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The Helmholtz free energy is computed for an ensemble of initial conditions for a one­
dimensional particle falling down a staircase potential, while in contact with a thermal reservoir. 
Initial conditions are chosen from the equilibrium canonical ensemble, with the gravitational ficld 
applied either as a step function (steady field) or a 6 function (pulsed perturbation). The first case 
lcads to a fractal steady-state distribution, while the second case leads to relaxation of a perturbed 
distribution back toward equilibrium. Coarse-graining is applied to the computation of the non­
equilibrium entropy, with finer resolution in phase space accompanied by an increase in the number 
of trajectories. The limiting fine-grained (continuum) prediction of the Liouville equation is shown 
to be consistent with the numerical simulations for the steady state, but with incredibly slow (loga­
rithmic) divergence appropriate to a lower-dimensional fractal distribution. On the other hand, 
simulations of the relaxation process show little or no sign of converging to the prediction obtained 
from the Liouville equation. Irreversible phase-space mixing of trajectories appears to be a neces­
sary modification to the Liouville equation, if one wants to make predictions of numerical simula­
tions in nonequilibrium statistical mechanics. 

I. n,TRODUCTION 

The relationship between entropy, coarse-graining, and 
time-reversible atomistic dynamics has been a source of 
paradoxes since the earliest days of statistical mechanics. I 
Recent progress2 has been made in understanding certain 
aspects of nonlinear response theory, the theoretical 
foundation for nonequilibrium statistical mechanics. 
Response theory assumes that the phase-space distribu­
tion function is continuous, as it is at equilibrium. If, in 
fact, the nonequilibrium distribution is not a smooth, 
continuous function, then severe difficulties arise in the 
mathematics of response theory. 2 One might suppose 
that the approach to equilibrium (such as in the relaxa­
tion following a pulsed perturbation) and the attainment 
of a nonequilibrium steady state (the response to steady 
external driving away from equilibrium) are simply in­
verse processes of each other. In this paper we will show 
that this common assumption is too simplistic, though 
both fundamental processes share one feature in their 
description, namely, Lyapunov instability, the tendency 
of nearby trajectories in phase space to diverge from each 
other exponentially with time. 

In order to place the measurement of these two 
processes-relaxation and steady driving-on compara­
ble footing, we need a characteristic function, which, 
when followed in time, gives an unambiguous signature 

-- of the approach to, or departure from equilibrium. Since 
an isothermal thermodynamic state is the most con­
venient (canonical) representation, we apply external 

forces to N molecules placed in a box of volume V in con­
tact with a thermal reservoir at temperature T. The 
thermal bath guarantees that thermal equilibrium will 
occur when the system is pulsed, and the achievement of 
the steady state when the system is steadily driven, since 
work done on the system can be balanced by heat extract­
ed from it. So that macroscopic irreversibility is not au­
tomatically guaranteed by using time-irreversible micro­
scopic equations of motion (as in the case of stochastic 
forces for the coupling of the heat bath to the molecules), 
we will employ a deterministic, intrinsically time­
reversible feedback method for thermostating the sys­
tem. 3 The thermostat, as well as the external field, can be 
applied either homogeneously throughout the system to 
the molecules themselves (like a microwave oven), or 
heterogeneously to special molecules in boundary reser­
voirs, in which case the molecules in the sample obey the 
ordinary Newtonian (Hamiltonian) equations of motion. 
Without loss of generality, we will consider homogeneous 
thermostating in this paper. 

In statistical mechanics, two limits are of central im­
portance: The first is the infinite-ensemble, or continu­
um, limit (No trajectories in N box boxes in phase space, 
where both No and N box go to infinity, with their ratio 
held constant); the second is the thermodynamic limit (N 
particles in volume V, where both N and V go to infinity, 
with their ratio held constant). In this paper we do not 
emphasize the thermodynamic limit, which corresponds 
to an infinite-dimensional phase space. Rather, we 
choose to probe the basic mathematical structure of sta­
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Lyapunov times ( ~ 50). We see a tendency that increases 
through the third snapshot and decreases somewhat in 
the fourth: The trajectories are flirting with the strange 
attractor of Fig. 2(b). This helps explain the apparent 
logarithmic ensemble-size dependence of the early-time 
width of the free-energy relaxation toward equilibrium. 
Ultimately, however, there is no question but that the en­
semble relaxes back to equilibrium after 6-8 Lyapunov 
times, as represented by the coarse-grained free energy. 
We can only conclude that the Liouville continuity equa­
tion is inappropriate for statistical mechanics. The 
Boltzmann equation lO (which introduces an explicitly ir­
reversible term) and coarse-graining (which blurs some 

8r-····~-~--,-,-~--~-··~~~-r-~----, 

minor details of the distribution) appear to give qualita­
tively better descriptions of Nature. (Coarse-graining has 
its own pitfall of logarithmic divergence with ensemble 
size, however.) 

