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ABSTRACT 

We describe and illustrate methods for treating many-body irreversible 
processes using time-reversible deterministic Nose-Hoover thermostats. In 
phase space, Lyapunov-unstable multifractal strange attractors are the 
common feature representing any of these nonequilibrium flows, be they 
steady, periodic, or transient. This generic behavior is illustrated here for 
three prototypical one-body problems: steady field-driven diffusive flow in a 
Galton Board, time-periodic boundary-driven viscous flow of a Lorentz gas, 
and transient, but time-periodic, compressible flow characterizing a one­
dimensional free expansion followed by compression and thermalization. 

1. INTRODUCTION 

"Real" macroscopic processes are thermodynamically "irreversible". 
They generate entropy. The microscopic reason underlying this 
irreversibility is "chaos", or a sensitivity to initial conditions. The discovery 
and elucidation of chaos is beautifully chronicled in Gleick's book1 "Chaos". 
Despite its aesthetic appeal, chaos not always welcome. In his recent 
California lecture series Yorke2 termed chaos the "AIDS of Dynamics". 

Since the Second 'World \Var engineers have used ever-faster 
computers to simulate the macroscopic continuum mechanics of ever-more­
complex flows of gases, liquids, and solids. More recently, particularly in the 
last five years, atomistic computer experiments have been successfully 
modeling these same flows, with the motion equations of microscopic 
atomistic mechanics3 . 
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FIGURE 1. Hard-sphere streamlines in a three-dimensional flow past an inclined 
splitter plate. Each arrow indicates the instantaneous direction of velocity of 
approximately 50 hard spheres. 
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FIGURE 2. Hard-disk velocities for a time"averaged Rayleigh-Benard flow. The two 
convective rolls shown are driven by the lower (hot) and upper (cold) boundaries in 
the presence of a vertical gravitational field . 

. Meiburg4 established that microscopic atomistic mechanics can 
simulate macroscopic hydrodynamic flows. He simulated the flow of a dense 
viscous fluid of hard spheres past a "splitter plate" by following the motion of 
50,000 atoms in three space dimensions. His spatially-averaged streamlines 
are shown in Figure 1. 

A more complicated flow, with stationary hot and cold boundaries, is 
the heat-conducting Rayleigh-Benard flow 5 shown in Figure 2. In the 
Rayleigh-Benard system, a sufficiently strong gravitational field, combined 
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with two heat reservoirs, hot at the bottom and cold at the top, can drive a 
compressible fluid into rotational motion. For sufficiently strong driving, 
buoyant forces, fed by thermal expansion, generate eddy currents which then 
dissipate vortical energy through viscosity. In this Rayleigh-Benard case the 
fixed-temperature boundary conditions are stationary but the responding 
currents typically fluctuate in time. More complicated time-dependent 
problems can involve boundary conditions with either periodic or transient 
time dependences. 

'----------- Time =27 T =0.30 vTOOC =2 t:: 0.1 

FIGURE 3. Two-dimensional embedded-atom simulation of the diamond turning of 
a metal workpiece. The "tool", representing a diamond chip with a nanometer 
radius of curvature, is driven into the crystal at about one-tenth the speed of sound. 
The crystal is thermostatted at about two-thirds the melting temperature by the two 
rows of Nose-Hoover particles adjacent to the base of the crystaL The atoms with 
higher-than-average potential energy have been shaded. 

Both the macroscopic hydrodynamic and the microscopic atomistic 
approaches have been applied to the convective Rayleigh-Benard problem. In 
Lorenz' seminal paper6 describing the impact of chaos on weather, 
"Deterministic N onperiodic Flow", a classic macroscopic caricature of this 
flow is described. This was the paper that initiated widespread interest in 
chaotic dynamics. 

Even the nonchaotic completely-static small-Rayleigh-number case 
has some interest as an application for irreversible thermodynamics, the 
study of processes which generate entropy. In a heat-conducting fluid, even 
in the absence of gravity, the external entropy loss, at the bottom, 
-(dQ/dt)ITHoT, is less than the external entropy gain, at the top, +(dQ/dt)lTcoLD• 

The net result is the entropy increase guaranteed by the Second Law of 
Thermodynamics. 
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More complicated solid·state flows, such as the nanometer-scale 
machining simulation3 illustrated in Figure 3, involve sources or sinks for 
plastic or viscoelastic work as well as for heat. Here the microscopic 
approach is absolutely necessary because the characteristic lengths involved, 
a few atomic spacings, are too small for the continuum approximations to 
plastic flow and heat flow to apply. 

Meiburg's splitter-plate simulation4 involved 50,000 particles far from 
equilibrium. Even earlier the purely-equilibrium Monte Carlo method had 
been applied at similarly large scales. Beginning with Farid Abraham's 
announcement7 of his 161,604-atom computer experiments simulating rare­
gas atoms adsorbed on graphite, it became widely appreciated that we can 
simulate truly macroscopic systems, with sizes corresponding to those 
studied in laboratory experiments. 

FIGURE 4. DeGroot's SPRINT Multiprocessor. The 64 $500 processors can simulate 
the cutting process shown in FIGURE 3 at the same clock speed as does a $10,000,000 
CRAY computer. 

To simulate ever-larger sizes, current research in both microscopic 
and macroscopic simulations is concentrating on using "multiprocessors". 
These machines increase computer capabilities about one thousandfold. A 
recent tabletop model, de Groot and Parker's "SPRINT" machine8 , with 64 
parallel processors, is shown in Figure 4. Scaling up such machines should 
lead soon to a widespread capability for simulating microseconds of real time 
dynamics for systems with millions of degrees of freedom. Such simulations 
require hardware outlays of millions of dollars, and programming efforts 
measured in man-years. Nevertheless, the longterm trend toward 
parallelism is already clearly established. The major problem with present 
and projected large-scale calculations is displaying the results in order to 
"understand" them. This display step is still hard, and time consuming, in 
three dimensions. Large data files typically require days to transport and 
process. 

On the other hand, much of the fundamental physics can be 
understood by studying much smaller two-dimensional systems for which 
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I,, detailed averages over millions of bins for billions of timesteps can be 

i accumulated on current supercomputers. Analogs of many-body

I macroscopic diffusive, viscous, and heat-conducting dissipative flows can be 


found on an even much smaller microscopic scale, with just a few degrees of 

j freedom, using the same many-body time-reversible atomistic equations of 


motion. We return to this idea, with three examples, in Section 5. 

I 

We have adopted Boltzmann's interest: relating macroscopicI 
1 
I 	 irreversibility to microscopic mechanics. It has only recently been recognized 


that Second-Law irreversibility can arise naturally even in small systems 

with two or more degrees of freedom. This recognition was slow in coming
I 

I 	 because traditional textbook mechanics (Newtonian or Lagrangian or
I 	 Hamiltonian) predates thermodynamics, and accordingly there was no 


traditional means for describing thermodynamic properties such as 

temperature and heat flow. The link between mechanics and 

thermodynamics is basic and straightforward nevertheless. It can be 

established by adopting the ideal-gas definition of temperature and the 

microscopic mechanical definitions of momentum and energy fluxes as the 

analogs of the macroscopic pressure tensor and heat flux vector. 


