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A particularly simple chaotic nonequilibrium open system with two Cartesian degrees of 
freedom, characterized by two distinct temperatures T~ and T Ii' is introduced. The two 
temperatures are maintained by Nose-Hoover canonical-ensemble ~thermostats. Both the 
equilibrium (no net heat transfer) and nonequilibrium (dissipative) Lyapunov spectra are 
characterized for this simple system~ 

I. INTRODUCTION 

Lyapunov instability is fundamental to an understand
ing of the microscopic source of macroscopic thermody
namic irreversibility. The Lyapunov spectrum 1-3 {A} mea
sures the deformation of phase-space hypervolumes, based 
on the sum of the first n exponents (with Al ;> ,.1,2 ;> ,13 
;> ... ) giving the time-averaged growth rate ofan n-dimen
sional phase-space object. In the equilibrium case (steady 
state with no net beat transfer) the spectrum is a symmet
ric set of "Smale pairs," with each positive exponent cor
responding to a negative exponent with the same absolute 
value. The phase-space hypervolume is thus, in accord 
with Liouville's theorem, a constant of the motion. In the 
non equilibrium case (open system with net heat transfer) 
the spectrum has a roughly similar shape, at least close to 
equilibrium, but the sum of the exponents is necessarily 
negative, and correspon.ds to the rate of irreversible entropy 
production: ~A -=S/k. So far, only a few results for 
nonequilibrium steady states are available.4-7 Evans, Mor
riss, and Cohen, following up earlier work of Dressler8 

have related the equilibrium and nonequilibrium spectra 
for a class of homogeneously thermostatted systems in 
which all particles are thermostatted in the same way. For 
such systems they showed that nonequilibrium dissipation 
induces precisely equal shifts of each Smale pair of Ly
apunov exponents. 

In our nonequilibrium studies we focused on the dis
tributions of Lyapunov exponents for "many" bodies, up 
to 32 atoms in three dimensions and 49 in two. These 
systems are sufficiently complex to frustrate theoretical 
analysis. Here, we introduce a simpler prototypical system 
so as to elucidate steady nonequilibrium heat flow with the 
least number of degrees of freedom possible. We consider 
an angle-dependent two-dimensional oscillator with differ
ent horizontal and vertical temperatures Tx and Ty- We 
introduce and analyze the model in Sec. II, summarizing 
our conclusions in Sec. III. 

II. MODEL 

We consider the motion of a mass m in a two-dimen
sional Hooke's law potential, generalized by making the 
harmonic force constant vary periodically with the polar 
angle e: 

¢(r,e) = (K?/2)[1 0.5 cos(3e)]. 

The resulting Hamiltonian system is a relative of the classic 
Henon-Heiles system, which also exhibits threefold rota
tional symmetry. In polar coordinates the dynamics of the 
system takes place in a three-dimensional subspace of the 
four-dimensional {r,e,PnPe} phase space, conserving the 
energy, H-= (p2/2m) ¢. By introducing a pair of ca

9nonical Nose-Hoover thermostats5
• this system can be 

forced to undergo an irreversible transfer of heat between 
the x and y coordinate directions. The flow of heat always 
takes place from the higher to the lower temperature, in 
just such a way as to match the predictions of the Second 
Law ofThermodynamics. 10,11 In Cartesian coordinates, the 
phase space {x,y,Px,py,Sx,S) for the thermostatted system 
is augmented to include the two additional thermostat vari
ables and SF The corresponding Cartesian equations of 
motion are 

dx dpx dSx [(p;/m) - kTx]
-=Fm dt=Px; dt x S.JJx; dt (kTxr;) 

dpv dSy [(p.~/m) - kTy] 
d; =Fv - S;'py; dt (kTvT~) 

where, for convenience in what follows, the oscillator mass 
m, Boltzmann's constant k, the force constant K, and the 
thermostat relaxation times will all be chosen equal to 
unity. The phase space for this system is six dimensional, 
{x,y,Px,Py,Sx,Sy} and can have as many as five nonzero Ly
apunov exponents (only four in the nondissipative equilib
rium case with Tx = Tv)' Figure 1 shows typical trajecto
ries for both the equilibrium case (no heat transfer) and 
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the nonequilibrium case (including heat transfer from the 
higher to the lower temperature). Note that the symmetry 
with which the three potential valleys are explored disap
pears when the horizontal and vertical temperatures differ. 

