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Ahstract-We explore the relationship of Monaghan's version of "smoothed-particle hydro­
dynamics," here called "smoothed-particle applied mechanics," to nonequilibrium molecular dynam­
ics. We first use smoothed particles to model the simplest possible linear transport problems, as well as 
a liquid-drop problem. We then consider both gas-phase and dense-fluid versions of Rayleigh-Benard 
convection, all in two space dimensions. We also discuss the possibility of combining the microscopic 
and macroscopic techniques in a hybrid scheme well-suited to the massively-parallel modelling of 
large-scale nonequilibrium flows. 

1. INTRODUCTION 

There are two distinct approaches (see, for example [1,2]; see then [3-5]) to the numerical simu­
lation of nonequilibrium flows, microscopic "molecular dynamics" and macroscopic "continuum 
mechanics." Both are based on the solution of sets of deterministic differential equations. The 
microscopic approach is based on the solution of time-reversible ordinary differential equations for 
the motion of atoms. At equilibrium, the motion is governed by Newtonian coordinate-dependent 
forces, {F(r)}. Newtonian mechanics can be extended, to treat nonequilibrium problems, still 
maintaining time reversibility, by including deterministic momentum-dependent external forces 
to control velocities, energies, temperatures, stresses, and heat fluxes. A "solution" of the micro­
scopic problem gives the time-dependence of all the atomic coordinates {r(t)}. The microscopic 
motion is typically "chaotic," that is, exponentially sensitive to small perturbations. 

The macroscopic approach to simulation is based on the solution of the partial differential field 
equations for the space-and-time evolution of the continuum field variables: mass density, velocity, 
and energy density {p(r,t), v(r,t), e(r,t)}. Here, the time-irreversible motion is governed by the 
constitutive relations expressing the pressure tensor P and heat flux vector Q in terms of the 
field variables and their gradients. Often, with stationary boundary conditions, the continuum 
solutions are stationary or periodic in time. Though the continuum description only applies, 
in principle, to an infinite number of degrees of freedom, the conventional approach ignores, as 
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f,.;J :-,vnnecessary and irrelevant, the high-frequency short-wavelength chaotic fluctuations present in 
iIO t:# inicroscopic molecular dynamics. But the remaining long-wavelength continuum motion can also 

be chaotic, as is evidenced by turbulent flows. 

Problems described by the partial differential equations of continuum mechanics are usually 
solved with grid-based Eulerian or Lagrangian computer-simulation programs. Much less effort 
has been applied to the development of grid-free methods. By avoiding the logical complexity 
of dealing with the tangling and geometric instabilities associated with large deformation, these 
grid-free methods provide a relatively simple approach to the simulation of complex flows in 
two or three space dimensions. We will see that one of these grid-free methods, usually termed 
"Smoothed-Particle Hydrodynamics," is closely related to conventional molecular dynamics. Be­
cause the method is applicable to solids, as well as to fluids other than water, we have adopted 
the name "Smoothed-Particle Applied Mechanics" for this macroscopic approach. 

With either the microscopic or the macroscopic approach, a "large-sized" numerical simulation 
today (1994) involves millions (or even billions!) of degrees of freedom. But a cubic micron of 
metal contains about a hundred billion atoms. In fracture, tribology, and materials science there 
is thus an urgent need for particle-based continuum methods to help bridge the wide gap between 
the atomistic and continuum length scales. A variety of nonequilibrium problems on the micron 
to nanometer scale require a treatment of atomic degrees of freedom for accuracy, but are much 
too large and too slow for a comprehensive treatment with the atomistic approach. 

We will see that a hybrid scheme, in which an atomic description of the most active part of 
the flow is embedded in a simpler surrounding continuum, can be based on a combination of the 
microscopic and macroscopic techniques. Both the microscopic and the macroscopic simulation 
schemes, as well as this developing hybrid combination, incorporate only local short-ranged in­
teractions. Thus, these schemes are all well-matched to today's massively-parallel computers [6]. 

In the present work, we first consider an interesting formal connection between molecular 
dynamics and smoothed-particle mechanics. Next, we apply the smoothed-particle approach to 
the simulation of two simple linear nonequilibrium fluid flows, using simple ideal-gas mechanical 
and thermal equations of state. The first of these test problems is Fourier heat conduction, 
between two fixed walls maintained at different temperatures. The second nearly-linear test 
problem is plane Couette flow, in which two thermostatted shearing walls move in opposite 
directions, imposing a velocity gradient. We then discuss two smoothed-particle methods for 
treating free surfaces, and surface tension, and apply the simpler of these choices to the structure 
of liquid drops using smoothed particles. 

Finally, we use the smoothed-particle method to study the highly-nonlinear gas-phase and 
dense-fluid-phase versions of Rayleigh-Benard instability, the challenging numerical fluid dynam­
ics problem of characterizing and distinguishing both the periodic and the chaotic convective 
flows of a compressible fluid, heated from below, in a gravitational field. In addition to the 
ideal-gas constitutive relations, we study also a dense-fluid model with nonideal thermal and 
mechanical equations of state. The model corresponds to a short-ranged repulsive interparticle 
pair potential. 