Once again, it may be appropriate to add to the right- '''-''' 
hand side of the Liouville equation an irreversible phase­
space mixing term,5 such as 

aj + a '(jt)= - V~(j ) . (22)at ar Ie s 

Here, the coefficient Ie - "'rna/V0 1 Ii 2dN + 1: has units of the 
maximum Lyapunov exponent and becomes smaller as 
the phase-space resolution increases. The diffusion term 
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FIG. 10. Poincare section for the pulse perturbation (mAv 1), No=10000 initial conditions. Ranges of times after the 8­
function pulse (spanning a total time of 50, or about two Lyapunov times) are shown in the four time-lapse accumulations of the tran-'<e., 
sient distribution function, which is initially the equilibrium result of Fig. 2(a) shifted up by one unit along the momentum axis. Note 
the various features of the central part of the strange attractor [in Fig. 2(bl] that appear ephemerally, especialIy in the third snapshot; 
by about eight Lyapunov times, the distribution has once more settled down to the equilibrium one [see 2(a)]. 
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in S mImIcs the phase-space mixing that occurs so of the entropy, as it does for mechanical observables like 
dramatically in Fig. 10. When (22) is applied to the the energy. However, the fractal nature of nonequilibri­
rate of change of mechanical observables (including the um steady-state distribution functions requires almost an 
thermostating energy that is quadratic in ~), the opera­.~ tions of time derivative d Idt and ensemble average ( ) 
commute. On the other hand, there arise additional 
terms for the entropy, or the free energy [Eq. (19)]: 

A=(J)·x AkT f dr ~[(V~~f)2+dNs~f(V~~f)], 

(23) 

where ~f The first two terms are of order X2 
and the last is of order , consequently, the correction 
to the Liouville-equation prediction is negative, at least 
for small fields. The last term can be of either sign and 
therefore contribute to the oscillatory behavior of ~ A 
[see Fig. 8(a)]. Qualitatively, these terms can account for 
the coarse-graining and phase-space mixing effects in 
both the steady- and pulsed-field results for the nonequili­
brium free energy of the Galton staircase. 

VI. CONCLUSIONS 

For thermostated systems, the Helmholtz free energy is 
the appropriate charaeteristic function to show either the 
departure from, or return to, equilibrium. Unfortunately, 
predictions based on the Liouville continuity equation 
must be compared with finer and finer coarse-grained 
realizations of the engropy. For nonequilibrium steady 
states, this comparison is doomed because of the incredi­

~. 	
bly slow (logarithmic) divergence of entropy with ensem­
ble size. It would seem intuitive that an ensemble of a 
few hundred experiments ought to suffice for a realization 

infinite amount of information, or resolution, for the en­
tropy . 

It turns out that the really crucial test for the predic­
tions using the Liouville equation is the relaxation to 
equilibrium from a pulsed external field, where the free 
energy is predicted to be a step function. On the con­
trary, numerical simulations show that relaxation to equi­
librium occurs for the coarse-grained free energy after 
about eight Lyapunov times, regardless of ensemble size. 
Also, the distribution function recalls-fleetingly-the 
face of the attractor under steady driving, but 
finally it becomes once again a smooth, continuous func­
tion. Thus, any similarity between the processes of relax­
ation and the achievement of the nonequilibrium steady 
state is only transient. The notion that they are inverses 
of each other is an oversimplification. 

Finally, we are forced to conclude that the mixing of 
trajectories in the process of equilibration is not described 
realistically by the Liouville equation. Phase-space mix­
ing can be incorporated into a modified Liouville equa­
tion, which captures the essence of coarse-graining in an 
empirical way. 
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tistkal'mechanics by studying the limit of an infinite en­
semb'le and its representation as a continuous distribution 
function in a finite-dimensional phase space. 

Since the systems of interest are not thermally isolated, 
the initial conditions for the non equilibrium experiments, 
performed under identical boundary conditions (external 
time-dependent driving), will be selected from an equilib­
rium canonical ensemble. If the system were thermally 
isolated, the characteristic function would be the entropy 
S, which would be a maximum at equilibrium. Over thir­
ty years ago, Alder and Wainwright,4 in a pioneering 
molecular-dynamics computer simulation, showed that 
the Boltzmann .'lI function for a dilute gas, which is 
- S / k (k is Boltzmann's constant), indeed decays to a 
minimum at equilibrium. However, for a finite, thermo­
stated system, the Helmholtz free energy A is the ap­
propriate characteristic function, and it reaches a 
minimum at equilibrium. 

The Helmholtz free energy is given by 

A (1)= E (t)- TS (t)= - kTlnZ (t) , (1) 

where E is the energy of the system and Z is, by 
definition, the partition function. How do we measure 
such a thing for an ensemble of trajectories7 

The energy E, like all mechanical observables, is most 
accurately and conveniently measured in the Lagrangian 
(Heisenberg), or co-moving, frame of reference in phase 
space. If all coordinates, momenta, and the thermostat 
heat-flow variable are collected into the vector r, then a 
trajectory in the multidimensional phase space is 
represented by ri(t), where i ranges from 1 to No, the en­
semble size (number of different initial conditions). The 
energy function along a trajectory is Hi(t)=H(rj(t)), 
and the ensemble average is 

1"/0 

E(t) (H(t)= 1 _ 2: Hi(t)

No i=l 


-> f dr jo(r)H(r(t» . (2) 

The continuum limit has been taken in order to obtain 
the latter expression,2 in which the equilibrium (canoni­
cal) distribution function provides the weight of each tra­
jectory and is given by 

(3) 

with [3= 1/kT and the equilibrium partition function 
given by Zo= f drexp( -[3H). 