In an atom,istic Boltzmann-Gibbs statistical description the 
microscopic mechanical state of a classical system includes the complete list 
of coordinates and momenta for all the degrees of freedom. This information 
is pictured as specifying a point in many-dimensional "phase space". The 
equations of motion then generate a "flow" of probability, traditionally written 
in terms of a time-dependent probability density fCq,p,t) in that space. The 
probability density f is pictured as representing the "ensemble" flow of many 
similar discrete systems in space, all obeying the same motion equations, but 
not interacting with each other. The integral of f, over the whole {q,p} space, 
is constant, representing the total number of systems in the "ensemble" of 
systems undergoing investigation. 

For conservative Hamiltonian mechanics the generalized (phase­
space) flow "velocity" v is composed of both coordinate and momentum 
contributions, v = (dqldt,dp/dt), and follows Hamilton's equations of motion: 

dqldt = + (aWap) 	 dp/dt = - (aHidq) 

The divergence of the probability current fv, computed locally as the 
difference of flux contributions gives the local Cfixed q and p) time-rate-of­
change of f: 

ca£!at)HA.'dILTON = -V' ·(fv) = -(a/aq)(fdqldt) - (aldp)(fdp/dt) 

Then, using the velocity and acceleration equations from Hamilton's 
equations of motion, we find that (a/aq)(dqldt) =(a2Hidqap) and ca/ap)(dp/dt) = ­
(a2H/apaq) sum to zero, leading to the usual comoving (or "Lagrangian") 
form of Liouville's theorem: 

d£!dt = (a£!at) + (dqldt)(a£!aq) + (dp/dt)(afJap) =0 

Conservation of probability, f®, where ® is a comoving phase-space 
hypervolume element, then establishes the relations: 



dln(f®)/dt =dln£'dt + dln®/dt =dln®/dt =0 

It is not so well known that all these relations hold even in the case that the 
forces F are explicit functions of time, as, for instance, in a driven oscillator 
system. 

These deceptively simple Liouville Theorem results, that the comoving 
probability density f and phase-space hypervolume ® don't change with time, 
disguise the incredibly complex deformation and rotations generated by 
nonlinear chaotic dynamics. The basic phase-space deformation 
mechanism, the Smale horseshoe, is indicated in Figure 5. Successive passes 
of a comoving hypervolume through those parts of phase space where 
bending and folding occur produce a multilayered (2 --7 4 --7 8 --7 16 --7 ... ) 

"fractal" structure with a complexity that increases exponentially fast with 
time. 

Smale's horseshoe deformation is steady, The effects of the process, a 
repeated bending and folding, steadily penetrate to smaller and smaller 
scales. The classic space-filling Peano curve, also shown in the same Figure 
5, is different. The Peano construction is nonsteady, requiring successivly 
more-refined deformations, at smaller and smaller scales, as "time" 
proceeds. 

The characteristic time for Smale's exponential bending and folding is 
the "Lyapunov time". It is of the same order as the collision time and leads to 
phase-space structures of incredible complexity and beauty for systems with 
only a few degrees of freedom. In many-body systems the rotation of phase­
space trajectories occurs on an even faster scale than does the bending and 
stretching. The resulting geometric complexity lies at present well beyond 
our descriptive abilities. 

The determinism underlying the elegant Liouville description and 
Smale's phase-space folding would no longer apply if we were to follow the 
traditional approach to "understanding", or at least simulating, irreversible 
processes, This well-entrenched recipe proceeds by introducing both friction 
and "noise" (or "randomness") through Langevin modifications of the motion 
equations. This approach is obsolete. It suffers from two defects: the 
stochastic dynamics it generates is neither time-reversible nor deterministic. 
As a consequence, a Langevin dynamics phase-space flow no longer follows 
Liouville's Theorem. The twin defects of the Langevin approach complicate 
analysis and limit reproducibility of results. In this paper we will outline the 
progress made during the past 15 years in treating irreversible processes 
with nonequilibrium molecular dynamics. This approach follows Gauss and 
Lagrange by incorporating (thermal) constraints directly into deterministic 
and reversible equations of motion. The new equations yield simple analogs of 
the Liouville Theorem, giving an exact description of the deformation of 
comoving volume elements in phase space. 

The new methods resemble the classical ones in that the fundamental 
flows in phase space are simple, but the new methods are not Hamiltonian. 
The starting point is still the same, the phase-space continuity equation 
satisfied by any kind of mechanics with differentiable equations of motion: 

I (aflOt)ARBITRARY = -V-efv) 
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Here v is again a generalized phase-space velocity, a vector made up of all the 
time-rates-of-change of the phase-space variables describing the problem. 
The generalized gradient operator V is similarly a vector sum of phase-space 
derivatives with respect to these same variables. We illustrate the generalized 
flow in Figure 6 for a space spanned by coordinates {q}, momenta {p}, and 
friction coefficients {z]. We will discuss friction coefficients at length in what 
follows. In any direction in such a space the flow of probability through an 
area dA during a time interval dt is the product of (i) the probability density f,
(m the nowvelocity v multiplied by the perpendicular element of area dA, and 
(iii) the time interval dt. In the example shown in Figure 6, during the time 
interval dt the flow out of the volume element and parallel to the p direction, 
through the face dA = dqdS is f(dp/dt)dAdt. By summing pairs of such 
contributions, from opposite faces, the continuity equation can be derived. For 
equilibrium Hamiltonian systems this result is called "Liouville's Theorem". 
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FIGURE 5. The Peano curve and the Smale Horseshoe deformation. Though both 
constructions have ergodic that come arbitrarily close to every point the Peano 
curve requires successively smaller and smaller scales of deformation while the 
Smale construction on a repeated large-scale bending and stretching. The 
Smale Horseshoe is a faithful caricature of real phase-space deformation. 
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FIGURE 6. The flow from a phase-space hypervolume element is the product of a 
density f, a perpendicular velocity, dp/dt for the face shown here, a cross-sectional 
area, here dqd~, and the time interval dt. 

Liouville's Theorem establishes that the motion given by Hamilton's 
equations, even with time-dependent forces, takes place at constant 
probability density and constant hypervolume in a comoving frame. Heat flow 
gives new results. A transfer of heat, i1Q, from the surroundings into the 
system, changes not only the phase-space probability density, as e-t..QIkT, but 
also the comoving hypervolume, as e+t..QIkT, so that d£ldt and d@/dt are both 
nonzero. Because the time-averaged kinetic energy, <Zp2/2m>, is the direct 
mechanical measure of thermodynamic temperature, thermal constraints 
are implemented by modifying the time evolution of the momenta. The 
simplest possible modification of the equations of motion describing heat 
transfer incorporates frictional forces, 

FFRICTIONAL = -~p 

where ~ is a "friction coefficient". Such forces have proved very useful, both at 
and away from equilibrium. We describe the corresponding "Nose-Hoover" 
version of this development, which began with Nose's 1984 work, in the next 
section. 

2. NOSE-HOOVER MECHANICS 

A "new" approach related to an "old" idea (Gauss' 1829 Principle of 
Least Constraint) was developed by Shuichi Nose9 in his post-doctoral work 
with Mike Klein, in Canada. Nose discovered that he could reproduce Gibbs' 
canonical and isothermal-isobaric distributions, with fluctuating energy and 
volume, by modifying traditional mechanics. 



