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The Kaplan-Yorke information dimension of phase-space attractors for two kinds of steady 
non equilibrium many-body flows is evaluated. In both cases a set of Newtonian particles 
is considered which interacts with boundary particles. Time-averaged boundary temperatures 
are imposed by Nose-Hoover thermostat forces. For both kinds of non equilibrium 
systems, it is demonstrated numerically that external isothermal boundaries can drive the 
otherwise purely Newtonian flow onto a multi/ractal attractor with a phase-space information 
dimension significantly less than that of the corresponding equilibrium flow. Thus the 
Gibbs' entropy of such non equilibrium flows can diverge. 

I. INTRODUCTION 

It has been demonstrated, both theoretically and nu­
merically, that nonequilibrium steady states of classical 
many-body systems can inhabit multifractal phase-space 
attractors. I- 5 Both kinds of demonstrations make use of 

.--Nose-Hoover canonical thermostats to impose thermal 
onstraints on selected boundary degrees of freedom. 

These boundary degrees of freedom play the role of ther­
modynamic thermostats by imposing a time-averaged 
boundary temperature T= (p2/mk) on each boundary de­
gree of freedom. The theoretical approach 1-3 to establishing 
fractal behavior begins with the Liouville equation and 
ends with the result that Gibbs' many-body probability 
density fN(qN,PN,{;) diverges for any such nonequilibrium 
steady state. The alternative numerical approach confirms 
this theoretically predicted divergence. For systems with 
only a few phase-space dimensions the multifractal nature 
of the probability density l-5 is evident in numerically gen­
erated phase-space cross sections, called "Poincare sec­
tions." 

The new deterministic time-reversible Nose-Hoover 
thermostats used to establish these surprising facts replace 
the more traditional stochastic boundaries familiar from 
the Langevin equation. 6 Because the classical Langevin ap­
proach cannot be used to analyze phase-space structure, 
the new results have piqued considerable interest and have 
also generated some sceptical criticism. Eyink and Lebow­
itz have emphasized to us that special stochastic "bound­
ary" conditions can lead to a continuous nonfractal phase­
space measure. 7 Evidently, the assumption of stochasticity 
can smear out the fractal measure that we obtain in the 

- 'resent work by using time-reversible deterministic equa­
.ions of motion. The sceptics feel, based on these rigorous 
results for the simpler, stochastic models, that nonequilib­
rium steady-state phase-space distribution functions may 

not, in fact, be fractal so that Gibbs' entropy could still be 
a useful concept away from equilibrium. 7 

The theoretical analysis of the Nose-Hoover isother­
mal boundary conditions is straightforward. The irrevers­
ibility associated with the Second Law of Thermodynamics 
is an automatic unavoidable consequence of the multifrac­
tal attractors: Motions obeying the Law are stable, attract­
ing nearby trajectories; motions violating the Law by lying 
near the inaccessible zero-volume fractal repellor are 
pushed away from this illegal structure by dynamical in­
stability. Despite its simplicity, this mechanical approach 
may well seem overly simplistic to those who feel that 
deterministic boundaries are more "artificial" than sto­
chastic ones. For these sceptics it seems specially paradox­
ical that the information dimension of occupied phase 
space is reduced away from equilibrium, in such a way that 
the Gibbs' entropy for the complete system, including the 
boundaries, diverges. In some cases, but not all, even the 
Hausdorff dimension, which characterizes the support of 
the attractor, has been shown to be nonintegra1. 2-

5 It has 
not yet been possible to prove or disprove the conjecture 
that the Gibbs' -entropy divergence still holds, after aver­
aging over the boundary degrees of freedom, for the pro­
jected distribution of the bulk Newtonian degrees of free­
dom. If generally valid, such a divergence would rule out 
the use of non equilibrium entropy in fundamental studies. 
On the other hand, Eyink and Lebowitz have suggested7 

that the apparent conflict between multifractal distribu­
tions for deterministic boundaries and continuous distribu­
tions for stochastic boundaries might be resolved through 
an "approximately multifractal" distribution. The effect of 
boundaries on the Gibbs entropy is a promising research 
area. Lack of a decisive theoretical resolution suggests tak­
ing the alternative numerical approach, which we follow 
here. 