The Rayleigh-Benard problem has already been studied with conventional molecular dynam­
ics [7-9] and, in the incompressible case, with grid-based continuum numerical methods. Gold­
hirsch, Pelz, and Orszag's definitive continuum work [10] is readable, and contains a useful bibli­
ography of numerical simulations. We discuss the chaotic irreversible behavior of the microscopic 
and macroscopic numerical techniques. Finally, we describe a hybrid scheme combining them. 

The grid-free smoothed-particle technique, which we describe here, follows Monaghan's ideas [3] 
very closely. It is well-suited to classroom introductions to chaos, to continuum mechanics, and 
to the numerical simulation of complex flows. We began our study of the method in a graduate 
Numerical Methods course, taught in the Department of Applied Science in the winter quarter 
of 1992-1993. 
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2. MOLECULAR DYNAMICS [1,2] 


"Equilibrium Molecular Dynamics" simulates the time development of an isolated atomistic 
system of fixed composition, volume, and energy obeying classical mechanics. The goal is a so­
lution of the first-order Hamiltonian or the second-order Newtonian equations of motion. For 
simplicity, we use Cartesian coordinates {r} throughout. With the usual pairwise-additive po­
tential energy [<P(r) == L: L: ¢i<j] and point-mass kinetic energy [K(p) == L: p2 j(2m)], combined 
in a separable Hamiltonian, H == <P(r) + K(p), the equations of motion can be written in two 
equivalent forms: 

2 
dr = J!.... dp = F(r)} or d r = F(r)}.

{ {dt m' dt dt 2 m 

The simplest method for solving the motion equations is Stoermer's leapfrog scheme [1,11-14] 
which replaces the second-order Newtonian equations with a centered-difference approximation: 

[rt+dt - 2rt + rt-dt] _ F(rt) 
(dt)2 m 

The "time step" dt is typically a few percent of a characteristic high-frequency vibrational pe­
riod. The predominant errors in the approximate leapfrog trajectories are phase (as opposed 
to amplitude) errors. The phase errors are of order dt2, following from local integration errors 
of order dt4. At the expense of additional storage space, more-nearly-accurate solutions can 
be readily obtained using higher-order methods. The classic fourth-order Runge-Kutta method, 
with local errors of order dt5 , is the most familiar of these. Another explicit fourth-order method 
[13; see footnote l ] which shares the time-reversible nature of Stoermer's scheme, and, like it, 
requires only one force evaluation per step, provides new coordinates from the accelerations at 
three consecutive times: 

[rt+2dt - rt+dt - rt-dt + rt-2dt] [5Ft+dt + 2Ft + 5Ft-dt] 
3(dt)2 12m 

The "results" generated by such a finite-difference scheme are the time evolutions of all the dy­
namical fluctuating quantities-that is, all those functions of the coordinates and momenta which 
are not constants ofthe motion. Familiar examples are the two- and three-body distribution func­
tions, the stress tensor, the heat flux vector, and the kinetic temperature. Generally the values of 
the "continuum variables," such as stress and temperature, are associated with individual atomic 
positions. The basis for interpreting the long-time-averaged results of equilibrium simulations, 
once transients have decayed, is Gibbs' equilibrium statistical mechanics. 

That theory, which assumes the equivalence of time averages and phase-space averages, es­
tablishes that equilibrium thermodynamic properties (the free energies and the thermal and 
mechanical equations of state derived from them) become independent of the choice of state 
variables for sufficiently-large isolated systems. For such large systems, both surface effects and 
fluctuations become negligibly small. The resulting large-system limit is referred to as the "ther­
modynamic limit." In this limiting case, N ----+ 00 ,the local fluctuations in the intensive variables 
associated with molecular dynamics become negligibly small, with amplitudes varying as N- 1/ 2 • 

The validity of these ideas has been established by intercomparisons of simulation techniques: 
isoenergetic versus isothermal, and isobaric versus isochoric. 

Away from equilibrium, in the most general case, both the time- and the space-dependences 
of concentrations, velocity, and energy need to be considered. Even when these are all absent, in 
homogeneous steady nonequilibrium states, additional nonequilibrium variables, such as fluxes or 
gradients of concentration, momentum, and energy, must be specified. At first glance, it appears 
that a nonequilibrium analog of the equilibrium "thermodynamic limit" cannot be achieved. 

lLike Stoermer's, the fourth-order method has been rediscovered, too. See [1,14]. 
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With fixed nonzero velocity and/or temperature gradients, larger and larger systems lead first 
to turbulence, and then to divergence. This conceptual problem can be avoided by using control 
forces to generate spatially homogeneous, near-equilibrium, steady states. 