The alternative way of looking at the ensemble average 
E is in the Eulerian (Schrodinger), or space-fixed, frame, 
where the No trajectories are counted into N box boxes 
fixed in phase space (box j is centered at r j with volume 
arj , and j ranges from 1 to Nbox )' Then, 

1 Non"!. 

E(t) (H(t)= 'V 2: Hjn/f) 
1 o} I 

Nb"x 
= ~ H,P(t)

J{., }}' 
j 1 

-+ f dr H(rJj(r,t) . (4) 

Again, the continuum limit has been taken to get the 
latter expression.2 The occupation number in box j is 
nj (t); the number of trajectories is 

N box 

No 2: nj(t) (5) 
j I 

and, therefore, the probability of occupation in box j is 
Pj(t) nj(t)/No, which is related to the distribution 
function j by p}(t):::o:j(rj,t)arj • (Note that both P 
and j are normalized to unity.) The number of boxes 
N box is chosen so that the average occupation number in 
each box is <n ) /Nbox , a fixed ratio when we take 
the continuum limit. Because the boxes are coarse­
grained in practical realizations, ensemble averages in the 
Eulerian picture are subject to more statistical noise than 
in the Lagrangian picture. 

On the other hand, for the entropy, a measure of the 
phase-space probability density itself, there is no choice 
but to compute it in the Eulerian frame: 

-.;,-k f dr j(r,t)lnj(r,t) kOnj(t) . (6) 

The first line is Boltzmann's most famous equation. It 
states that the total entropy of the ensemble (NoS) is 
Boltzmann's constant k times the logarithm of the num­
ber of ways U(No,Nbox) that No trajectories can be distri­
buted among N box boxes. Only the most probable 
configuration (nj J need be considered because of the 
huge factorials involved (even for only 100 trajectories in 
100 boxes); therefore, Stirling's approximation to InNo! 
holds..The last line is obtained by taking the continuum 
limit, although we have arbitrarily thrown away a subtle, 
but well-known coarse-graining singularity, namely, 
-k lnar. Usually, this singularity in the continuum ex­
pression for the entropy is dismissed as being trivial, 
since we say that we are only interested in entropy 
differences. Indeed, in this paper, we will report 
differences from equilibrium for each ensemble size. 

While the entropy of a finite, thermostated system may ­
oscillate rather wildly, the free energy either approaches 
(more or less monotonically) a minimum at equilibrium 
( A 0) or rises monotonically when the system is driven 
away from equilibrium: 
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kTln?(t)AA(t) A(t) Ao= 
Zo 

N box Pj(t)
=kT ~ P(t)ln~--

k.; j pO 
j= I J 

f(r,t)
--'> kT drf(r t)ln·· - ..~ >0 (7)f , fo(r) -- , 

implying, as Gibbs showed, I that the accessible number 
of states at equilibrium is greater than under any other 
circumstance. 

Earlier work identified the negative of Eq. (7) with T 
t~m~s "the nonequilib~ium entropy, relative to the equi­
hbnum distribution,") which was shown in numerical 
realizations of thermal equilibration to rise unambiguous­
ly toward equilibrium. In a very interesting recent review 
article, which concentrates primarily on the closely relat­
ed topic of irreversible dynamical systems, Mackev has 
independently made the same identification, except t~ call 
it the "conditional entropy.,,6 From the preceding dis­
cussion, however, it is clear that we should more properly 
identify the characteristic function in Eq. (7) as the free­
energy difference relative to the equilibrium value. 

We should also note that a common way to derive7 the 
equilibrium canonical distribution function fo is to max­
imize the entropy variationally with respect to fa, subject 
to two constraints: (1) that the total energy of the ensem­
ble be constant and (2) that be normalized. The latter 
constraint is eminently reasonable: It is nonsensical to 
imagine that trajectories can be either created or lost. 
The mathematical constraint on the total energy of the 
ensemble, however, has a serious physical flaw in its in­
terpretation, namely, that the elements of the ensemble 
exchange energy among themselves and thereby interact 
with each other-a violation of our fundamental assump­
tion of noninteracting trajectories. In fact, the correct 
physical picture of the thermal reservoir is that each 
member of the ensemble is submerged in it, and energy is 
exchanged between this heat bath and each element in­
dependently. Thus, the ensemble average can exhibit 
nonequilibrium fluctuations-even as we approach the 
continuum limit. It is only in the thermodynamic limit 
that fluctuations for each member of the ensemble disap­
pear; only then is total energy conservation for the en­
semble a good approximation. Since the formalism of 
statistical mechanics applies to systems with few degrees 
of freedom, we see clearly now that one must first take 
the continuum limit, and then the thermodvnamic limit 
if necessary. Taking the reverse order of limits can b~ 
very misleading. 