Let us consider here the simplest of Nose's modified dynamics, 
corresponding to Gibbs' equilibrium canonical distribution, 

f(q,p)cANO:1l.'ICAL 0<: e-H(q,p)/kT 

Nose reproduced this distribution by using purely deterministic and 
time-reversible equations of motion based on a clever modification of 
Hamiltonian mechanics. It is unfortunate that the approach Nose pioneered 
involved a wholly unnecessary "time-scaling" as well as an extraneous 
distinction between "real" and "virtual" variables. These twin distractions 
have contributed to misunderstandings of his work's significance! 0. At 
equilibrium, the end result of Nose's approach is simply to add a time­
varying frictional force to the usual Hamiltonian equations of motion. The 
result is called the "Nose-Hoover" equation of motion to indicate the absence 
of time-scaling and virtual variables: 

(dp/dt)HAMILTON = F(q) 

(dp/dt)NoSE.HooVER = F(q) - ~NHP 

In this form the friction coefficient ~NH itself obeys a first-order ordinary 
differential "integral-feedback" equation linking its time-history to the 
temperature T imposed on the "thermostatted" degrees of freedom: 

If several degrees of freedom are to be constrained in this way, with a 
common friction coefficient, then the righthand side is to be averaged over all 
these degrees of freedom. The thermostat relaxation time t is 
"phenomenological" (that is, a free parameter). We follow Maxwell, 
Boltzmann, and Gibbs in identifying the ideal-gas temperature scale, 
<p2/mk> == T, as the fundamental (mechanical) definition of temperature. In 
any stationary or time-periodic process <d~/db vanishes and the "definition" 
of temperature just described is also a dynamical identity. 

For ergodic systems, the motion equations just given generate the 
canonical distribution in phase space. The equations are novel. They include 
both macroscopic and microscopic variables side by side. But just as in 
traditional microscopic mechanics, the Nose-Hoover equations are time­
reversible, "'lith both z and p changing sign along with time on a reversed 
trajectory. Straightforward generalizations of them generate the isothermal-
isobaric phase-space distribution. The thermostat forces {-~p} operate by 
taking up or giving off heat according to the past history of the instantaneous 
ideal-gas temperature, T(t) == p2/mk. If p2/mk exceeds the desired 
temperature T for a particular degree of freedom the friction increases. If 
p2/mk is less than T then the friction tends to decrease, and, for negative 
values, adds energy to the system. This time-varying friction makes 
additional random or stochastic forces of the Langevin type unnecessary. 

Brad Holian suggested a constructive derivation of these "Nose­
Hoover" non-Hamiltonian equations of motion which is much simpler than 
Nose's Hamiltonian approach. Begin by assuming a friction-coefficient 



equation of motion with a friction coefficient S(q,p) depending only on q and p. 
Then observe that the only motion equation for ds/dt consistent with the 
canonical distribution is Nose's: 

dY'dt:: [(p2/mkT) - 1]11;2 

As a fringe benefit, the equilibrium distribution for ~ (that is, the distribution 
in an isolated system) turns out to be a simple Gaussian, centered on zero, 
with the fluctuating frictional effects vanishing [typically as N-1I2 or N-l for N 
degrees of freedom] in the large-system [large NJ "thermodynamic limit". 

It is interesting that exactly the same friction-coefficient form of the 
equations of motion follows also from Gauss' Principle of Least Constraint, if 
that Principle is used to impose a constraint force keeping the kinetic energy 
constant. 

(dp/dt)GAuss = F(q) - SGAUSSP 

The recipe for Gauss' friction coefficient looks different from Nose's: 

SGAUSS =-(d<l>/dt)/2K 

where <I>(q) and K(p) are the potential and kinetic energies. But, in the limit 
that Nose's relaxation time t vanishes the coordinate-space trajectories, 

j 	 following the Nose-Hoover equations given above reduce to those generated 
using Gauss' equations of motion.

I 
i 

Il 
, Ii 
I' 

,I Gauss-Nose 
Reservoir 2 

FIGURE 7. Schematic construction of a nonequilibrium steady state. The two 
boundary regions, stabilized by Gaussian or Nose-Hoover reservoirs, drive the 
Newtonian particles sandwiched between them. 

More than 30 years after Fermi's pioneering work at Los Alamos, 
atomistic equilibrium calculations are a well-established and routine 
undertaking but nonequilibrium techniques are still being developed. And 
Nose's ideas, a natural extension of Gauss' "Principle of Least Constraint", 
are a fertile source of new methods. To study a simple two-temperature heat 
flow, with hot and cold boundaries, the sandwich construction shown in 
Figure 7 can be used. In that Figure Newtonian bulk fluid is shown 
interacting with two "Gauss-Nose" reservoir regions. Suppose that the 
lefthand region is hot and the righthand region cold. In the lefthand "hot" 
region some degrees of freedom satisfy thermostatted N ose-Hoover equations 
with a "hot" friction coefficient SHOT: 



(dp/dt)NoSE-HOOVER = F(q) - ~HOTP 
, p. 

:he 

In the righthand "cold" boundary region at least some degrees of freedom 
satisfy similar thermostatted equations of motion incorporating a "cold" 
friction coefficient ~COLD: 

ion 
;1'0, (dp/dt)NoSE-HOOVER = F(q) - ~COLDP 
rN 

the Though this may appear to be nothing more than an "ad hoc" way of 
~, if imposing hot and cold temperatures on selected degrees of freedom, this 
rgy approach has two real advantages over the old Langevin approach: 

First, Nose-Hoover mechanics makes it possible to predict the direction 
of energy flow consistent with the Second Law of Thermodynamicsll . 

Second, the new mechanics also establishes a quantitative connection 
between the macroscopic entropy increase and the mechanical Lyapunov 
spectrum of the underlying microscopic mechanics12. 

We can establish both results by considering a Nose-Hoover phase­
:nit space flow. Such a flow can have many friction coefficients, (~}, with each 
ies coupled to its own particular set of degrees of freedom. The instantaneous 
ted values of the friction coefficients fluctuate, but the sum of the time averages, 

<L~>, is constrained geometrically. It is easy to see, for any bounded region of 
phase space away from equilibrium (implying nonvanishing heat transfer, 
<L~> :;t:. 0), that the analog of Liouville's Theorem, 

d£ldt =-f1:a/ap)(dp/dt) =fL~ 

makes sense only if the friction coefficient sum is positive. If instead df/dt 
were negative, the steady-state f would have to decay to zero and the occupied 
phase-space volume ® would then necessarily diverge. Thus df/dt and <LS> 
must both be postive. Accordingly, away from equilibrium the phase volume 
® must go to zero. This vanishing of the phase volume leads to strange­
attractor phase-space structure of the type we illustrate in Section 5. 