But the numerical difficulties in analyzing many-body 
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distributions, so as to test and evaluate these ideas, are 
severe. It is true that modern computers make it possible to 
study the details of phase-space flows in spaces of up to 
several hundred dimensions, but accurate simulations then 
consume hundreds of hours of computer time. Thanks to 
parallel computers, this computational bottleneck is open­
ing ups relatively rapidly, but, because the computer time 
required increases at least as rapidly as the square of the 
number of particles (even with short-ranged interactions), 
present-day analyses necessarily reflect the fluctuations and 
surface effects inherent in small systems. In order to make 
the case for a multifractal attractor as clearly and simply as 
is possible, we here consider the number dependence of two 
of the simplest possible prototypical nonequilibrium flows, 
namely, a heat flow and a shear flow. For simplicity, both 
these systems are two dimensional. 

The plan of the paper is as follows. In Sec. II we review 
the straightforward analysis leading to the general conclu­
sion that nonequilibrium steady-state flows driven by de­
terministic boundaries inhabit (multi)fractal phase-space 
attractors. In Secs. III and IV we describe the two models, 
a four-chamber heat flow and a boundary-driven shear flow 
and present numerical results. Our conclusions make up 
the final section, Sec. V. 

II. THEORY 

In 1984 Shuichi Nose introduced deterministic time­
reversible equations of motion consistent with Gibbs' ca­
nonical ensemble.9

.3 The "Nose-Hoover" form of these 
equations incorporates friction coefficients tSJ capable of 
furnishing and withdrawing energy in such a way that, for 
an otherwise isolated system, Gibbs' canonical distribu­
tion, J;V(q"",pN) exp[ _H(qN,pN)lkTj, can result. When­
ever Nose-Hoover deterministic thermostat forces - sp 
are incorporated into the atomistic equations of motion for 
the "phase" r == 1l",pN,s1 : 

tel p/m;p=F(q)-spLv, 

[(TI(T»-l]l~, 

the phase-space continuity equation (Liouville's Equation) 
relates the time-rate-of-change of the phase-space probabil­
ity density'/(qN,iV,s,t), and the comoving phase-space hy­
pervolume, 0 (qN,pN,s,t) , to the friction coefficients 1 S j, 
the Lyapunov expon~nts t}~ 1, and the externally produced 
entropy production S: 

(Cd lnf/dt) - (d In 0/dt) > -2:}. + (2:s> ==S/k. 

The friction-coefficient sum 2:s includes a term for each 
thermostatted momentum. The Lyapunov-exponent sum 
2:A includes all the Lyapunov exponents. The time average 
( ... > implies a sufficiently long time interval. Our numer­
ical work on small systems (N < 100) indicates that a time 
of the order of ten thousand collision times is necessary for 
three-digit accuracy in the l}~ 1. Here, N indicates the num­
ber of bulk particles in the nonequilibrium flow, particles 
that interact with purely Newtonian forces. 

In this paper we use D to represent the full dimension­
ality of the phase space, equal to the equilibrium value (4N 
for N two-dimensional mass points, for instance) aug­
mented by the additional nonequilibrium variables re­
quired to describe the boundary driving the flow. Thus ~ 
two-dimensional nine-body heat flow simulation with hot 
and cold temperatures and Tc imposed by the friction 
coefficients SH and is described in a phase space of D 

9 X 4 + 2 = 38 dimensions. In any nonequilibrium flow 
the phase-space volume shrinks with time, (d In 0/dt) < 0, 
establishing that the Lyapunov-exponent sum 2:}, is nega­
tive while the mean value of the friction-coefficient sum 
(2:s >== -2:A is positive. 

At equilibrium the complete spectrum of Lyapunov 
exponents is symmetric, a set of "Smale pairs," 1±)~ J. 
(This pairing1O

,ll follows from the time reversibility of the 
Hamiltonian equations of motion.) For a large system the 
first few exponents have similar values }'I as do 
also the last few, ::::::; ::::::; -AI' For a driven system, 
driven into a nonequilibrium steady state by Nose-Hoover 
thermostats, the Nose-Hoover equations of motion estab­
lish directly that the (negative) sum of all the Lyapunov 
exponents, 2:A== (2:s ), is precisely equal to -Slk, 
where S is the external entropy production. Thus the num­
ber of terms required in a vanishing partial sum of expo­
nents 2:'A, with the sum of the missing (negative) terms, 
2:}, 2:'A, equal to -Slk, gives the (Kaplan-Yorke) in­
formation dimension of the lower dimensional (lower than 
the phase-space dimension D by AD, the number of miss­
ing terms) strange attractor. The criterion of a vanishing­
sum of exponents is a natural one. Phase-space objects with 
fewer dimensions than D-AD must grow in time, while 
those with higher dimensionality must shrink. 