Sufficiently close to equilibrium, the nonlinear nonequilibrium effects, such as viscous heating, 
can be ignored. Accordingly, in parallel to the equilibrium thermodynamic limit, a large-system 
time-independent "hydrodynamic limit," can be defined for homogeneous steady-state nonequilib­
rium systems [15], and approximated numerically in simulations, by using special control forces 
to maintain small deviations from equilibrium and to extract the resultant heat. Like New­
ton's forces, the control forces are deterministic and time-reversible. By applying these not just 
at boundaries, but homogeneously, throughout the system, boundary-driven turbulence can be 
avoided. 

The contribution of edge effects can also be avoided by using periodic boundary conditions. 
Then, for a one-component homogeneous spatially-periodic steady state in the resulting hydro­
dynamic limit, the equilibrium variables, density, velocity, and energy, need to be augmented 
by one or more nonzero components of the velocity gradient tensor, 'Vv. The additional control 
forces required to maintain a steady state are applied homogeneously, throughout the system. 

More realistic nonequilibrium systems have boundaries and are inhomogeneous. Simulating the 
corresponding nonequilibrium problems with molecular dynamics requires boundary forces capa­
ble of exchanging mechanical and thermal energy with the surroundings. The most general form 
of "Nonequilibrium Molecular Dynamics," incorporates mechanical work, based on coordinate 
variations {or}, as well as heat transfer, based on momentum variations {op}. Many methods 
have been developed to implement this combination of thermodynamics with mechanics. The 
simplest of these extensions include either "Gaussian" or "Nose-Hoover" thermostats to gov­
ern heat transfer [1,2]. These two approaches, unlike older alternatives based on the stochastic 
Langevin equation, retain the deterministic time-reversible nature of Newton's equations, and 
can be solved by straightforward generalizations of Stoermer's leapfrog scheme [1,16]. 

3. SMOOTHED-PARTICLE APPLIED MECHANICS [3,5] 

The smoothed-particle technique for solving problems in applied mechanics was developed 
nearly 20 years ago and has since been applied to a number of difficult problems involving large 
deformations [4]. Applications have included the development of fluid instabilities, the formation 
of astrophysical structures, and the high-speed fracture and penetration of solids. In every case, 
the underlying equations to be solved are the same-the partial differential field equations of 
continuum mechanics--conservation of mass, momentum, and energy: 

dp ap
- == - + v . 'Vp -p'V . v,
dt at 


pdv pav
dt == at + pv . 'Vv - 'V . p, 

pde pae
dt== at +pv·'Ve -P:'Vv-'V·Q. 

These equations, with initial and boundary conditions, form a closed system once the consti­
tutive dependence (on the field variables {p, v, e, 'Vv, 'VT}) of the pressure tensor P and the heat 
flux vector Q is specified. Gravitational and electromagnetic fields can also be included. Because 
the continuous spatial variation of all the field variables, for the equations just given, is logically 
equivalent to an infinite number of discrete degrees of freedom, approximate solutions of these 
equations are based on series truncation, point interpolation, or volume averaging. 

The smoothed-particle approach is based on interpolation among a set of irregularly-arranged 
moving grid points, the set of "smoothed particles." The mean motion of these particles fluctu­
ates about the macroscopic hydrodynamic flow. The smoothed particles, with masses {m}, are 
imagined to have their masses distributed in space according to a spatial probability density w(r) 
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which has a finite range h. Thus, there is no need to solve the continuity equation for the mass 
distribution. The local density can more easily be computed by summing up the contributions 
of nearby particles. 

The weighting function w(r) bears more than a superficial resemblance to the pair potential 
function ¢(r) familiar from molecular dynamics. We give the details of this correspondence in 
Section 5. For the special case h = 1, Lucy's original choice for a weighting function [5], 

is probably the simplest. Three typical weighting functions are shown in Figure 1 and described 
in more detail in Section 6. The constant c is chosen so that the spatial integral of w is unity. 
Thus, Lucy's normalization constant CL has the values {i,~, } in one, two, and three space 
dimensions. 
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Figure 1. The three smoothed-particle weight functions described in the text are 
shown. In the analogy of smoothed-particle hydrodynamics with molecular dynamics, 
these correspond to soft repulsive potential functions. 

In the simplest version of smoothed-particle applied mechanics, the density at each point is 
defined by summing the contributions from nearby particles: 

where the self-density contribution (i j) is included in the sum. Spatial averages (1) of other 
field quantities (such as the velocity) at a point r, according to this approach, are calculated in 
a similar way, by summing over the weight functions {Wj} and field quantities {h} associated 
with the nearby points {j} lying within the range h of r: 

(I) 

This formulation of averages is motivated by the advantage that the spatial gradients appearing 
in the continuum conservation equations can be expressed as simple sums over points involving 
the first derivative w', of w. 
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This expression for the smoothed-particle gradients exposes the underlying simplicity of the 
method. The resulting approximations to the partial differential equations for the time devel­
opment of the field variables {p, v, eh include a set of ordinary differential equations of motion 
for the time evolution of the smoothed-particle coordinates. These smoothed-particle ordinary 
differential equations closely resemble the ordinary differential equations of molecular dynam­
ics. It needs to be emphasized that the distinction between Vi, the velocity of the ith smoothed 
particle, and (V)i' the averaged hydrodynamic velocity at the location of the ith particle (the 
latter includes the contributions from near neighbors) is conspicuously absent in most published 
accounts of this method. In molecular dynamics, this local difference in velocities is crucial. It 
defines the local kinetic temperature. 