The best way to think about the derivation of f 0 is to 
imagine minimizing the free energy variationally with 
respect to f 0' subject only to the constraint that fa be 
normalized. With this interpretation for a thermostated- system with a finite number of particles, we see that, 
away from equilibrium, both the energy and entropy can 

guous global minimum at equilibrium, except for random 
fluctuations, is the free energy. 

II. ENSEMBLE DYNA,\HCS 

AND THE LIOl;VILLE EQUATIO~ 


In the framework of the NVT or canonical ensemble, 
we now consider generalizable equations of motion for N 
particles in a d-dimensional box of volume V (periodic 
boundary conditions) in contact with a thermal reservoir 
~t temperature T. In addition, we provide for the opera­
tIon of an external driving force XU). (For simplicity, we 
assume that both the thermostat and X act homogene­
ously throughout V.) We will be concerned with two 
~ases: (1) step-function driving, X(t)=X8(t to),lead­
mg to a non equilibrium steady-state response; and (2) 0­

function ~p.ulsed perturbation) driving, X(t) = Ap
o\t - to), glvmg a response that relaxes back to equilibri­
um. For the example of mass transport, such as conduc­
tivity under an imposed electric or gravitational field, the 
equations of motion are 

(Sa) 
hr,t)= (8b) 

v(p'pldN mkT-l) . (8cl 

The phase space is r=(q,p,~l, where q are the dN parti­
cle coordinates, p are the dN particle momenta, and ~ is 
the dimensionless heat-flow variable that describes the 
relative magnitude and direction of heat flow from the 
particles to the thennal reservoir (positive (; means the 
particles lose kinetic energy to the bath and negative 
means the bath heats them up). Thus, the so-called "fric­
tion" coefficient can have either sign, in fact. The cou­
pling of the heat bath to particles is governed by the 
rate-of-thermostating parameter v: v=o gives the usual 
Newtonian (Hamiltonian) equations of motion; in order 
for the thermostating to be efficient, it is best to choose v 
to be on the order of the mean collision rate of the parti­
cles. The response of the particles to the thermostat is in 
the nature of integral feedback,3 i.e., on the timescale of 
I Iv. Furthermore, Eq. (8c) guarantees that the long-time 
average ofthe kinetic energy K(p) p·p/2m will always 
be t-,dNkT, even at a nonequilibrium steady state. [Under 
the equilibrium thermostated equations of motion, the 
canonical distribution fa is a stationary solution to the 
Liouville continuity equation, to be presented later. 
Thus, for sufficiently mixing systems, this thermostat 
guarantees that the long-time average of an observable is 
equivalent to a canonical-ensemble average,3 since any 
equilibrium trajectory will eventually visit every box in 
phase space, with probability fa(rJdr.] From the total 
potential energy <1>( q), we obtain the internal forces 
F(q) -aq>(q)/aq. 

The total energy of the system of particles and ther­
mostat is 

fluctuate, so that the entropy is not necessarily a global (9) 

maximum at equilibrium, as it is in isolated systems. In­

stead, the characteristic function that attains an unambi- which includes a contribution from the thermostat of or­
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der unity compared to the extensive (order l{) quantities 
K and tP, since U;2 1/dN. Note also that the work 
done by the thermostat is quadratic in the heat-flow vari­
able. The rate of change of H for the equations of 
motion, Eqs. (8), is therefore 

Ii -dNkTv~+J'X, (10) 

where the flux is J=plm in response to the external 
force X. Thus, the macroscopic equation of motion for E 
is 

j; (Ii) Q W, (11) 

where the rate of heat flow into the system is 

Q=~dNkTv<~> , (12) 

and the rate of work done by the system is 

W=-(J)·X. (13) 

For the cases we are interested in, both of these quantities 
are typically negative, i.e., work is done on the system 
and heat is extracted from it. For example, at the steady 
state, the flux is given by the transport coefficient ex (con­
ductivity in our mass-transport example), which is in gen­
eral a positive-definite nonlinear function of X, times the 
field X: (J)ss=g(X)'X, showingthat Wss -exX2 <0. 
From the equations of motion, we see that v{ ~) ss is a 
positive frictional damping coefficient, so that 

Qss=-dNkTv<S>ss<O. 

Since =~, we expect to find in numerical simulations 
that Qss Wss' Equation (11) embodies the first law of 
thermodynamics. 

The macroscopic equation of motion for the entropy of 
the ensemble necessarily involves not just a simple aver­
age over independent trajectories, but rather a probabilis­
tic measure of the density of trajectories in all of phase 
space. For this, we need the Liouville continuity equa­
tion in its full generality to describe the flow of trajec­
tories: 

(14) 

The swarm of trajectories in the (2dN + 1 )-dimensional 
phase space is thus imagined to be a peculiar fluid of 
noninteracting "particles.,,2 The Liouville equation can 
also be written in the form 

cJ[+fA=O (15)
dt ' 

where the logarithmic expansion rate of local phase-space 
volume elements is 

a . 
A= ar ·nr,t) . (16) 

From the equations of motion [Eqs. (8)], we see that A 
has no explicit field dependence and therefore no explicit 
time dependence: 

a
A= (17)ap 'p= -dNv~ . 