It is relatively easy to make a qualitative estimate of 
the dimensionality reduction AD in the more general case, 
even far from equilibrium. In dense fluids the shear viscos­
ity coefficient is of order mv/a, where v and a are the 
collision frequency and collision diameter, respectively. If 
we also use the collision frequency as a rough estimate for 
the Lyapunov exponent, v::::::;}~l' then a shear flow with 
strain-rate E should display a drop of dimensionality of 
order ADID::::::; (a£/c )2, where c;:::;;va is the speed of sound. 
Likewise, the corresponding dimensionality drop for a heat 
flow driven by a temperature gradient VT is AD/D 

::::::; (aVT/T) 2. Despite these promising estimates, until now 
numerical estimates of the drop in phase-space dimension­
ality were typically no greater than 4 or 5 in boundary­
driven shear flows. 10 In those cases investigated so far, the 
decrease of the most-negative Lyapunov exponents has 
been much greater than 2:A/D, leading to a relatively 
smaller decrease in dimensionality. Only in one simulation 
did the drop marginally exceed 5. In that case, the drop 
was only 5.09 ± 0.015. As explained in Sec. IV,S was mis­
takenly thought to be the additional number of coordinates 
required to describe the nonequilibrium flow. Although 
statistically significant, the borderline nature of this resul 
fueled the suspicion that boundary-driven flows retain, at 
the least, the full dimensionality of the equilibrium phase 
space. We have therefore undertaken here to explore the 
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FIG. 1. Periodic four-chamber system composed of hot and cold reser­
voir regions interacting with two Newtonian regions. All particles are 
treated identically, and can move freely among the four regions, obeying 
equations of motion without friction in the Newtonian chambers, and 
with hot or cold friction coefficients i;H or Sc within the two reservoir 
chambers. 

dimensionality drop in more detail than was possible in our 
earlier work. 

In the work described here, we began by investigating 
lower density flows. At low density both the kinematic 
viscosity coefficient and the thermal diffusivity are of order 
CA MFP' where C is the speed of sound and }'MFP is the mean 
free path. An intuitive low-density estimate for the Ly­
apunov exponent is AI:::::: c/),~pp, leading to predicted at­
tractor dimensionality red~ctions AD/D ()'MFPi:lc) 

2 

and (AMFPVT/T) 2. Despite these predictions exploratory 
numerical low-density simulations were not encouraging. 
Again, the most negative Lyapunov exponents show rela­
tively large shifts. These empirical tests led us to reinves­
tigate the more-favorable high-density situation. 

III. HEAT-FLOW MODEL 

Consider a periodic two-dimensional system divided up 
into four equal parts, as is shown in Fig. 1. Within the 
"hot" and "cold" thermostatted regions the [Nose­
Hoover] equations of motion are 

mr=p; P F-{;TP; 

, 2 2 2
(;r= [px+py-2mkTT]!(2mkTrr), 

with the subscript T equal to H or C, for hot or cold, and 
indicating the temperature. In the two Newtonian regions 
adjacent to these reservoir regions the thermostat forces 
involving the friction coefficients, {;H or (;o are absent and 
the equations of motion are Newton's 

mr==.p==.F(r). 

For the heat-flow system shown in Fig. I the complete 
phase-space description depends upon the 4N fluid coordi­
nates [x,y,Px,py Lv together with the reservoir friction coef­
ficients (;H and characterizing the two heat reservoirs. 
Thus the N-body nonequilibrium phase space has 4N + 2 
dimensions. 

In our numerical work we chose the colder tempera­
ture To Boltzmann's constant k, the atomic mass m, as 
well as the products 2mkTd· and 2mkT~, all equal to 
unity. As usual,1O we used the specially smooth repulsive 
potential, 

</I(r<a) 10[1 (r/a)2]4, 

to generate collisional forces. In our numerical work we 
choose the energy 10 equal to 100 and the length a equal to 
1. For kT set equal to 1, these choices correspond to a 
"collision diameter," or "turning point," r = 0.80'. 

We have used Benettin's method12 to calculate com­
plete Lyapunov spectra for systems with one, four, and 
nine particles in each of the square regions. For this, we 
follow the motion of a reference trajectory as well as 4N 
+ 2 orthonormal phase-space offset vectors [8 I giving the 

locations of 4N + 2 "satellite" trajectories infinitesimally 
displaced from the "reference" trajectory 
r REF [ x,Y,P.vPY'{;H'{;cl, where all the variables shown in 
braces depend upon the time. A typical 4N + 2­
dimensional offset vector 8i ==. [8x,oy,opjjpy ,8t;Il<8{;cl i 
obeys the unconstrained equations of motion: 

0i = D·8" 

and is simultaneously constrained to remain orthonormal 
to the other vectors 0i + 1> 2, ... , by Gram-Schmidt or­
thonormalization, carried out at every time step. In 1985 
we developed an alternative more-elegant Lagrange-multi­
plier approach for imposing these constraints, but, for the 
relatively large systems of equations considered here, we 
have adopted the Gram-Schmidt approach to reduce the 
numerical work. 