Nose's equations of motions have another interesting consequence. 
They imply directly that the friction coefficients are not correlated with their 

as, corresponding temperatures. To see this, multiply the equation of motion for 
ne d~NH/dt by 't2~NH and time average:
.nd 
It'', 
3at 
In 

Nn Because ~NH2 is bounded, the time average vanishes, leading t'J the 
~he conelusion: 
ot" 
ms 



This lack of correlation between the instantaneous temperature p2/(mk) and 
the friction coefficient ~NH gives a simple relation between the external 
surroundings entropy rate~of-change associated with a reversible heat 
transfer, (llT)(dQ/dt), and the friction coefficient ~NH: 

Here, positive ilQ (or negative friction) corresponds to flow into the system, 
through the frictional forces, from the "surroundings". Because the 
requirement that the phase-space volume be bounded implies that <~NH> is 
positive we conclude that the summed heat inputs, divided by the 
corresponding temperatures, must be negative. In the steady state this 
means that the corresponding sum for the external heat reservoirs, which 
extract the heat ilQ stabilizing the motion, must be positive: 

dSTarddt:;; -L(dQ/dt)1T > 0 

Thus Nose-Hoover mechanics establishes that the flow of heat must be in the 
direction consistent with the Second Law, so that 

Work canonly be converted into Heat 

not the other way around. This link between Nose-Hoover mechanics and the 
Second Law of Thermodynamics is outlined in Figure 8. In the upper half of 
that Figure the conservation of probability f®, where ® is a phase-space 
volume element, is indicated. Nose's equations of motion link the change in 
probability density with time to the friction coefficients {~} and simple 
geometry links the change in volume with time to the Lyapunov exponents 
{A.}. We discuss these links between the microscopic Lyapunov spectrum, 
phase-space volume, and fractal strange attractors in the next two sections. 

In the bottom section of Figure 8 it is indicated that finite phase-space 
volume implies that the friction coefficient sum, L~, must be positive, and 
that this in turn establishes that the production of entropy is positive, the 
Second Law of Thermodynamics. 

Application of Nose's ideas to irreversible macroscopic problems is 
straightforward. In a companion paper we describe simulations of high­
speed machining operations in which reversible Nose-Hoover thermostats 
are used to control the macroscopic temperature of the workpiece. In the 
present paper we instead develop analogs for macroscopic systems which are 
chosen for simplicity, to illustrate the qualitative features and logical 
connections without the complexity of high-dimensionality state-of-the-art 
molecular dynamics simulations. 

The traditional textbook way to study nonequilibrium states is to 
imagine that they arose as equilibrium fluctuations. For states more than a 
little different from equilibrium states this is an odd idea. It is conceptually 
much simpler to focus on driven systems--systems forced away from 
equilibrium into nonequilibrium steady states. In steady-state 
nonequilibrium processes chemical potential, velocity, or temperature 
differences are maintained in the face of diffusive, viscous, and thermal 
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dissipation.Shock or detonation waves combine all of these processes. Figure 
9 shows the simple prototypical nonequilibrium system illustrating these 
steady-states. Black and white are used in the Figure to represent differences 
in species, velocity, or energy, with the lefthand reservoir a source of black 
particles and the righthand reservoir a source of white ones. Mixing, 
described by Fick's Laws of diffusion, Newtonian viscosity, or Fourier's heat 
conduction, occurs in the middle Newtonian region. Mass, momentum, and 
energy flow steadily through the system. As a consequence of the 
nonequilibrium flow heat is continuously generated and flows out of the 
system into the boundary regions. 

p 

)-------q 

rand U: 

dlnf/dt + dln@/dt:: 0; 


I:S+I:A:: 0; 

FIGURE 8. Summary of the mechanical basis of the Second Law of 
Thermodynamics_ The upper part of the FIGURE relates probability conservation to 
the friction coefficients II;;} and the Lyapunov spectrum IA}. The lower part indicates 
the connection of sums of these numbers to the thermodynamic entropy production 
dSTOTAVdt. 

If we use Nose mechanics to simulate such a flow we find that the 
phase-space distribution function f(q,p,t) rapidly collapses, with the ratio 
f(t)/f(O) diverging as e-ilQ/kT, with ~Q negative, onto a zero-volume 
(decreasing as e+ilQlkT) object called a STRANGE ATTRACTOR. Why is the 
attractor "strange"? First, within the attractor, trajectories separate rapidly 
from one another, exponentially fast, despite the attractor's having zero 
volume. Second, there is no probability density on the attractor. The 
probability per unit volume approaches no limit for smaller and smaller 
phase-space binnings. The distribution contains irregularities on all spatial 
scales. This topological behavior is completely unlike the smooth functions to 
which ordinary calculus applies. Our present understanding of strange-set 
topology is today still primitive and crude. The existence of these strange 
phase-space objects depends upon the "Lyapunov instability" of the equations 
of motion, that is, the tendency for nearby phase-space trajectories to separate 
from each other exponentially fast, in time. 

The shrinking of the occupied phase space and the corresponding 
collapse and divergence of f(q,p,t) gives rise to a qualitative change in phase­



space topology, a loss of phase-space dimensionality. This loss is macroscopic 
and depends on the departure from equilibrium. For instance, a cubic 
centimeter of water, sheared slowly at 1 hertz, has a distribution function f 
which increases e-fold on a picosecond timescale. The loss of phase-space 
dimensionality for this case is negligible, of order 1 part in 1024 . The much 
stronger gradients in shockwaves can make the Lyapunov-unstable 
divergence 24 orders of magnitude faster and the corresponding 
dimensionality loss 24 orders of magnitude greater. In the next section we 
discuss the detailed characterization of Lyapunov instability and its 
consequences. 

o o 
o o 

o 

FIGURE 9. A prototypical nonequilibrium problem in which two reservoirs, with 
characteristic values of the concentration, velocity, or temperature, cause a 
nonequilibrium mass, momentum, or energy flux through the central Newtonian 
region. 

3. LYAPUNOV INSTABILITY 

We have seen that the geometric requirement that stationary states be 
bounded in phase space breaks the symmetry of the equations of motion, 
forcing the time development to seek out the direction of phase-space 
shrinking. In these stationary nonequilibrium continuously-shrinking flows 
the comoving phase-space hypervolume ® exhibits two paradoxical 
combinations of contraction and expansion properties: 

First, the behavior of nearby points in phase space suggests expansion 
rather than contraction, by separating, exponentially fast in time, as the 
motion goes on. For a simple bouncing-ball illustration13 of this exponential 
separation see Figure 10. With each bounce the horizontal offset from the 
ball's center increases as a geometric series. The resulting exponential 
instability is best visulized on the semilogarithmic plot shown in the 
righthand side of the Figure. But, as we have seen, simultaneously with the 
separating, the comoving occupied volume in phase space, ®, necessarily 
shrinks, exponentially fast, to zero. 
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FIGURE 10. A gravity-driven bouncing ball. The Lyapunov-unstable motion causes 
the horizontal offset from the unstable central fixed point above the ball to increase 
with each bounce. The exponential character of this instability is illustrated by the 
logarithmic-scale motion shown on the righthand side of the FIGURE. 

Second, at least for the "simple" examples considered here, it appears 
that the limiting and well-behaved "attractor" set toward which this 
shrinking motion converges is everywhere arbitrarily close to pathologically 
unphysical time-reversed "repellor" points which violate the Second Law of 
Thermodynamics14. 