For a fluid or solid, made up of N particles, each with mass m, the smoothed-particle motion 
and energy equations take the form: 

~i =-mL [(~) + (:j) ].\7i W (rij ); 

Y t tJ'~i =(;) L [(:n + (:j)] :Vij\7i w (rij) -mL [(~ri) + (~f)] • 't"7. w(r .. )' 

where P(p, e, \7v) is the pressure tensor, and Q(p, e, \7T) is the heat flux vector. These expressions 

can be derived by differentiating the smoothed-particle expressions for (~) and (~). Because 

the momentum contributions to the members of each ij pair of particles sum to zero, the equation 
of motion conserves momentum exactly. Likewise, the motion and energy equations together 
provide a summed expression for the total energy, E == m 2:](v2 /2)+e]i' which is exactly constant, 
furnishing a useful check on the numerical work. 

The derivatives \7v and \7T can be obtained from somewhat different formulae based on dif­
ferentiating the smoothed-particle expressions for (vp) and (Tp): 

where the mean density Pij can be chosen as the arithmetic or geometric mean of Pi and Pj. The 
symmetric formulation just given above is far from unique. Other approaches, which we used in 
our early work, can be found in Monaghan's review [3]. 

Though the ordinary differential equations just given bear a close resemblance to those of 
molecular dynamics, they are more complex in several ways. First, the form of the weight 
junction, and its range, depend upon the judgment of the investigator. We will see, in Sections 6 
and 7, that calculated results can be unreasonably sensitive to these arbitrary choices. Second, 
the accelerations depend upon an additional particle variable, the internal energy, as well as 
on the velocity gradient, plastic strain, and the like. The thermal equation of state, relating 
energy to temperature, and the mechanical equation of state, which gives the pressure, must be 
"self-consistent," satisfying a Maxwell relation at::T == aE?;tv, where A(V, T) is the Helmholtz 
free energy. Third, rather than being consequences of interatomic forces, the nonequilibrium 
constitutive properties (bulk and shear viscosity, heat conductivity, yield strength, surface free 
energy, ... ) must be specified in advance. 

Fourth, in integrating the smoothed-particle equations of motion, three separate sums over 
pairs (rather than just the one sum needed in molecular dynamics) must be carried out: 
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(1) Calculation of the densities and temperatures. 
(2) Calculation of the velocity and temperature spatial gradients. 
(3) Calculation of the time derivatives ~~ and 

Each step requires the completion of its predecessors. 
Fifth, the forms of the hydrodynamic equations underlying the approximation also depend on 

judgment, and allow corresponding choices among alternative sets of partial differential equations. 
For instance, the density could be calculated by integrating the continuity equation, d~~e = -\7 ·V, 

rather than by summing the weight functions [3]. 
Finally, many finite-difference approximations to the differential equations are possible. For 

particular problems, some of these approximation methods are stable while others are not. 
In the present work, we have considered a variety of weight functions, and discarded others, 

some of which produce unstable dynamics. \Ve have not explored much variation in the basic 
continuum equations, but we have consistently avoided low-order integration errors and instabil­
ities by using fourth-order Runge-Kutta integration. Once a particular problem is specified and 
a stable numerical approach has been validated and adopted, the highly-accurate fourth-order 
Runge-Kutta integrator could be replaced by a lower-order substitute. 

4. SMOOTHED-PARTICLE APPLIED MECHANICS 
VS. EMBEDDED ATOMS 

From the mathematical standpoint, the smoothed-particle approach to continuum mechanics 
resembles the completely-atomistic "embedded-atom" view [17] of metals. The embedded-atom 
approach has provided an extremely useful and flexible description of the many-body (that is, not 
just pairwise) interactions which give metals their unique structural, flow, and surface properties. 
Though the embedded-atom forces are a generalization of the usual pair-force models, their 
implementation is not particularly costly. Relative to molecular dynamics, the densities in the 
embedded-atom model require an additional sum over all interacting pairs of atoms. 

The embedded-atom approach views each atom as embedded in an electronic density distri­
bution Pe(r) composed of contributions from the atom's near neighbors. Thus, the smoothed­
particle weighting function w(r) is analogous to the electronic distribution carried by a moving 
metal atom. In both cases, the ordinary differential equations of motion are functionals of the 
particle coordinates: 

F[p( {r} )] 
m 

The smoothed-particle approach is the more general because the smoothed-particle forces {F}, 
and energy changes {~n, need not depend upon the densities {p(r)} and energies {e( r)} only. 
Additional time dependencies from the velocities (through the viscous contributions), the temper­
atures (through their heat-conduction contributions), and the past history (through the plastic 
strain) are also possible. 