The square symmetric dynamical matrix D gives the 
derivatives of the equations of motion with respect to the 
phase-space coordinates, D ==. at/ar. In this paper we use 
san serif type to distinguish the matrix D from the phase­
space dimensionality D. D can be expressed eq~ivalently in 
terms of the motion of the offset vectors, D==.a8/ao. In the 
heat-flux problem the accelerations depend upon both par­
ticle and boundary coordinates as well as on the friction 
coefficients {;ll and {;o so that the matrix D contains all the 
corresponding derivatives. A sampling of non vanishing 
matrix elements is as follows: 

ax 1 aj; 

J{; Px J{; 
apx = mkTr2; JPy 

equivalent to the equations of motion: 

m' 
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TABLE I. Phase-space dimensionality reduction (rounded to the nearest 
integer) I::.D for N two-dimensional atoms in a periodic box composed of 
a hot square, at temperature TH, a Newtonian square, a cold square at 
temperature Te= 1 and a second Newtonian square; see Fig. I. Periodic 
boundaries are imposed in both directions. The total area is N. The data 
are all based on 10000-step simulations with a timestep equal to 0.001. 
The total number of Lyapunov exponents exceeds the equilibrium number 
by 5: D = 4N + 5. Partie1e mass, Boltzmann's constant, and the two res­
ervoir products 2mkTil are all taken equal to unity. The pair potential is 
¢(r<IJ)=¢(r< 1)=,,[1 100[1 

N kTH D I::.D 

4 4 21 
16 4 69 2 
36 4 149 3 
36 9 149 9 
36 16 149 21 

aos Px 
aopx = mkT?-; 

aoS 

where the subscripts in the expressions <Pxx, <PxY' and <Pyy 
indicate corresponding second derivatives of the pair po­
tentia1. 

We have used both the classic fourth-order Runge­
Kutta method and a generalization of Stormer's method to 
integrate the system of (4N + 2) (4N + 3) coupled ordi­
nary differential equations corresponding to one reference 
and 4N + 2 satellite trajectories. The number of ordinary 
differential equations to be solved ranges from 342 (for 
four particles) to 21 462 Cfor 36 particles). Despite fluc­
tuations in the individual Lyapunov exponents the phase­
space attractor dimensionality stabilizes relatively quickly. 

Results are given in Table I. We show the reduction in 
the Kaplan-Yorke phase-space dimensionality fj,D com­
puted from the Lyapunov spectrum. The reduction is only 
a few, for small systems, but becomes a relatively large 
fraction of the total phase-space dimension for systems 
with a few dozen degrees of freedom. It is clear that the 
reduction can easily exceed the two extra phase-space co­
ordinates and Sy required by the thermostats. But be­
cause roughly half the particles occupy the two thermo­
statted regions at any time it cannot be said that this 
reduction necessarily involves the dynamics of particles 
obeying Newton's equations of motion. The maximum di­
mensionality reduction shown in the table, fj,D = 21 for a 
36-particle system, is considerably less than the 72 Ly­
apunov exponents associated with half the total number of 
particles. 

In addition to the simulations described here and listed 
in Table I, we also carried out a less-extensive investigation 
of heat flow with each of the two reservoir regions replaced 
by a single (planar) degree of freedom. Thus the 4NNew­
tonian phase-space coordinates (x,Y,Px,Py 1N were aug­
mented by the six driving coordinates [XH,PxH, 
SH'XoP~oscl. In all of the corresponding simulations the 
reduction in phase-space dimensionality fj,D failed to ex­
ceed 6, the number of additional phase-space coordinates 
required for thermal driving. 

(J 

W 

FIG. 2. Sixteen-particle system with width W = 3.5 and height H = 4. 
The corresponding total instantaneous phase-space dimension is 16 X 4 
+ 5 = 69. 'N'ewtonian particles are shown in black. Their motion is 

driven by the moving periodic corrugated boundaries, each made up of 
four moving particles (shaded). The top and bottom boundaries are pe­
riodic. The vertical boundaries include both smooth repulsive 
interactions i.b(r) 100[1-?t and impulsive elastically 
reflecting barriers which prevent the escape of particles from the system. 
The time-periodic nature of the relative vertical boundary displacement 
corresponds to a total time-averaged phase-space dimension of 69 + I 

70. 