The first property, expansion and separation, is typical of all strange 
attractors but the second Second-Law property is not. Most of the maps and 
flows studied in nonlinear dynamics lack the time reversibilitv of mechanics. 
Newtonian and Nose-Hoover mechanics both exhibit the paradox that to every 
trajectory obeying the Second Law there is a reversed trajectory which 
violates it. With this second paradox the zero-volume attractors of 
nonequilibrium mechanics richly deserve both the appellation "strange" and 
the study required to make them less so. In this sectit;m we first describe the 
measurement of Lyapunov spectra characterizing attractors. We then review 
recent results and discuss the link between Lyapunov spectra and static 
attractor structure. At present the structural analysis of attractors is crude. 
It is mostly restricted to time-averaged scalar properties of three-dimensional 
objects and still lacks a classification scheme with which to distinguish 
attractors from one another. 

Among the relatively-crude (because it is time-averaged) ways to 
analyze the paradoxical strange-attractor motion is the Lyapunov spectrum. 
To define it we consider the comoving deformation of an infinitesimal phase­
space hypersphere, centered on a Hreference trajectory" and spanned by the 
corotating set of infinitesimal orthonormal basis vectors {a} = {(aq,ap)}. In 
Figure 11 we indicate the rotation of the comoving vectors, shown as arrows, 
by shading half the hypersphere in which they are embedded. A trajectory 
segment composed of five equal time steps is shown in Figure 11. Because the 
comoving and corotating embedding hypersphere is infinitesimal, within it 
the equations of motion can be linearized relative to those applying at the 
hypersphere center. This linearization completely avoids the complex 



bending and folding associated with the Smale horseshoes of the type shown 
in Figure 5. 

The linearization idea can be applied equally well to equilibrium or 
nonequilibrium systems. For simplicity, consider the linearized equations 
appropriate to Hamilton's motion equations: 

dBq/dt =Bp/m; dBp/dt =Bq(dF(q)/dq) 

or, to simplify and generalize the notation by introducing the dynamical 
matrix D: 

dB/dt =D· B 

These basis-vector equations of motion, just like those of the reference 
trajectory, are time-reversible, with the signs of Bp and dt changing in a time­
reversed trajectory. Such a linearized motion would convert a hypersphere to 
a rotating hyperellipsoid characterized by the exponential growth and decay 
rates of its (orthogonal) principal axes. These rates, when time-averaged and 
ordered from the largest, }.1, to the smallest, AN, in an N-dimensional phase 
space, constitute the "Lyapunov Spectrum" (/'il. 

An alternative description of this same growth-rate spectrum can be 
based on the time-averaged deformation of infinitesimal 1-, 2-, 3-, ... 
dimensional phase-space objects. To generalize the simple property of 
exponential divergence of the one-dimensional distance between neighboring 
trajectories, it is natural next to consider the divergence (or convergence) of 
infinitesimal two-dimensional phase-space areas, followed by three­
dimensional volumes, four-dimensional hypervolumes, and so on. When 
time-averaged, the successive orthogonal growth rates required are again the 
Lyapunov exponents. The largest, 1.1, describes the rate of divergence of an 
infinitesimal one-dimensional length 8r linking two trajectories: 

leI = dln8r/dt
1 

I 	 By adding Al to the next largest exponent, A2 we get the sum, leI + A2, 
describing the growth rate for a two-dimensiona.'l area dA defined by threeIj neighboring trajectories:I .I 

I 
By adding more dimensions we finally reach the last such relation:I' 

LAi =dln8® Idt
I 
I where the sum includes all N Lyapunov exponents and 8® is a comoving 

infinitesimal hypervolume element with the full phase-space dimensionality. 

! , 	 Numerical characterization of the complete spectrum of Lyapunov
I, 	 exponents12 is computationally intensive. What can be done is severely 

limited by computational speed. In 1989 it is feasible to compute accurate 
values of hundreds, but not yet thousands, of Lyapunov exponents, andI

I ,
I 

I 
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ordered from the largest, Ai, to the smallest, )"N, in an N-dimensional pha 
space, constitute the "Lyapunov Spectrum" {Ai}. 

An alternative description of this same growth-rate spectrum can 
based on the time-averaged deformation of infinitesimal 1-, 2-, 3-, 
dimensional phase-space objects. To generalize the simple property 
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By adding more dimensions we finally reach the last such relation: 
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infinitesimal hypervolume element with the full phase-space dimensionality 

Numerical characterization of the complete spectrum of Lyapuno 
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values of hundreds, but not yet thousands, of Lyapunov exponents, an 
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several such calculations have been carried out. The same basic technique 
applies for either stationary or time-periodic processes. 
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FIGURE 11. The time-development of three comoving and corotating infinitesimal 
phase-space basis vectors. By measuring the tendency of these vectors to grow, or to 
shrink, the Lyapunov spectrum can be determined. 

Begin by following the construction indicated in Figure 11, erecting a 
comoving orthonormal set of basis vectors {Oi}, one for each of the N phase­
space dimensions, with the origin of the set fixed on an unconstrained 
moving "reference trajectory". Then the linearized equations of motion of the 
basis vectors (which can be thought of as describing the motion of N 
neighboring "satellite trajectories") are solved with the restriction that the 
basis vectors remain orthonormal. This orthogonality constraint can be 
repeatedly imposed by Gram-Schmidt orthonormalization. Alternatively, and 
more elegantly, the constraint can be imposed continuously, by including 
Lagrange multipliers directly in the equations of motion. In all, N(N+l )/2 
multipliers I~ij(or constraints) are required to maintain the orthonormality of 
N independent basis vectors: 

dOl/dt =n·Ol - A1101 , 

do2idt :: n·02 - ATih A2101, 


d831'dt:: n·03 ~A3303 - A3202 - A3101 , 

... , 

where the time-averaged values of the diagonal elements «Aii» of the lower 
triangular array of Lagrange multipliers, 

are the set of Lyapunov exponents {Ai}: 

?11; 



The differential equations determining the Lyapunov exponents 
through the matrix D turn out to be odd in the time so that in the time­
reversed motion the most positive Lyapunov exponent becomes the most 
negative, and vice versa. But, because the rotation of the basis vectors {O} is 
unconstrained and depends on the past history of the reference trajectory, 
there is no simple general relationship between the orientations of the vectors 
going backward and forward in time. 

Typical equilibrium Lyapunov spectra12 for two- and three­
dimensional fluids and solids are shown in Figure 12. Such spectra are 
much less distinctive and informative than the phonon spectra of solid-state 
physics. Similarly, the spectra of rotation rates of the vectors show little 
structure, although, unlike the Lyapunov exponents themselves, the rotation 
rates increase rapidly with system size. 

4 ~----------~----------~ 1r----------r--------~ 
Fluid-2d Solid-2d 

« 0 «0 

-4 1'-------""------­
Degrees of freedom Degrees of freedom 

FIGURE 12. Lyapunov spectra for equilibrium two- and three-dimensional fluids 
and solids. The Lyapunov exponents are arranged in positive-negative pairs, 
increasing in magnitude from left to right. The number of such pairs is equal to the 
number of degrees offreedom required to describe the system. 