(This is the usual case for most nonequilibrium processes, 
though one could imagine bizarre equations of motion 
that would lead to more exotic expressions for A.) Ap­
plying the Liouville equation 
S = - k ( lnf ), we find that 

to the entropy 

TS= kT(lnf) 

=kT(A) 

-dNkTv(~) 

Q, (18) 

where we rearrange Eq. (15) to read lnf=j If -A. 
Equation (18) embodies the mathematical statement of 
the second law of thermodynamics, as predicted by the 
Liouville equation. This leads to a remarkably simple 
prediction for the behavior of the Helmholtz free energy: 

A TS 

=(Q-W) Q 

W 

(J)·X, (19) 

or, since equilibrium is imagined to prevail for 
~ 00 < t < to, so that A (to)= Ao, we have 

. (20) 

The case of the pulsed perturbation, X( t) 
= .6.p8( t - to), deserves particular attention; there, 

For t o-, to, and t o+, (p(t) is 0, +.6.p, and .6.p, respec­
tively, so that .6. A (t > to) .6.p 12 /2;n. Since the distribu­
tion function f( r, to+ ) is the equilibrium f 0 perturbed 
by translating the momentum origin, fo(q,p .6.p,~), the 
entropy is initially unaffected by the b-function external 
force, For these thermostated systems, the surprising 
thing is that the Liouville equation for f predicts a step­
function change in the free energy, with no subsequent re­
laxation back to equilibrium. For an isolated system, the 
equivalent conundrum (Gibb's paradox) is that the entro­
py never changes as the system relaxes. 1 

If we coarse-grain the available phase space into N box 

discrete boxes (.6.r) and make the resolution finer and 
finer (Nbox - 00 J, taking more and more initial conditions 
(No - 00 ), with the ratio of trajectories to boxes No INbox 

fixed, do we find that the free energy converges or 
diverges? And is this phase-space convergence (diver­
gence) rapid or slow? What happens as the system ap­
proaches the steady state under step-function driving? 
Does the system, when perturbed by a o-function pulse, 
ever equilibrate? In what sense, if any, are these two 
nonequilibrium processes equivalent? These questions 
are fundamental to the application of statistical mechan­
ics to the real world. 



3200 

4 

HOLIAN, POSCH, AND HOOVER 

III. THE GALTON STAIRCASE 

We choose as an example8 of the equations of motion, 
Eqs. (8), a single particle on a one-dimensional (lD) 
"washboard" substrate (a sinusoidal potential) with spa­
tial periodicity 21i: 

<f>(q)= I -cosq , (21) 

where the unit of energy is such that the washboard well 
depth is 2, to be compared with kT= 1 for the thermal 
reservoir. (For convenience, we choose the particle mass 
m to be I , so that the unit of time gives a harmonic vi­
brational period of 21T.) When an external gravitational 
field X = mg is applied, we get the "GaIton staircase" of 
Fig. 1. (The Galton Staircase is the I D analog of the 2D 
Galton board, a triangular array of scattering pins. 
When balls are dropped down from the top of the Galton 
board, the binomial distribution is obtained in bins set up 
at the bottom. The ID single-particle Galton Staircase 
can also be viewed as a two-particle periodic system in­
teracting with the above potential. With one of the parti­
cles carrying charge + e and applying an external electric 
field, the equations of motion for the relative coordinate 
and momentum can be interpreted as a single quasiparti­
cle with the reduced mass; the center-of-mass motion 
then disappears from the problem.) We have chosen to 
study the ID Galton staircase because it is an excellent 
prot~type for a nonequilibrium statistical mechanical sys­
tem: It is highly nonlinear, yet it has only three phase­
space dimensions (coordinates q, momentum p, heat-flow 
variable (;), the minimum possible dimensionality for ex-

GALTON STAIRCASE 

mg=O.3 

o-C 
<l> 

-0 o ~ 

-2 

-9.42 -3.14 3.14 9.42 

Coordinale 

FIG. 1. Total potential energy (including gravitational) for 
the Galton staircase, l-cosq -0. 3q, as a function of coordinate 
q. the fundamental spatial period (-rr to rr) is shown in heavy 
line. [In this and subsequent figures, the unit of energy is ~uch 
that the equilibrium (zero-gravity) well depth of the potentIal IS 

2, as compared with the temperature of the thermal bath, 
kT= 1. The particle mass m 1 and the unit of tiine is such 
that the harmonic vibrational period is 2rr (the actual anhar­
monic period for mg=0.3 is 13.74; for mg=O, the period is 
7.34). The thermostating rate, or coupling strength to the heat 
reservoir, is v=0.316.] 

hibiting chaotic trajectories. It is therefore feasible in 
computer simulations to construct up to 100 bins in each 
dimension, a total of 106 bins; in comparison, consider a 
thermostated 3D fluid of 32 particles under periodic 
boundar v conditions (a small molecular-dynamics system 
these days); Comparable resolution in phase space would 
require I 006J11 +1 = 10386 boxes. 