IV. SHEAR-FLOW MODEL 10 

Now consider a two-dimensional fluid, periodic in the 
vertical y direction and bounded in the x direction by two 
vertical moving corrugated isothermal walls, as shown in 
Fig. 2. In the horizontal direction the two walls move to­
gether so that the system's wall-center-to-wall-center 
width, XRIGHT-XLEFT= W, is constant. Thus the 4N fluid 
coordinates !x,y,Px,Pv1N are augmented by the set of two 
wall coordinates, two momenta, and a single friction coef­
ficient Scharacterizing the boundary (X,Y,Px,Pv,sl. In ad­
dition to these 4N + 5 variables, the vertical di'splacement 
(y direction) of the right-hand boundary particles relative 
to the left-hand ones is periodic in time, with a period 
alC WE), or equivalently periodic in the apparent shear 
strain E, with a maximum strain a/W, where € is the strain 
rate du/dx and the strain 0 < E < (a/W) measures the ap­
parent ·vertical displacement of the right-hand boundary 
wall relative to that of the left-hand wall. Thus, including 
an extra phase-space time dimension, or the equivalent 
strain dimension, the complete nonequilibrium phase space 
contains 4N + 6 dimensions. In our earlier work with this 
model,10 we overlooked the presence of this additional di­
mension. 

The equations of motion of all N particles enclosed by 
the boundary are Newtonian, (mr=p JN' while the 
equations of motion for the (two) boundary degrees of 
freedom, [X,YJ, follow the Nose-Hoover form, and incor­
porate the macroscopic strain rate E=duy!dx: 

mX Px ; mY= ±[mWE/2] +Py; 

sPx;Pv = Fy-SPv; 

CHAOS, Vol. 2, No.2, 1992 



- -

249 Hoover, Posch, and Hoover: Fractal dimension of flows 

~ = [~+ ?y-2mkT]I(2mkT72). 

The forces Fx and Fy in these boundary equations of mo­
tion are vector sums of the interactions of all N-Newtonian 
')articles with the 2(H/(J') rigidly connected centers of 
i'orce which make up the boundary, as is shown in Fig. 2. 
In order to avoid the escape of Newtonian particles 
through the moving boundaries, we added an additional 
short-ranged Lennard-Jones repulsive boundary interac­
tion, 4E[((J'LJ/r)12_((J'LJ/r)6] for r<21!6(J'LJ' with a char­
acteristic length (J'LJ equal to (J'/10. 

For simplicity, we again use the same mass m == 1 for 
all degrees of freedom, including the total mass associated 
with the two boundary degrees of freedom. Again Boltz­
mann's constant k is set equal to unity and, just as before, 
we use the specially smooth repulsive potential 

to generate collisional forces. 
We began by calculating complete Lyapunov spectra 

for square systems with N = 4, 16,25,36, and 49 Newton­
ian particles at a variety of strain rates and densities. We 
turned later to nons quare systems with from 4 X 3 = 12 to 
4 X 24 = 96 bulk Newtonian particles. In every case we 
followed the motion of 4N + 5 orthonormal phase-space 
offset vectors [0 J giving the locations of 4N + 5 "satellite" 
trajectories infinitesimally displaced from the "reference" 
trajectory [x,y,Px,Py,X, Y,Px,Py,sJ. A typical 4N + 5 di­
mensional offset vector Oi== [ox,oy,oPx,OPy,oX,oY, 
oPx,opy,osJ i obeys the unconstrained equations of motion: 

Oi= D'0io 

and is simultaneously constrained to remain orthonormal 
to the other vectors 0i + i, 0i + 2,00', by Gram-Schmidt or­
thonormalization. Just as in our heat-flow example, we 
have adopted Bennetin's Gram-Schmidt approach to re­
duce the numerical work in analyzing our high-dimen­
sional attractors. 

As usual, the dynamical matrix giving the motion of 
the offset vectors is a square matrix. It should be noted that 
the accelerations depend upon both particle and boundary 
coordinates as well as on the friction coefficient S, so that 
the matrix D contains all the corresponding derivatives. A 
sampling of non vanishing matrix elements is as follows: 

ax 1 aj
_==_0_==_0 

ax 1 ay 
---'---' 

apx apx 
ax; ay= 

apy. apy_ apy. 
ax' aY- ay' 

as Px as Py 
ap = mkT72; apy = mkT72 .x 

For simplicity, we used the classic fourth-order Runge­
Kutta method to integrate the system of (4N + 5) ( 4N 
+ 6) coupled ordinary differential equations, so that the 
number of equations solved ranged from 462 = 21 X22 
(for four particles plus boundary) to 151 710 = 389 X 390 
(for 96 particles and the boundary). For comparison we 
carried out a number of simulations using a generalized 
Stormer method. There was no significant dependence of 
the results on the method of integration. 