Even away from equilibrium the Nose-Hoover equations for the 
Lyapunov spectrum are time-reversible. This time symmetry might wrongly 
suggest that the Lyapunov spectrum remains symmetric about zero. In fact 
the symmetry is broken because the time-reversed trajectory is even less 
stable than the original one. Figures 13 and 14 show Lyapunov spectra for 
two- and three-dimensional boundary-driven steady shear flows. Figure 13 
displays spectra for four two-dimensional systems with 4, 9, 16, and 25 
Newtonian particles driven by isothermal boundaries. Figure 14 shows two 
three-dimensional eight-particle systems, one with fixed boundaries, and one 
with moving boundaries. For all of the five nonequilibrium systems shown in 
these Figures the Lyapunov exponents are, on the average, negative. Notice 
that in the equilibrium case shown in Figure 14 the exponents have instead 
the symmetric distribution suggested by the time symmetry of the equations 
of motion. This generic nonequilibrium shift away from the symmetric 
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distribution occurs for any nonequilibrium flow involving the dissipation of 
concentration, velocity, or temperature differences. 

Several interesting conclusions can be drawn from such measured 
spectra and their nonequilibrium shifts. The negative exponents give directly 
the rates at which past information is destroyed while the positive exponents 
give the rate at which future information is created, with the sum of the 
Lyapunov spectrum corresponding directly to the macroscopic 
thermodynamic dissipation. It is remarkable that the dynamic spectrum is 
also directly linked to a static property of nonequilibrium attractors, the 
"information dimension", through the Kaplan-Yorke conjecture. 

The spectrum is also linked to irreversible thermodynamics. To see 
this connection let us reexamine the result from Section 2 linking the total 
change in entropy to the heat transfer associated with Nose-Hoover 
thermostats: 

dSTarAJdt = L-(dQ/dt)!r > 0 

As before, -DQ represents heat extracted from the nonequilibrium system by 
its surroundings. Because the frictional forces extract heat at a time-
averaged rate equal to the product of the frictional force, -Sp, and the velocity, 
(p/m): 

the time-averaged heat transfer rates, divided by the corresponding 
temperatures T, are exactly equal to the friction coefficients S for the 
corresponding thermostatted degrees of freedom. Thus 

dSTarAL Idt kL:<~> = k<dlnfYdt> > 0 

Because probability (conserved by any flow) corresponds to the product of the 
probability density f(q,p,t) and the comoving phase-space hypervolume f, the 
logarithm of the product, In(f®) = Inf + In®, is constant, and the comoving 
phase-space hypervolume ® must shrink to zero as given by the summed 
Lyapunov spectrum: 

kdln®/dt =llA =-kdlnfYdt =-dSTarAL Idt 

Thus there is a direct connection between the rate of thermodynamic 
dissipation, dSToTAL Idt, and the Lyapunov spectrum {A}. 

We see that comoving low-dimensional phase-space objects grow 
exponentially in time while high-dimensional objects shrink. Kaplan and 
Yorke made the reasonable conjecture15 that the time-averaged linearly­
interpolated dimensionality of a phase-space object which neither shrinks 
nor grows, so that LA vanishes, is equal to the "information dimension" of 
the corresponding strange attractor. The information dimension can be 
independently defined by determining, for small phase-space bins of size E, 

the dependence of the integrated probability density on the bin size. 

?17 
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FIGURE 13. Lyapunov spectra for 4-,9-,16-, and 25-body two-dimensional boundary­
driven steady-state shear flows. Note that the spectra are shifted toward negative 
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FIGURE 14. Lyapunov spectra for two eight-body three-dimensional systems. The 
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increase in the exponents' magnitudes over those found at zero strain-rate and 
indicated by open circles (equilibrium). The data also reveal an additional negative 
shift, approximately quadratic in the strain rate. 
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In a D-dimensional space an integrated probability density varies as the Dth 
power of the bin size E. For singular distributions, in which the probability 
density approaches zero or infinity as E vanishes, the variation of bin 
probabilities with bin size can be determined: 

yielding the ratio, <lnP(E»llnE. For small E this ratio approaches a measure 
of dimensionality called the "information dimension". The remarkable 
connection between the dynamic Lyapunov spectrum and the static 
information dimension has been verified for many simple models. In the 
following section we explore the concept of fractal dimension in more detail. 

4. FRACTALS 

A cornerstone of statistical mechanics is the Liouville Theorem result 
that f(q,p) is unchanged in equilibrium Hamiltonian flows. Then, because f® 
corresponds to probability, ® must likewise be unchanged by the motion. 
Away from equilibrium, with heat transfer included, things are different. In 
nonequilibrium steady states the density f diverges and the volume ® 
vanishes. 

What do the divergence of the stationary probability density f(q,p) and 
the vanishing of the phase-space volume ® mean? Both singular behaviors 
seemed mysterious until the steady-state probability density <f(q,p» could be 
measured and displayed graphically, for relatively-simple systems14,16-19 
with only a few degrees of freedom. The divergence of f signals the formation 
of a new phase-space object with zero volume but with an intricate and 
singular probability distribution. The singular phase-space object has 
structure on two scales. On a small scale the distribution approaches infinity 
exponentially fast, as e-£lQjkT c<: e-L:At, while on a fixed coarse-grained scale 
the integrated probability density slowly converges to a singular structure 
vary"ing locally as a fractional power of the bin size. These coarse-grained 
distributions have a "fractal" structure. Apparent holes and gaps appear in 
the phase space and these cease to vanish or simplify no matter how small 
the scale of observation. At a sufficiently small scale this structure is no 
longer physics, but mathematics. In practice the uncertainty principle limits 
observation scales to roughly 1 7 digits, so that the scaling relation can exist 
over no more than 17 orders of magnitude. 

Chhabra and J ensen20 showed how to identify the singularities 
included in the multifractal structure. This can be done by finding the 
limiting dependence of moments of the {Nk} on the bin size E. Figure 15 shows 
the singularity spectrum for a Lorentz gas or "Galton Board" problem 
detailed in the next section. The spectrum describes the fractal character of 
two-dimensional "Poincare-section" cuts through the three-dimensional 
phase space. The abscissa gives the power-law dependence of the singularity 
on the bin size and the ordinate the corresponding "bin counting" fractal 
dimensionality. An ordinary two-dimensional cross section for this problem 
would correspond to a delta function at the point (2,2). The numerical results 
show that though most of the distribution corresponds to contraction, with a 
and f both less than the spatial dimension of two, the nonequilibrium steady­



state distribution also contains anomalous expanding regions, with a 
probability density that vanishes on a small scale (a > 2). 
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FIGURE 15. The multifradal singularity spectrum for the steady nonequilibrium 
field-driven Galton Board. The box-counting dimension, f(a), is plotted as a function 
of the singularity strength a. The singularity strength is the power with which the 
integrated bin probability depends upon the bin size c: in the small-c: limit. 

5. FEW-BODY RESULTS 

The study of few-body systems has been useful in understanding the 
pardoxes associated with irreversibility, thermodynamics, and phase-space 
structure of nonequilibrium flows. The combination of Runge-Kutta 
integration with MacIntosh and Stellar Graphics, makes it possible to view 
results quickly and to preserve them inexpensively on videotape. In this 
section we describe three such interesting problems: The Galton Board, the 
Viscous Lorentz Gas, and the Free Expansion in One Dimension. 

