
a power of 8. Evidently (Chhabra and Jensen20 give a for any set of rational numbers because this "countable" 
nice example) a can vary from zero (a 8 function) to set of No elements can be "covered" by lines of length 
infinity. We might expect, on intuitive grounds, a values 8/2, 8/4, 8/8, ... , summing to 8 for 8 aribitrarily 
between I and 2 for the Lorentz-gas problem, but the nu small. On the other hand, all computer data are finite 
merical work shows that larger values are possible. and rational, but certainly the rationals between 0 and 1 
Chhabra and Jensen show that the fractal dimension "look like" a set of measure 1 rather than O. Because the 
j(a) of the singular set with strength a can be found by mathematics of infinite sets is not operational it can cer
studying the bin-size dependence of the measures defined tainly prove useless in some circumstances. It appears to 
in the text (moments of the bin occupation numbers). us that the Hausdorff dimension is such a concept for the 
The first moment (proportional to the probability of the attractors discussed here. 
bin) gives the information dimension and the second mo In the determination of Do for the Galton board we 
ment the correlation dimension of the multifractal struc soon found that the apparent dimensionality obtained by 
ture. increasing N at fixed 8 would approach the embedding di

As a practical matter it is important to estimate the mension. But for substantially larger grids than 
minimum sample size for determining the dimensionali 256 X 256 with a field strength of 3p2/m (Y, it is difficult 
ties. Consider, for instance, the numerical characteriza to generate enough collisions to fill every cell at least 
tion of Do for a two-dimensional unit square in which all once. Statistics for negative values of q, which emphasize 
(x,y) values are weighted equally. Divide the square into the sparsely occupied cells are accordingly very poor, ex
Z =8-2 equally-likely-to-be-sampled square zones. To cept for relatively coarse bins. We therefore have little 
make it likely that, on the average, no cell is empty, the confidence in fractal dimensions Dq corresponding to 
probability of a cell being empty must be less than I/Z. negative values of the moment index q and have 
This corresponds to a sampling number given by suppressed them in all the results included in this paper. 

~. 
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