We began by considering variations about an initial 
state with the number density set equal to 1, the relaxation 
time T set to 114, and the strain rate E to 1. Short trial­
and-error runs indicated that higher densities and slightly 
faster relaxation times led to a greater reduction in dimen­
sionality. Typical results are listed in Table II. For most of 
these simulations the reduction in dimensionality exceeds 
5. For some of them the reduction exceeds 6 and ap­
proaches 7. 

The data demonstrate conclusively that the instanta­
neous (or equivalently, fixed-strain) phase-space probabil­
ity density for a 16-body system, with 64 Newtonian phase­
space coordinates, confined to a rectangular box with 
dimensions 3.5 X 4, and driven by five additional boundary 
coordinates [X,Y,Px,Py,S]' can have a Kaplan-Yorke di­
mension considerably less than the maximum possible 
Newtonian contribution of 64. To illustrate this point, let 
us consider the results of a careful computation, involving 
500000 timesteps of 0.001 each, at a strain rate of 2 and 
with a relaxation time T of 0.25. The simulations were 
carried out in the 69-dimensional phase space, in which the 
dimensionality decrease IlD was 5.52. Because the addi­
tional Lyapunov exponent associated with the missing 
time, or strain, dimension is identically zero the same di­
mensionality decrease IlD must apply also in the full 70­
dimensional phase space. The resulting attractor dimen­
sion is therefore 64.48 ± 0.03 in the 70-dimensional space. 
The phase space describing a fixed time or strain is analo­
gous to the two-dimensional Poincare sections used to 
characterize three-dimensional dynamical systems. In the 
69-dimensional phase space of the calculation, at a fixed 
time or fixed strain, the corresponding instantaneous at­
tractor dimension is 63.48, less than 64, the Newtonian 
contribution. For larger systems even the time-averaged 
(averaged over time or strain) probability density inhabits 
a space with dimensionality less than the equilibrium di­
mensionality of 4N. The maximum reduction in Table II, 
IlD = 6.79 indicates a time-averaged attractor dimension 
lying below the time-independent dimension by 0.79. The 
instantaneous attractor lies below the equilibrium dimen­
sion by 1.79 in this case. We expect to be able to achieve 
reductions exceeding 7 by further increasing the system 
size. 
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TABLE II. Sample values of phase-space dimensionality reduction t;,D for N two-dimensional atoms in a periodic box with a thermostatted moving 
boundary. The strain rate (YRIGHr YLEFT)I Wand the relaxation time T are listed. All masses are unity. The height of the box (see Fig. 2) is HIa H 
and the width is WIa = W; N is the number of Newtonian particles. The boundary temperature is T. Periodic boundaries are imposed in the vertical 
direction. All the data are based on runs with a maximum time of at least 200 using the indicated value of the timestep dt. The total number of Lyapunov 
exponents is D = 4N + 6, with the extra six exponents corresponding to the two boundary coordinates, the two boundary momenta, the boundary friction 
coefficient, and the relative phase of the vertical boundary displacements. The pair potential is \00[1 (rla)2]4 100[1-?]4 for r< 1. The statistica 
uncertainty of the t;,D data is estimated at ±0.03. 

T N H W kT dt t;,D 

2.0 0.01 12 3.0 3.5 1.0 0.001" 4.06 
2.0 0.02 12 3.0 3.5 1.0 0.002a 4.74 
2.0 0.03 12 3.0 3.5 1.0 0.002a 5.27 
2.0 0.04 12 3.0 3.5 1.0 0.002a 5.48 
2.0 0.0625 12 3.0 3.5 1.0 0.001 a 5.70 
2.0 0.10 12 3.0 3.5 1.0 0.001" 5.76 
2.0 0.25 12 3.0 3.5 1.0 O.OOl a 5.57 