5. MOLECULAR DYNAMIC ANALOG 

OF SMOOTHED-PARTICLE MECHANICS 


If we consider a two-dimensional ideal gas composed of particles with mass m, then the macro­
scopic mechanical and thermal constitutive equations of state are {P = p ej e kT/ m}, where 
P is the hydrostatic pressure, T is the temperature, and k is Boltzmann's constant. For an 
isentropic flow, 

From the ideal-gas constitutive relations, the time-rate-of-change of the internal energy e provides 



162 W. G. HOOVER et ai. 

a relation linking the time derivatives of the density and pressure: 

From the equality of these two relations for e, it follows that ~~ = 2: 'so that P is proportional 
to p2 for such an isentropic process. If, for convenience, we were to choose the proportionality 
constant equal to ~, the smoothed-particle ideal-gas motion equations would become 

mdv 
-~ = - ~\7·w(r .. )·dt L... 1. tJ' 

where, as before, Vij is the relative velocity, Vi - Vj' These smoothed-particle equations are 
identical in form to those describing the conservative molecular dynamics of a system of point 
particles interacting with pair potential ¢(r) == w(r): 

mdVi 
dt 

where the internal energy ei does not include Particle i's kinetic energy (mvf) /2. If both the 
kinetic and the potential energy contributions were included, then the time derivative would 
depend on the mean velocity, rather than the relative velocity, of each pair: 

(!!..) mv; + L ¢ij 

dt 2 

Thus, for the special isentropic ideal-gas case, P ex p2, the continuum weighting function w cor­
responds exactly to an atomistic pair potential energy ¢: the time evolution of an isentropic 
smoothed-particle ideal fluid, with weighting function w(r), is identical to that of the 
time evolution of a nonideal system of N particles interacting with pair potential 
¢(r) == w(r). 

Though exact, this result appears to be paradoxical, because the smoothed-particle description 
is spatially very highly correlated. From the atomistic viewpoint the smoothed-particle descrip­
tion resembles a very dense fluid. Each particle interacts with dozens of others. In a dense 
molecular dynamical system, viscous effects, both shear and bulk, as well as thermal conduc­
tivity, would typically lead to dissipation on a time scale of picoseconds. These well-established 
and well-understood dissipative effects can be readily analyzed through computer simulation [18] 
and have a rigorous theoretical link to equilibrium autocorrelation functions through Green and 
Kubo's linear-response theory [19J. 

Thus, it appears to be paradoxical that the (smoothed-particle) description of an ideal fluid 
includes within it a dense-fluid dynamics which seems likely to show dissipation. In fact, the 
corresponding molecular dynamical system might well also exhibit a solid phase or phases, with 
a well-defined plastic yield strength, further confounding the interpretation of the solid-phase 
molecular dynamics as representing the smoothed-particle mechanics of an ideal fluid. 

These paradoxes can be resolved, in part, by noting that, as the number density of smoothed 
particles is increased, the corresponding dissipative coefficients approach zero, vanishing in the 
high-density limit. In this (unobtainable) limit the smoothed-particle approach is exact. For 
instance, it is a simple calculation to show that, in one dimension, the (solid-phase) vibrational 
frequencies are proportional to -k if the range of the weighting function, h, is held fixed. The 
spatial average of the vibrational force constant \72 ¢(r) is likewise zero, in one, two, or three 
dimensions because the force, -\7¢, vanishes at r h. 

Of course, these limiting cases are purely hypothetical mathematics, and not physics. An 
interesting purely-mathematical problem is the characterization of the opposite lo'W-density limit, 
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in which the smoothed particles occasionally collide, as in kinetic theory. This limit has not been 
discussed, but might well be an interesting research area. 

As smoothed-particle applied mechanics approaches continuum mechanics, we expect that any 
dissipation found for an ideal gas would disappear. On the other hand, a molecular dynamical 
simulation would certainly reveal a conversion of macroscopic long-wavelength velocity gradients 
to heat. Such dissipation lies outside the Euler equations of inviscid hydrodynamics. These 
considerations raise an interesting question: do the inviscid nonconducting smoothed-particle 
equations exhibit irreversibility? 

From the formal standpoint, the isentropic smoothed-particle equations have the same time­
reversibility characteristics as do Newton's atomistic equations of motion: replacing t by v by 
-v, and -it by leaves the equations of motion unchanged. On the other hand, the smoothed­
particle phase space {r, v, e} contains the energy densities in addition to the coordinates and 
momenta of molecular dynamics. For this reason, even the time evolution of the isentropic 
smoothed-particle equations does not satisfy Liouville's Theorem for the phase-space probability 
density f. For molecular dynamics, where the density depends on {r,p} as well as the time, the 
theorem follows from Hamilton's equations of motion: 

f f f 
( d ) 8f (dr) (8 ) (dP) (8 )

dt MD = at + dt or + dt 8p 

where we have in mind, but do not explicitly indicate, sums of the derivatives, over all degrees of 

freedom. Thus, the co-moving time derivative (1t) of the atomistic phase-space probability 
MD 

density f (r, p, t) vanishes. 
For smoothed-particle applied mechanics, the additional dependence, on energy, changes the 

flow equation: 

f f f 
( d ) of (dr) (Of) (dP) (8 ) (de) (8 )

dt SPAM at + dt 8r + dt 8p + dt 8e 

[(Of') (op) (ae)]== - f ar + ap + ae == 

Again, this abbreviated flow equation represents a sum over all particle coordinates, momenta, 
and energies. In the smoothed-particle case, the last term is not necessarily zero. The smoothed­
particle phase-space probability density can change with time. 