In computing entropy in the Eulerian picture for the 
Galton staircase, we divide phase space into boxes in the 
following way: The coordinate (modulo 21T, -1i < q < 1T), 
the momentum ( 6 <P < 6), and the heat-flow variable 
( 6 < (; < 6) are binned 50 that 

with the number of boxes N box as nearly as possible equal 
to the number of initial conditions No. (Since p and (; are 
not periodic, but instead unbounded, the few trajectories 
that fall outside the designated boxes are lumped into the 
nearest ones.) 

IV. STEP-FUNCTION EXTERNAL FIELD, 
X(t)=mglJ(t -to) 

When a particle on the Galton staircase is subjected to 
a steady gravitational field, it would accelerate 
indefinitely were it not for the restraint imposed by the 
thermostat. In fact, the thermostat guarantees that a 
steady-state downhill velocity is achieved. An interesting 
way to display the probability density (distribution func­
tion) for this fall down the staircase is to plot the Poin­
canS surface of section: Plot the point ({;,p) whenever a 
trajectory in the ensemble crosses the q 21in plane 
(n O,±1,=2,···). 

The equilibrium Poincare section is shown in Fig. 2(a). 
The equilibrium trajectories describe a doughnutlike ob­
ject, whose cross section reveals a dearth of probability 
for the particle to be frozen at the potential minimum 
(q = 21ifl ) with zero momentum. In general, the thermo­
stated equations of motion for many-body systems, Eqs. 
(8), have a strong instability for a special set of initial 
conditions, namely, q=lattice sites (where F=O) and 
p 0 relative to the center of mass, giving {;(t)={;(O) vt. 
This instability leads to a non canonical equilibrium dis­
tribution within a small coaxial volume in phase space in 
the neighborhood of the {; axis. Outside the cylinder, the 
distribution approaches f 0; inside, it goes to zero. Ex­
cept near the surface of this cylinder, the distribution 
satisfies the Liouville equation, just as the canonical fo 
does. This noncailonical artifact is, of course, more pro­
nounced for low-dimensional thermostated systems, but 
even in the Galton staircase for v=O.316, the first three 
moments of the momentum are canonical and the 
fourth-order cumulant of the momentum is reduced only 
2% from its canonical value 01 3. Otherwise, the distri­
bution is smooth and featureless. 

On the other hand, the nonequilibrium steady state 
produces a fascinating multifractal picture in . ~(b), 
resembling a triskelion. While the steady-state dlstnbu­
tion is larger in extent than the equilibrium one, the actu­
al volume is zero; it is a multifractal object, that is, at any 
given point its local dimensionality varies, but in general 
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is nonintegral and less than three, the dimensionality of 
f o' Of course, at the steady state the distribution abso­
lutely cannot have an overall dimensionality greater than 
the full phase space-that would be absurd. On the oth­
er hand, the distribution clearly does not shrink to a limit 
cycle of dimension 2, either. In fact, the dimensionality 
for mg=0.3 and v=0.316 has been measured8

,9 to be 
2.47. (That is, the Poincare section in Fig. 2(b) is ~ 1. 5 

dimensional, as measured by the average logarithm of the 
local area around a point, divided by the logarithm of the 
radial resolution, in the limit of zero radius.) 

The dimensionality of the steady-state distribution is 
consistent with our arguments about A, the local loga­
rithmic expansion rate of phase-space volume, and its re­
lationship to the heat flow. That is, <A ) S8 <0, so that the 
volume of the distribution must shrink to zero. The 
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FIG. 2. Poincare surface of section for the Galton staircase, where the momentum p is plotted vs the heat-flow coefficient ~ when­
ever the coordinate q reaches an integral multiple of 2rr. (a) At equilibrium (mg =0), an ensemble of No = 10 000 initial conditions 
generates the Poincare section at an average rate of 13.6 points per trajectory in a time of 50; note the smoothness of the equilibrium 
distribution. (b) At the steady state (mg =0. 3), all trajectories collapse onto the multifractal strange attractor. After a time of 
~ 2000 at the steady state, the Poincare section is accumulated over a time of 50 at an average rate of 7.3 points per trajectory. The 
phase-space fractal dimensionality of the attractor is 2.47 (see Ref. 9). (c) By performing the time-reversal transformation 
p ---+ - p, -S") on the No 10 000 ensemble at a time of ~ 2000 after the establishment of the steady state, the strange repellor is .£' 
obtained as a Poincare section, which is accumulated for approximately one Lyapunov time (25). The repellor states are Lyapunov 
unstable, persisting for only about two Lyapunov times, during which the second law is violated (negative conductivity); here, after 
one Lyapunov time, faint wisps that destroy the inversion symmetry of the repellor can already be seen, as some trajectories begin to 
head again for the attractor-a proeess completed for virtually the entire ensemble after about four Lyapunov times. 
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Lyapunov exponents,9 one for each dimension in phase 
space for this system, are +0.0393,0, and 0.0842. The 
three cumulative sums represent exponential rates at 

~. which one-, two-, and three-dimensional elements in 
phase space grow with time; in particular, the sum of all 
the Lyapunov exponents is ~)"i (A) sS' Thus, while 
the attractor to which the distribution collapses at the 
steady state has zero volume, nearby pairs of trajectories 
diverge exponentially with time from each other because 
Amax> 0; hence the name "strange attractor." 