We wish to study the non equilibrium shift of the Ly
apunov-exponent pairs as the temperatures Tx and Tyare 
varied. In a seminal paper, Evans, Morriss, and Cohen 
showed8 that in a nonequilibrium system in which all par
ticles obey the same thermostatted equations of motion, the 
various pairs of exponents will all have the same (nega
tive) shift, WithAl + A6=A2 + A5=A3 + A4·Inthepresent 
calculations the average temperatures associated with the x 
and y degrees of freedom are distinct, away from equilib
rium, so that the shifts can differ. 

The spectrum of Lyapunov exponents {A} can be ob
tained in a variety of ways. We have compared two of these 
approaches, using Lagrange multipliers] in order to force 
six "satellite" trajectories to maintain an orthonormal re
lationship to one another, as well as using repeated Gram
Schmidt orthonormalization of the phase-space basis vec
tors to maintain these constraints, as was first suggested by 
Benettin's work. I Independent calculations were carried 
out in Livermore and Vienna. 

In the equilibrium case, with Tx= Ty = 1, the spectrum 
was determined by using the fourth-order Runge-Kutta 
method to follow a fifty million time step run (dt=O.Ol). 
The results, with initial conditions {x,y,p p {'" t}

X" Y':'x'...;v 

11,1,1,1,0,0J, were as follows: . 

(AeqJ [+ 0.135, + 0.050, + 0.003, - 0.003, 

-0.050, 0.135), 

with an uncertainty of ±0.01 in the individual exponents. 
The spectrum shows the expected Smale-pair symmetry 
and resembles in shape the shapes of spectra recently found 
for chains and strings of coupled pendula6 with many de
grees offreedom. Test runs with time steps of0.05 and 0.10 
confirmed these results, and were also used to determine 
the uncertainty quoted above. 

This simple equilibrium system becomes a prototypical 
nonequiiibrium steady state when different values are cho
sen for the two temperatures Tx and TV' allowing for a net 
heat transfer from the higher to the -lower temperature. 
With a fourfold difference in temperature T = 2· T'x 'Y 

112, the spectrum is considerably changed. A ten-mil
lion-time-step simulation with dt=0.10 and a hundred
million-time-step simulation with dt=O.Ol confirm the 
values 

{ + 0.117, + 0.043, + 0.001, - 0.008, 

0.067, 0.200}. 

The two simulations suggest that these exponents have 
uncertainties no larger than ±0.01. Thus this nonequilib
rium spectrum establishes shifts .lA=Aneg-Aeq for the 
Smale pairs of + 0.117 - 0.200 = - 0.083 and 
+ 0.043 0.067 0.024, with the larger pair of non
zero exponents shifting more than twice as much as does 
the intermediate pair of exponents. Reversing the temper
atures, so that energy flows from the y direction to the x, 

with Ty 2 and 112, gives another nonequilibrium 
spectrum of exponents, again calculated from independent 
ten- and hundred-million-time-step simulations with a to
tal time of 1 000 000: 

{Aneg} {+ 0.031, + 0.001, 0.005, - 0.043, 

0.128, 0.216}. 

These data likewise indicate a definite disparity in the shifts 
of the nonzero Smale pairs, Aeq: 0.18, vs 
-0.127 vs 0.048, 

III. CONCLUSION 

By adding the possibility for heat transfer to a simple 
problem resembling the Henon-Heiles model, and with 
only two degrees of freedom, a nonequilibrium steady 
state, with a hot-to-cold heat flow obeying the Second Law 
of Thermodynamics can be achieved and characterized. 
The thermostatting in our simple open-system model is 
i~homogeneous, with different control variables {Sx,Sy} and 
dIfferent average values, Tx=l=Ty, characterizing the two 
temperature reservoirs. Although the Lyapunov spectra for 
such inhomogeneous steady states do retain a resemblance 
to the spectrum for the corresponding equilibrium case 
there appears to be no simple relation, such as that discov
ered by Evans, Morriss, and Cohen,8 linking the shifts of 
the individual Lyapunov-exponent Smale pairs to the over
all thermodynamic dissipation. 
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FIG. 1. Typical chaotic trajectories for 
both equilibrium (no net heat flow) 
and nonequilibrium (net hot-to-cold 
heat flow) simulations. In the top equi
librium illustration the horizontal and 
vertical temperatures are equal to 
unity. The other two trajectories corre
spond to nonequiiibrium steady states 
with {T"Ty} {2.0,O.5} and 
{O.5,2.0}. In all three simulations the 
temperatures were enforced with Nose
Hoover thermostats having characteris
tic relaxation times of unity. The tra
jectories shown are one thousand times 
shorter than those used in computing 
the Lyapunov spectra. 
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