To investigate the possibility of an intrinsic dissipation in smoothed-particle applied mechanics 
(which has some unpublished support at the level of folklore), we investigated the simple 36-mass 
doubly-periodic two-dimensional system shown in Figure 2, using two different values for the 
range of w, h 1.5 (so that a typical smoothed particle interacts with six neighbors) and h = 
2.5 (so that a typical particle interacts with 18 neighbors). We began the simulations with a 
perfect 6 x 6 square-lattice arrangement of the ideal-gas particles, with sets of randomly oriented 
velocities, chosen such that the overall momentum vanishes and with unit kinetic energy initially, 
equally divided between the x and the y velocity components. As usual, we avoided all low-order 
truncation errors associated with time differencing the motion equations by using a locally-fourth­
order-accurate Runge-Kutta integration scheme with a relatively-small time step. 

In a typical case, with a Runge-Kutta time step of 0.05 and with the range of the weight 
function, h = 1.5, the internal energy showed fluctuations, of order 3%,:::::: k, but with no 
tendency to increase or decrease over a run of 10,000 steps. The total energy defined by summing 
the individual particle values of (mv2 )/2 and me, was, as expected, constant. 

Fluctuations are inherent in the smoothed-particle method and these persist in the limit dt ..... 0. 
Cutting the time step in half produces a slightly different approximate trajectory, but likewise 
with no long-term energy drift. The initially-small [10- 12] offset separating two neighboring 
trajectories (both of which presumably exhibit Lyapunov instability, with the offset growing 
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Figure 2. Isolated 36-mass periodic system using Lucy's weight function with h = 2.5. 
With the ideal-gas constitutive relation P == pe the motion of these particles conserves 
energy exactly. 

as eAt) becomes macroscopic [100] after several hundred time steps. vVe conclude that an accurate 
solution of the smoothed-particle ideal-gas equations of motion is typically chaotic, and contains 
no intrinsic dissipation mechanism, despite the exact analogy with chaotic nonlinear molecular 
dynamics. 

6. VALIDATION OF THE SMOOTHED-PARTICLE APPROACH 

6.1. Structural Validation of the Smoothed-Particle Approach 

For the smoothed-particle approach to give a faithful representation of fluid flow, it is desirable 
that no regular arrangement of the particles lead to a structure resisting limiting zero-frequency 
shear. In any "fluid" structure, it should be possible for the nodes to move, relative to each 
other, without inducing any permanent shear stress. The magnitude of such an undesirable and 
spurious stress could be estimated by using the analogy with molecular dynamics. 

From the motion equations discussed in Section 5, it is clear that the smoothed-particle equa­
tions, for a homogeneous constant-pressure, constant-density fluid, are isomorphic to the equa­
tions of molecular dynamics (because f; would be the same for all particles). Thus, the smoothed­
particle trajectories, for a given weighting function w(r) are identical to molecular-dynamics par­
ticle trajectories with w playing the role of a potential function. Thus, the shear stability of any 
combination of weighting function and nodal structure can be evaluated for smoothed particles 
by computing the analog of the solid-phase elastic constants (ratios of stress to strain) for atoms. 

A numerical stability check is easy to make. Simply compute the analog of the energy change, 
induced by a small shear strain, ~E <Pij ::::;; ~E Wij' A more-complete (Fourier) analysis would 
evaluate the analog of the entire solid-phase quasiharmonic vibrational spectrum in order to 
ensure that no shear deformation of a smoothed-particle fluid meets with a sizable elastic response. 
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In the two-dimensional case, the most likely stable symmetric structures are the square lattice 
(with four nearest neighbors) and the triangular lattice (with six). We explored the stability 
of both these structures using three weight functions. In each case, these functions vanish be­
yond r = 1, and are normalized, so that 211" Ji rw(r) dr == 1. The three forms we chose for 
W,{WL,we,WM}, are, respectively, Lucy's original choice, a simpler one, with a cusp at the 
origin, and the two-part spline recommended by Monaghan: 

WL=(~)(1+3r)(1-r)3 and We (~)(1 r)3, bothfor O<r<l; 

6 2 +6 3
W M = ( 711"40) (1 - r r,) lorc r < 05., and (78~) (1-r)3, Dor 0.5 < r < 1... 

We found that Lucy's and Monaghan's weight functions, WL and WM, provided smoother more­
nearly-accurate representations of the density. Usually, depending upon the range of the weight 
function (or, equivalently, on the density of points), one or the other of the two periodic lattices 
was stable. Occasionally both were stable, or neither was stable. We explored lattice stability 
by computing the energy change associated with a small shear of the lattice, exy = 0.01. These 
calculations provided no decisive evidence for the shear stability of one weight function over the 
other. On the other hand, the cusp weighting function provides relatively poor estimates of the 
overall density, with errors of the order of a few percent. We conclude that the smoothed-particle 
method does, in some cases, predict an ordered structure for a "fluid," but that the shear strength 
of such a fluid is negligibly small. 