In the pantheon of paradoxes in statistical mechanics, 
Loschmidt's paradox of macroscopic irreversibility aris­
ing from reversible microscopic equations of motion is 
represented by the so-called "strange repellor.,,2 It is ob­
tained by reversing velocities (and the heat-flow variable) 
after training the ensemble of trajectories onto the 
strange attractor-the time-reversal transformation, 
t~+-t, q--+q, p--+-p, ;. The reversed trajec­
tories obey the same equations of motion, but the miracu­
lous thing is, the average flux is reversed - the particle 
faUs uphill on average-and the transport coefficient 
(conductivity) is negative. 

The resolution to this paradoxical violation of our in­
tuition and experience (the second law of thermodynam­
ics) is that the volume occupied by these strange repellor 
states is identically zero (like the attractor), so that the 
probability of actually observing such a violation of the 
second law is identically zero. Moreover, these states 
have the same Lyapunov exponents, except for sign: 

. + 0.0842, 0, and - O. 0393. Thus, the repellor is absolute­
,.... ly unstable9 on a time scale of 1IAmax ~ 25. The states 

that are approximately on the repellor soon find their 
way back to the attractor, as shown in Fig. 2(c). The 
wispy, non-repellor-like features on this Poincare section 
collected within a time of 25 after the time-reversal trans­
formation [which results in a 1800 rotation of Fig. 2(bl] 
are the most unstable trajectories, which are already 
heading back to the attractor. By a time of 50, the aver­
age flux has gone from - (J ) ss to zero, and by a time 
100, the flux has returned to (J) ss' This feature is in­
sensitive to the time step for the central difference ap­
proximation to the equations of motion, as well as to the 
length of time spent at the steady state before the time re­
versal. (In contrast, after an impulse to an equilibrium 
ensemble, we have observed that reversibility depends 
weakly, i.e., logarithmically, on the time step. In princi­
ple, the reversibility time can be made arbitrarily long by 
using accurate and intrinsically time-reversible algo­
rithms, such as central differences, and by using longer 
and longer computer word lengths. In practice, we have 
found this to be severely subject to the law of diminishing 
returns.) Generally, the entropy shows significantly more 
sensitivity to reversibility than mechanical observables 
such as the energy. 

The steady-state plateau values of mechanical observ­
abIes are attained on a time scale of 6-8 Lyapunov times 

~ (1 -25). For X=mg=0.3 (v=0.316), the en­
semble average momentum, shown in Fig. 3, reaches a 
value of 0.149, so that the conductivity is 
a= (J )ssIX=0.497 and, thus, Wss -0.0447. The 
heat-flow variable, shown in Fig. 4, reaches a steady-state 
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FIG. 3. Response of particle momentum p mv to a steady 
gravitational field (mg =0. 3) turned on at time to = 200. The 
steady-state response (after 6-8 Lyapunov times) is 
<mv 149, so that the conductivity is 0.497. The average 
time for the particle to jump from one stair step to another is 
42.17 = 2IT / <v The number of initial conditions (trajec­
tories) is No = 25 000. 

value of 0.142, so that Qss = -0.0449. To well within the 
error bar of ±0.0003, Qss W ' thus verifying the first ss 
law of thermodynamics for the Galton staircase. The 
dependence of ensemble averages of mechanical observ­
abies upon ensemble size (we have studied No = 1600, 
4000, 10 000, 25000, and 62 500 l is completely negligible, 
while the root-mean-square magnitude of fluctuation 
about the mean shows the usual relative order N;;l!2 
dependence. 

The steady-state plateau value of the entropy, on the 
other hand, is much more slowly achieved, taking 5 10 
times longer than mechanical observables. In Fig. 5 we 
show the nonequilibrium Helmholtz free energy, 

0.5 

0.4 

0.3 

/\ 
v 0.2 
v 

Time 

f\ ;\ J\ 

\ 1\ /: II f\( \~il/tllI 
I Vi I \1 V' " 0.1 I \I ~ v

\ I I \; 