The Galton Board 

For the simplest nonequilibrium steady-state illustration of Nose­
Hoover mechanics consider the Galton Board14-16 illustrated· on the 
righthand side of Figure 16. The system is a caricature of solid-state 
diffusion, and involves the field-induced isokinetic (constant-speed) motion of 
a mass point in a periodic array of scatterers. A parallelogram unit cell is 
indicated in the Figure. A constant horizontal field tends to drive a moving 
mass point to the right, parallel to the field direction. The fixed hard-disk 
scatterers periodically scatter the momentum, with a bias toward head-on 
collisions. After scattering, the acceleration toward the x direction begins 
again. A single particle moves through the board, at fixed kinetic energy, 
p2/(2m), undergoing chaotic mixinp' rolli"linnQ ",ith tho "n~H~ .. - ••~ n -­
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reduced to a two-dimensional one, spanned by the two angles (a for position 
and b for momentum) required to describe a collision. See Figure 1 7 for a 
definition of the angles a and b and Figure 16 for the corresponding Poincare 
section showing, as separate dots, 10,000 successive collisions. 
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FIGURE 16. The righthand side of the FIGURE indicates the geometry of a finite 
"Galton Board", in which an external field accelerates a mass point to the right, 
through the periodic array of scatterers. The values of the two angles, (J. and ~, 
describing collisions and defined in FIGURE 17, give strange attractors with 
Poincare sections of the kind shown on the lefthand side of the FIGURE. 

E---­

FIGURE 17. Definition of the angles (J. and ~ describing Galton-Board collisions. 

. The equations of motion for the Galton Board problem have simple 
analytic forms. The basic one, which gives the time variation of the direction 
of motion between collisions, is 



de/dt = -pEsine. 

A detailed numerical investigation reveals that the resulting flow always 
behaves irreversibly, as it must, with a positive field-dependent conductivity. 
The scattering particle moves to lower and lower potential energy at a time­
averaged steady rate. The visual appearance of the phase-space distribution 
converges rapidly to a "strange attractor" with a cross section of the type 
shown in Figure 16. Visual convergence to a nonequilibrium steady state 
takes only about 10 collisions. This is shown in Figure 18 by tracing the time 
history of quadrants of 2500 initial conditions after 1, 2, 3, 5, and 10 collisions 
each. On a long time scale the intricate multifractal structure penetrates to 
smaller and smaller length scales. 

E =3p2/mo 

FIGURE 18. Convergence of four sets of 2500 initial conditions, each taking up one­
fourth of the phase-space Poincare section of FIGURE 16, to the steady-state strange 
attractor. Evolving distributions after 1,2,3,5, and 10 collisions are shown. 

The Galton Board fractal objects are fascinating. Successive 
enlargements show that the structure persists to the smallest feasible scales. 
See Figure 19 for a series of four enlargements. Such enlargements are used 
in the logarithmic extrapolation of bin populations to smaller and smaller 
sizes. The multifractal spectrum of Figure 15 was generated by analyzing a 
series of enlargements equivalent to ten successive twofold magnifications. 
At any particular scale numerical work strongly suggests that increasing 
the number of collisions will eventually fill every bin, no matter how small or 
improbable. Thus this nonequilibrium steady mixing flow is ergodic, but with 
the more probable parts of phase-space becoming more and more sparse as 
the scale of observation is refined. The time-reversibility of the equations of 
motion implies the existence of a repellor (with the attractor velocities 
reversed--see Figure 20). It is an amazing consequence of the ergodic nature 
of the flow that every repellor point lies arbitarily close to attractor points, and 
vice versa. The plausibility of this ergodicity is apparent from the more­



detailed Figure 21, which shows 640,000 points distributed over a computer­
generated print originally covering an area of one square meter. 
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FIGURE 19. Galton Board attractor structure shown at 2-, 4-, 8-, and 16-fold 
magnification. In each snapshot 10,000 collisions are shown. 

The Galton Board motion takes place in a three-dimensional phasesive 
space and accordingly has three Lyapunov exponents. One is positive, giving tIes. 
the mean rate of growth in phase-space separation due to scattering off theLsed 
convex surfaces. One is zero, corresponding to the motion along the trajectory,ller 
direction. One is negative, sufficiently so that the three-term exponent sum isIg a 

ans. 	 negative and equal to the rate of total entropy increase dSToTAJdt =-(dQ/dt)fI'. 
For certain ranges of field strength the positive Lyapunov exponent changes.'ling 
sign and the motion collapses onto a one-dimensional limit cycle with a] or 
Poincare cross section composed of a few discrete dots. vith 

This Galton Board problem provides a nice mechanical illustration ofS ot 
the Second Law of Thermodynamics. The requirement that the phase-spaceties 

~ure distribution is confined to a finite region of space implies that the time-
and averaged friction coefficient Sbe positive and that the particle therefore moves 
ore- from higher to lower potential energy. If the friction were negative the energy 



would eventually diverge. If the friction were zero there could be no average 
current. 

o 1C/2 1C 

a 

Attractor Repellor 

FIGURE 20. Galton Board attractor and repellor sections. Because the equations of 
motion are time-reversible the reversed (repellor) motion corresponds to a reflection 
of the attractor about a horizontal line. This changes the sign of the velocity angle ~. 

Series of related many-body simulations, with half the particles 
accelerated in one direction by a field and the rest in the opposite direction, 
gave analogous results. The dimensionality of the many-body strange 
attractor describing the motion varied quadratically with the field strength 
(as would be expected from the mirror symmetry linking positive field and 
negative field results). 

The Viscous LQrentz Gas 

Numerical analysis of a time-varying problem is complicated by the 
additional phase-space dimension. Time variation can be introduced through 
a varying external field or by using time-periodic boundary conditions. A 
periodic shear (See Figure 22 for a three-dimensional version) is the simplest 
example, and the two-body "Lorentz Gas" shear flow is the simplest of these. 
The viscous Lorentz Gas18 resembles the Galton Board. The viscous flow can 
be thought of as a symmetric two-body problem, or as an equivalent one-body 
scattering problem, but now with the boundaries moving at a rate given by 
the macroscopic constant strain rate. Four unit cells of such a periodically­
shearing system are shown, at five equally-spaced times, in Figure 23. 

The local motion of a moving particle, relative to the systematic velocity 
ux, can be constrained to be isokinetic, by using Gauss' Principle of Least 
Constraint. If this is done, the resulting equation of motion, between 
collisions, is again simple, 

d8/dt =ysin28 
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'ticles FIGURE 21. Details of the full attractor Poincare section of FIGURE 19 representing
,ction, 640,000 successive collisions. The original computer-generated picture was one 

range square meter in size. Numerical analyses using 1000 times as many points as are 
ength shown here are currently feasible. 
:l and 

where y is the "strain rate", 

y =dux/dy 

The hard-disk scattering analysis can be simplified by considering the large­
y the F limit of a constant repulsive central force F. With this assumption the 
'ough equation of motion during collisions, 
as. A 
lplest de/dt = (F/p)sin(a-e) 
hese. 
v can can likewise be integrated analytically. By taking the large-F limit and using
-body a geometric condition, that the polar-coordinate integral of drldt through a 
m by collision vanishes, the post-collision direction of motion can be found as the 
~ally- solution of a single transcendental equation. In the large-F limit the angle a, 

which measures the location of the scattering particle relative to the x axis, is 
constant during a collision. 