6.2. Linear Transport Validation of the Smoothed-Particle Approach 
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Figure 3. Typical configuration of a 384-particle ideal-gas system, with 72 steadily­
moving particles at the top and at the bottom. There are 240 bulk smoothed par­
ticles. The vertical boundaries are periodic. In this simulation, the top boundary 
moves to the right (with speed 0.5) while the bottom boundary moves to the left 
(with the opposite velocity). Both the shear viscosity and the thermal conductivity 
are constants. 

To test the adequacy of the smoothed-particle energy transport, we simulated a system of the 
type shown in Figure 3, but with fixed boundaries. It has two triple-density horizontal boundaries 
of 72 motionless particles, each with its internal energy (proportional to temperature) fixed. By 
acting as a high-density high-pressure barrier, these fixed boundary particles repel the bulk fluid 
and act as a rigid isothermal heat-conducting boundary. For convenience, we considered a system, 
periodic in the horizontal direction, and with a total of 144 boundary +240 bulk 384 total 
particles. We used Lucy's weighting function with a range of 2.0. The width of the system was 

CIII/A 21.1om-L 
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24 and the top-to-bottom spacing between the horizontal rows of fixed boundary particles was 
15, so that the mean bulk density was of order unity, as were the internal energy per particle and 
the temperature. 

The thermal and mechanical equations of state of the gas were the ideal gas laws {P = pej e = 
kT/m}. The heat capacity per unit mass, the shear viscosity coefficient, and the heat conductivity 
were all chosen equal to unity, independent of density and internal energy. After a decay of 
the initial transients, the flows of heat, into the system and out of the system, with boundary 
temperatures of 1.05 and 0.95, fairly soon (after a time of a few hundred, as expected from the 
ratio of system width, squared, to the thermal diffusivity) reached values in the neighborhood of 
the value expected from Fourier's Law, 24 x (0.1/15) 0.16. The observed stationary value was 
actually somewhat lower, 0.128, indicating a surface-effect number dependence of order N- 1/2. 

An analogous calculation, using the cusp weighting function, also with a range dr 2, provided 
a much worse steady-state heat flux estimate, 0.06. Considerable work needs to be done to 
systematize, understand, and reduce transport errors, separating weight-function effects from 
bulk and boundary contributions, for both fluids and solids, and in two dimensions as well as 
three. 

To test smoothed-particle momentum transport, through the mechanism of shear viscosity, we 
used this same 384-particle geometry (See Figure 3) and set the temperatures of both horizontal 
boundaries equal to unity. The (horizontal) velocity component of the boundary particles was set 
equal to ±0.5, giving an overall shear strain rate, 1J:, equal to l5' Under these conditions, the 
equations of motion include contributions from the two independent shear strain rates, E.xx - E.yy 
and Exy. In our smoothed-particle representation, the underlying equations for the strain-rates 
at Particle i are: 

E.yy = 

where Pii is the symmetrized mean ij density, (Pi Pi) 1/2. As a measure of the arbitrariness in the 
smoothed-particle method, note that a symmetrized arithmetic mean, (Pi +Pi) /2, could, equally 
well, have been used. The sums, over j, include all interacting neighbors. The stresses have the 
usual form: 

(Jxx = - pe + rJv + E.yy ) + rJ (E.xx E.yy ); 

(Jyy = - pe + rJv (E.xx +E.yy ) - rJ(E.xx - E.yy ); 

(Jxy =rJExy . 

Usually the bulk viscosity rJv is ignored, as is appropriate for a low-density monatomic gas. 
Here, we have chosen to include it because of its usefulness in stabilizing the motion against 
transients in the initial phases of numerical solutions. 

The equations of motion and the energy equation for Particle i are: 

X =m L WI { Xii [ ( (Jp"'; ) i + ( ~2x ) J+ Yii [ ( ~: ) i + ( ~: )J } ; 
y =m L WI { Xii [ (~: ) i + ( ~y ) J+ Yij [ ( ~: ) i + ( (J;: ) J } ; 
e (~1) m L WI { (Xi;i~ij) [(~x ) i + ((J;: ) J+ (Yi;i~ij) [(~: ) i + ((J;: ) J 
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w(rij ), 

where Q == -fi, • "VT is the heat flux, and /'i, is the heat conductivity; "VT is the temperature 
gradient, given earlier. 