2.0 0.01 16 4.0 3.5 1.0 0.001" 4.35 
2.0 0.02 16 4.0 3.5 1.0 0.002a 5.08 
2.0 0.03 16 4.0 3.5 1.0 0.002a 5.50 
2.0 0.04 16 4.0 3.5 1.0 0.002a 5.68 
2.0 0.0625 16 4.0 3.5 1.0 0.001 b 5.7 
2.0 0.0625 16 4.0 3.5 1.0 0.001 a 5.74 
2.0 0.0625 16 4.0 3.5 1.0 0.005 5.7 
2.0 0.10 16 4.0 3.5 1.0 0.001 a 5.70 
2.0 0.25 16 4.0 3.5 1.0 0.0013 5.52 
2.0 0.25 16 4.0 5.0 0.25 0.01 3.3 
2.0 0.25 16 4.0 5.0 1.0 0.0013 5.09 
2.0 0.25 16 4.0 5.0 4.0 0.01 2.1 
2.0 0.25 16 8.0 9.0 1.0 0.001 a 0.86 
2.0 0.25 16 12.0 13.0 1.0 0.001" 0.60 
2.0 1.00 16 4.0 3.5 1.0 0.01 5.5 

2.0 0.01 24 6.0 3.5 1.0 O.OO\" 4.74 
2.0 0.02 24 6.0 3.5 1.0 0.002" 5.47 
2.0 0.03 24 6.0 3.5 1.0 0.002" 5.77 
2.0 0.04 24 6.0 3.5 1.0 0.001" 5.86 
2.0 0.0625 24 6.0 3.5 10 0.001 3 5.80 
2.0 0.10 24 6.0 3.5 1.0 0.001" 5.60 
2.0 0.25 24 6.0 3.5 1.0 0.001 a 5.50 

2.0 0.25 25 5.0 3.0 1.0 0.001 5.5 
2.0 0.25 25 5.0 4.2 1.0 0.002 5.4 
2.0 0.25 25 5.0 6.0 1.0 0.01 4.9 
4.0 0.25 25 5.0 6.0 1.0 0.0025 2.6 
4.0 0.25 25 5.0 6.0 1.0 0.001 2.6 

2.0 0.25 30 6.0 7.0 1.0 0.001 5.0 

2.0 0.01 32 8.0 3.5 1.0 0.001 a 5.16 

2.0 0.02 32 8.0 3.5 1.0 0.002a 5.78 
2.0 0.03 32 8.0 3.5 1.0 0.002a 5.93 

2.0 0,04 32 8.0 3.5 1.0 0.002a 6.01 
2.0 0.0625 32 8.0 3.5 1.0 0.001" 5.83 
2.0 0.10 32 8.0 3.5 1.0 0.002a 5.60 
2.0 0.25 32 8.0 3.5 1.0 0.002a 5.49 

2.0 0.01 48 12.0 3.5 1.0 0.002a 5.65 
2.0 0.02 48 12.0 3.5 1.0 0.002a 6.14 

20 0.03 48 12.0 3.5 1.0 0.002" 6.25 
2.0 0.04 48 12.0 3.5 1.0 0.002" 6.20 
2.0 0.0625 48 12.0 3.5 1.0 0.002" 5.93 

2.0 0.10 48 12.0 3.5 1.0 0.002a 5.75 

2.0 0.25 48 12.0 3.5 1.0 0.002a 5.65 

2.0 0.01 60 15.0 3.5 1.0 0.002" 6.00 

2.0 0.02 60 15.0 3.5 1.0 0.002" 6.35 

2.0 0.03 60 15.0 3.5 1.0 0.002 6.39 

2.0 0.04 60 15.0 3.5 1.0 0.002a 6.29 

2.0 0.0625 60 16.0 3.5 1.0 0.002a 5.99 

2.0 0.10 60 16.0 3.5 1.0 0.002 5.83 

2.0 0.25 60 16.0 3.5 1.0 0.002 5.72 
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TABLE II. eContinued.) 

E 7' N H W kT dt t,.D 

2.0 0.01 96 24.0 3.5 1.0 0.002 6.63 
2.0 0.02 96 24.0 3.5 1.0 0.002 6.79 
',0 0.03 96 24.0 3.5 1.0 0.002 6.73 
2.0 0.04 96 24.0 3.5 1.0 0.002 6.45 
2.0 0.0625 96 24.0 3.5 1.0 0.002 6.25 

aRun up to at least tmax = 500. 

bThe Lyapunov spectrum from this run is displayed in Fig. 3. 


The complete spectrum of the 70 - 3 = 67 non vanish­
ing Lyapunov exponents for a typical 200 OOO-step simula­
tion described in Table II, is shown in Fig. 3. Three of the 
Lyapunov exponents vanish, in the 70-dimensional space, 
reflecting the lack of relative motion in three phase-space 
directions. One such direction corresponds to the trajec­
tory direction in that space. This reflects the observation 
that two phase-space points separated by a fixed time in­
terval 8t have no tendency to separate as time goes on. 
Likewise, the absolute location of the system in space can 
have no effect on the motion. Because the Nose-Hoover 
frictional forces operating at the boundary do not conserve 
momentum it is possible for the center-of-mass of the sys­
tem to drift in space. There are thus two more vanishing 
exponents corresponding to the absolute (x,y) location of 
the system. 