This problem is periodic in time, as well as in space, because in a time 
vee,. 

equal to 1/"{ the system progresses from one checkerboard-like configuration 
to the next. For an initially-square unit cell, a shear of unity, corresponding 
to an oblique-cell corner angle of 450 , brings the system back to its original 
configuration. See again Figure 23 for a four-cell square-corner version of 



this periodic shear flow. Thus, in addition to the two angles describing a 
collision, the phase of the boundary condition must be specified, making the 
Poincare-section description of successive collisions a three-dimensional 
problem. Nevertheless, a bin structure of 2,097,152 = 27x27x2 7 bins is 
sufficient to determine an accurate multifractal spectrum of singularity 
strengths. The results are similar to those shown for the Galton Board in 
Figure 15. We find no trace of the cusps found by Morriss in his analysis of a 
similar soft-disk problem19. 

FIGURE 22. A two-body three-dimensional periodic shear flow. For convenience in 
identifying the unit cell (125 cells are shown in the FIGURE) the two particles are 
shown as spheres with different diameters. 

The distribution of Poincare-section points in the four-dimensional 
Lorentz-gas' phase-space, corresponding to the information dimension Dl, is 
shown in a pair of stereo views in Figure 24. To see this "Poincare cube" in 
three dimensions make a copy of this Figure in which the spacing between 
the centers of the left-eye and right-eye images corresponds to the distance 
between your own eyes. A viewing distance of about 30 cm is best. 

The two angles describing the collisions, a and ~, are displayed as a 
function of the shear (the axis perpendicular to the plane of the paper). This 
shear-flow problem has a somewhat simpler appearing Poincare-cube 
structure than does the diffusive Galton Board problem, despite the extra 
phase-space dimension. Just as in the Galton Board case the Poincare cube 
pictures suggest the filling of all bins with a zero-volume completely-ergodic 
chaotic attractor. 
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At sufficiently high strain rates the motion collapses onto a one­
dimensional periodic limit cycle. In the resulting Poincare-cube 
representation such a cycle appears as a discrete set of dots. In either of these 
steady nonequilibrium two-body problems, diffusion or shear, the strange­
attractor motion develops so as to give positive transport coefficients 
consistent with the Second Law of Thermodynamics. 

FIGURE 23. Moving boundary particles for the two-dimensional periodic two-body 
viscous Lorentz gas discussed in Section 5. The square shown represents an area of 
four unit cells. Only the periodically-repeated Boundary particle is shown. A mass 
point moves in the field of these particles. Snapshots corresponding to shears of 0, 
114,2/4, 3/4, and 1 (equivalent again to 0) are shown. 

Free Expansion in One Dimension 

There are many paradoxes associated '''lith the thermodynamics of 
incompressible phase-space flow described by Liouville's Theorem. The best 
known is an adiabatic free expansion in which the expanding fluid does no 
external work, accepts no heat, and hence expands at constant energy. The 
paradox is that the phase-space density, which. according to Gibbs, should 
vary with entropy, remains unchanged in the process while the 
thermodynamic entropy increases. This paradox can be resolved, or at least 
avoided, by using Nose-Hoover mechanics to embed the paradoxical 
expansion in a periodic process. This approach emphasizes the importance 
of interactions with external forces in any process designed to measure 
entropy. To embed the free expansion in a periodic process consider a three­
step periodic cycle: 

i) Expand the volume instantaneously. 
ii) Compress the system, at a finite rate, back to the initial volume. 

iii) Thermostat the dense hot system to restore the original temperature. 

The simplest realization of this cycle is one-dimensional. To represent 
a system initially confined we consider a thermostatted particle in a simple 
one-dimensional "box" given by a harmonic Hooke's-Law potential: 

<) = x2/2 

To start a periodic expansion, compression, and thermalization cycle the 
potential <I> changes discontinuously to the new form: 

<1>= {(x+1)2/2 or o or (x-l)2/2} 
for 

{x<-l or -1< x<1 or 



FIGURE 24. Two stereo views of, the phase-space Poincare cube detailing the phase­
space distribution of collisions for the two-dimensional shear flow of a Lorentz Gas 
driven by the periodic boundaries of FIGURE 23. The (mainly) vertical and 
horizontal axes correspond respectively to sin~ and (x. The axis (mainly) 
perpendicular to the plane of the paper represents strain, or equivalently, phase, in 
the time-periodic boundary motion of FIGURE 23. 



Next, over a relatively long period of 1000 fourth-order Runge-Kutta time 
steps of length dt = 0.01 each, the moving particle is slowly and steadily 
compressed. 'I'his adiabatic compression, at one tenth the thermal velocity, 
corresponds thermodynarr..ically to a nearly-isentropic process. Finally, the 
compressed particle is therrn0statted, using Nose-Hoover mechanics, by 
solving the equations of motion 

dx/dt =p dp/dt = -x - ~p dtjdt =(p2 -1 )lt2 

where the relaxation time, 't, is 0.1. The thermostatting is applied over the 
shortest interval such that ~ begins and ends at zero. The particle mass has 
been chosen equal to one, for convenience. 

This three-step irreversible thermodynamic process, incorporating 
expansion, compression, and thermalization, is perfectly time-reversible, 
obeying the same equations of motion in eith8r direction of time. Nevertheless 
the requirement that, the occupied phase space not diverge inplies that the 
motion can ouly converge to a zero-volume strange attractor. By Liouville's 
Theorem, the phase volume is unchanged during both the expansion and 
compression steps. Thus the thermalization must, on the average, contract 
the occupied phase volume. 
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FIGURE 25. Strange attractor Poincare section corresponding to the one­
dimensional free expansion described in the text . ..A..fter the expansion, compression, 
and thermalization stages, at the instant just preceding the next expansion, the 
momentum is plotted as a function of the particle coordinate. The Lyapunov­
unstable strang!' attractor reuects the entropy increase associated with free 
expansion. 

, . 




Numerical work confirms this conclusion. Figure 25 shows a Poincare 
section of the resulting strange attractor. Just as in the Galton Board and 
Viscous Lorentz Gas the fractal structure is apparent. It can be verified that 
the dissipation associated "vith the thermostatting exactly accounts for the 
irreversible entropy production associated with the free expansion step. Thus 
the Nose-Hoover mechanics makes it possible to analyze transient 
irreversibility too, by embedding the problem in question in a periodic 
process. 

6. 	SUMMARY 

To describe irreversible processes at an atomistic level it is convenient 
to apply boundary constraints using Nose-Hoover mechanics. The inevitable 
conversion of work to heat, summarized by the Second Law of 
Thermodynamics, appears in any nonequilibrium state, steady, periodic, or 
transient. With Nose-Hoover reversible and deterministic mechanics, the 
direction of the motion is determined by the geometric requirement that the 
phase-space volume cannot grow with time. By using techniques borrowed 
from nonlinear dynamics it can be established that the resulting phase-space 
structures are strange attractors, hosts of chaotic, microscopically reversible 
but macroscopically irreversible motion. The magnitude of the shrinking 
within the attractor depends only on the work done by external forces, or, 
equivalently, the heat extracted by Nose thermostats. The information 
dimension of the motion in phase space can be estimated from the Lyapunov 
spectrum and more highly correlated fractal dimensions can be obtained by 
bin-counting methods. The complexity of chaotic many-body flows will 
ultimately be understood through study of few-body caricatures of the type 
described here. 
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