II 
0.0 II, 

mg=O.3 

II ~ 

I II 

FIG. 4. Response of thermostating heat-flow coefficient Sto 
a steady field (mg=0.3) turned on at to=200. The steady-state 
value is <s) ss = 0.142, for ensemble size No = 25000. 
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A =E TS, for the mg=0.3 Galton staircase. At early 
times, the Liouville prediction of Eq. (20) for AA is a 
quadratic upturn with time, since the response of J is in­
creasing linearly with time. At late times, when J has 
reached a steady-state value, AA grows linearly with 
time. It is clear from Fig. 5(a) that these numerical re­
sults agree well with the early-time prediction, for times 
substantially less than a Lyapunov time. However, in 
Fig. 5(b), the plateau values for ensemble sizes differing 
by a factor of 2.5 are evenly spaced, suggesting a logarith­
mic dependence on No. Thus, while the computer simu­
lations appear to be reaching for the Liouville prediction 
of divergence with increasing ensemble size, the approach 
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FIG. 5. Nonequilibrium free energy A = E TS for the Gal­
ton staircase under a steady gravitational field (mg =0.3) 
turned on at time to =200. (a) The early quadratic behavior 
with time, in close agreement with the Liouville prediction 
(dots), i.e., time integral of the flux times the field, is shown for 
ensemble sizes No = 25000 (solid line) and 10 000 (dashes). (b) 
At longer times, the free energy for various ensemble sizes 
separate logarithmically: No = 25000 (solid line), 10 000 (long 
dashes), 4000 (medium dashes), 1600 (short dashes), and Liou­
ville equation prediction (dots); asymptotes ( - ~ 2. 3 
+0. 510g 1ONo ) are fully achieved after times t - to + 1500. 
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FIG. 6. Free-energy rise il A (t) A (t) ~ A (to) as a function 
of ensemble size No for various times, t to: 65 (dashed line), 
400 (dotted line), 2000 (essentially infinite time, solid line); note 
that the rise is clearly logarithmic with No. 

is pitifully slow. This signature of the singular fractal dis­
tribution is shown in Fig. 6, confirming that the resolu­
tion in the free energy depends logarithmically on ensem­
ble size, even as early as 2-3 Lyapunov times. The case 
of step-function driving shows that the mathematics of 
non equilibrium statistical mechanics, as represented by 
the prediction of the Liouville equation, is utterly im­
practical in application, though not necessarily wrong. ~ 
For example, we estimate that in order to achieve agree­
ment with Eq. (20) for about eight Lyapunov times, we 
would need to simulate 1015 trajectories on the computer. 
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FIG. 7. Entropy S of the thermostated response to a pulsed 

field (milv=l) imposed at time to = 200, for an ensemble of 
No =25 000 initial conditions at equilibrium (equilibrated from 
t =0 to to); the particle relaxes toward equilibrium on a time 
scale of 6-8 Lyapunov times (150-200). Note that, unlike the r~, 
entropy of an isolated system, which rises monotonically toward. 
a maximum at equilibrium, the thermostated entropy oscillates 
noticeably (even overshooting its final equilibrium value), with a 
period of 22.9, about one Lyapunov time. 
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V. I)-FUNCTION PULSED PERTURBATION, 
X(t)=dpl)( t - to) 

r"' When a particle is given an impulse on an otherwise 
horizontal (equilibrium) Galton staircase, the distribution 
function is perturbed by translating the momentum ori­
gin of f 0 by l:!..p. As we pointed out earlier, the entropy is 
therefore continuous across the 8 function. Soon, howev­
er, the entropy drops, as shown in Fig. 7. It recovers its 
equilibrium value in a decidedly non monotonic, strongly 
oscillatory way. The oscillations correspond to a 
mechanical bouncing down the staircase, with a period of 
about one Lyapunov time. With l:!..p = I and kT= 1, the 
average kinetic energy is half the potential barrier, so 
that there are many trajectories in the ensemble where 
the particles can fall a long way before coming to rest 
after the initial "kick." ' 
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FIG. 8. Relaxation of the free energy with time toward equi­
librium, following a 8-function external field (In LlV = 1 ) imposed 
at time to=200. (a) At times t to greater than .~ 150, the 
response (solid line, No = 62500) behaves like a Lorentzian (the 

" 	 circles are for a Lorentzian 7=56). (b) The ensemble-size 
dependence is represented by the solid line (No =62 500) and in­
creasingly shorter dashes (25000, 10 000, 4000 \, down to the 
dotted line (1600). At early times, the width of LlA increases 
weakly with No. 

The free energy is indeed a much smoother characteris­
tic function for this thermostated system: in Fig. 8(a), 
AA looks very much like the relaxation toward equilibri­
um of the Boltzmann j{ function (negative entropy) for 
an isolated system. The general shape of dA, especially 
at long times, is Lorentzian, [1 +(t / T)2] ~ J, regardless of 
ensemble size [Fig. 8(bl]. These numerical results differ 
dramatically from the step-function shape predicted by 
Eq. (20) from the Liouville equation, particularly after 
6-8 Lyapunov times. At early times, i.e., less than two 
Lyapunov times, the width of the Lorentzian appears to 
grow logarithmically with ensemble size, very much like 
the steady-field case (see Fig. 9). 

The early-time relaxation process can be illuminated by 
generating a series of Poincare "time-lapse exposures" 
following the pulse perturbation: Figure 10 shows a 
series of four such exposures, spanning a total of two 
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FIG. 9. Relaxation time for the free energy after a 8-funetion 
pulse (m LlV = I J, as a function of ensemble size. Full width at 
half maximum is shown as a solid line conneeting data points; 
the Lorentzian fit at 37 is shown as a dashed curve. (a) Linear­
linear (7 vs No). (bl Log-linear (1' vs logIONo). Note that the 
earlier-time fit is more nearly logarithmic with No, while the 
later-time fit converges with No. 
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