20,----------------------------, 

Lyapunov spectrum for 
two-dimensional shear flow 

t 

o 

-20 0 

N =16; £ =2; 
-30 't= 1/16; p = 1.6; 

o 	 T=1;7=200; 
dt = 0.001; t,.D = 5.7 

-40L-------------------------~ 

67 Exponents 

FIG. 3. Lyapunov spectrum for a l6-body non equilibrium steady state of 
the type shown in Fig. 2, showing an instantaneous attractor dimension 
significantly less than that of the Newtonian degrees of freedom. The data 

re averages over 200000 timesteps of length 0.001. The 67 nonvanishing 
exponents are plotted as pairs !A'I,A'6S -1] equally spaced in the abscissa 
direction. Note that the Smale-pair symmetry is broken away from equi­
librium and that the number of non vanishing exponents is odd despite the 
time-reversal symmetry of the equations of motion. 

V. CONCLUSIONS 

This work illustrates the reduction of phase-space at­
tractor dimension inherent in irreversible deterministic 
phase-space flows. We find quantitative results which are 
insensitive to the method of integration and the timestep. 

At low density, which theoretical considerations sug­
gest would be the most favorable case, there is a tendency 
for particles to clump near the boundaries, reducing both 
the momentum transport and the reduction in phase-space 
dimensionality. This effect could possibly be eliminated by 
using a more complicated boundary with, for example, 
even and odd boundary particles undergoing thermal dis­
placements in opposite directions. 

In many cases, even with a relatively small number of 
particles, the instantaneous reduction in dimensionality ex­
ceeds the added dimensionality required to drive the sys­
tem from equilibrium. But the reduction of the attractor 
dimension seems to be limited, at least for the system sizes 
we could study, to reductions which are only a bit larger 
than the added phase-space dimensionality. Roughly, the 
maximum decrease aD seems to vary as In N. Neverthe­
less, these results do establish conclusively that both the 
instantaneous and the boundary-phase-averaged distribu­
tion functions for the Newtonian degrees of freedom can 
actually be multifractal objects and can therefore corre­
spond to a divergent Gibb's entropy. Of course, reduced 
distribution functions, obtained by integrating !(q,p,r;,E) 
over a subset of the phase-space coordinates, are subspace 
projections describing the correlations of fewer coordinates 
or momenta and do not share this fractal character. It is 
most interesting to see that dissipative boundary degrees of 
freedom can act to reduce the phase-space dimensionality 
of purely Newtonian systems with which they interact. 

Despite the characteristic large shifts of the most­
negative Lyapunov exponents, noted before lO in our less 
extensive investigation, it has here been shown that both 
the time-averaged and instantaneous attractor dimensions 
can lie well below the corresponding Newtonian equilib­
rium dimensions. We must emphasize that we cannot prove 
that this reduction in information dimension, below the 
Newtonian value, occurs for larger systems. We cannot 
prove that there is an intrinsic reduction independent of the 
boundary conditions. The results cited in Ref. 7 indicate 
that no completely general conclusion can be reached, at 
least for small systems. If the dimensionality reduction 
were to persist for large systems, as we believe is likely, the 
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implications would be fundamental for nonequilibrium sta­
tistical mechanics. In this case there would be no possibil­
ity to use Gibbs' entropy in discussing general nonequilib­
rium systems. Although a comprehensive proof is still 
lacking, we wish to emphasize that the nonequilibrium 
heat-reservoir techniques used here are exactly consistent 
with the transport coefficients predicted by near­
equilibrium Green-Kubo linear response theory3,11,13 and 
with the flow directions predicted by the far-from­
equilibrium Second Law of Thermodynamics. This agree­
ment supports our view that the deterministic time­
reversible Nose-Hoover equations of motion are uniquely 
well suited to the study of nonequilibrium systems. To 
establish that the dimensionality reduction found here is 
typical of the general situation, beyond reasonable doubt, 
requires either a theoretical breakthrough or further more­
decisive brute-force studies of the size dependence and the 
boundary dependence of nonequilibrium flows. As mas­
sively parallel computation becomes commonplace, it will 
become possible to extrapolate our results to somewhat 
larger systems and to carry out studies with other bound­
ary conditions so as to determine the universal properties 
of large-system fractal dimensionality. 
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