Using again the Lucy weighting function, with range 2.0, and the ideal-gas constitutive relations 
(with 'T}v equal to zero), a viscous-flow simulation of 16,000 fourth-order Runge-Kutta steps was 
carried out (dt = 0.05). The resulting steady-state fluid shear stress could be measured directly, 
in either of two ways, by averaging a xy over the bulk particles or by averaging the momentum 
transferred, per unit length and time, to the horizontal boundary particles. Both stress estimates 
were somewhat less than the expected Navier-Stokes value, A. The cusp weighting function 
produced much more slip, and a much lower stress. With the Lucy weighting function, the actual 
momentum transfers at the boundaries were ±1.17, rather than the Navier-Stokes values, ±1.6. 
The total heat extracted at the boundaries, 2 x 0.58 1.17, agreed exactly with the actual 
work done by the shear forces. A different range for the weighting function, 1.5 rather than 2.0, 
resulted in a slightly-higher momentum transfer, ±1.28, still well short of the true hydrodynamic 
value. During the transient approach to the steady state, the mean shear stress (averaged over 
the volume) showed much less fluctuation (3%) than did the two surface estimates (20%) based 
on heat and momentum transfer. This disparity, in the size of the fluctuations, reflects the fact 
that fewer degrees of freedom participate in the surface estimates, so that the fluctuations in 
these estimates are larger. 

The relative success of these two investigations, though with systematic surface errors of or­
der N- 1/ 2 , convinced us that bulk representations of ordinary linear transport phenomena are 
sufficiently well-represented by smoothed-particle applied mechanics to justify the study of more 
complex problems. Whether or not the smoothed-particle method is effective for systems with 
free boundaries still needed to be determined. Our progress on that question is described in the 
next section. 

7. REPRESENTING SURFACES WITH SMOOTHED 
PARTICLE APPLIED MECHANICS 

In our tests of shear flow, heat flow, and convection there were no "free surfaces," by which we 
mean system boundaries free of all external forces. Free surfaces are inherent to most physical 
problems, with the creation of new surfaces, as in cutting, polishing, and penetrating, being par­
ticularly challenging problems in continuum mechanics. Smoothed-particle applied mechanics, 
like continuum mechanics, generally, ordinarily provides no explicit consideration of surface ef­
fects. It is often stated that surfaces are hard to describe with this method. The difficulty became 
abundantly clear to us in a class project designed to model the chaotic formation of the drops de­
scribed in Shaw's classic chaos problem, the "dripping faucet." With the usual smoothed-particle 
treatment the "drops" evaporated! 

In order further to investigate the response of the smoothed-particle method to surfaces, but 
in a more systematic way, we studied the relaxation of a rectangular sample of viscous fluid, with 
a width-to-height ratio of 2, again using the set of weight functions {WL, we, WM}, together with 
the simplest possible constitutive model, an energy-independent pressure, p p2 - 1 coupled 
to a density-and-energy-independent shear viscosity 'T}. In these simulations, the cusp-based We 

function was much less stable and well-behaved than the two smooth choices, Lucy's WL and 
Monaghan's W M. 

In all the stable cases, the qualitative results of the calculations were similar, with the initially­
rectangular square-lattice sample relaxing to a somewhat more regular, but never really circular, 
overall shape. With shear viscous damping the final (motionless) state was completely stress-free, 
with each smoothed particle at unit density. Typical stable configurations are shown in Figure 4. 
There is a strong tendency for the particles to form chains, with neighboring chains of particles 
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separated by about the range of the weighting function w. In attaining the bulk density, particles 
at the "drop" boundary tend to have their near neighbors in directions parallel to that boundary. 
Thus, the distribution of particles is far from uniform. These pictures reflect the obvious, that 
smoothed-particle applied mechanics does not properly include surface tension. 

Figure 4. Relaxed 400-partic1e "drops" for the equation of state P p2 1 with 
a constant shear viscosity but without surface tension. The original shapes were 
rectangular. 

How could surface energy be included in smoothed particle applied mechanics? In smoothed­
particle simulations of radiation transport, Leigh Brookshaw finds surface particles by consider­
ing, for each particle, the weighted displacement sum over its neighbors: 

In the bulk, such microscopic displacement vectors {6i } will exhibit small fluctuations around 
the overall direction of the macroscopic density gradient V p. But at a boundary, the {6.} are 
vectors pointing away from the individual particles {i} toward the outside. 

This suggests several relatively convenient and realistic approaches to surface tension. The 
vector 6i can itself be taken as proportional to the surface force on Particle i. This is the simplest 
approach, but requires an ad hoc scaling of the proportionality constant in order to reproduce 
the reduction of excess pressure (inversely proportional to the drop radius) with increasing drop 
size. Alternatively, the scalar sum L: 6; could be used as a measure of the surface free energy, 
with the vector 6; defining the direction in which the maximum tensile surface stress acts. This 
gives, automatically, the correct dependence of surface tension on drop size. Figure 5 shows the 
resulting two-dimension8J drops using the first of these ideas. The vectors {6i } were calculated 
with a weight function having twice the range of the bulk one. The results of these simulations, 
with surface tension stabilizing nearly circular drops, show that the cusp weight function We is 
clearly superior to WL and WM, in that more particles lie in the interior of the drop, so as to 
describe its structure. The cusp weight function greatly reduces the incidence of near neighbors. 

With the ability of a few hundred smoothed-particles to treat, at least semi quantitatively, both 
transport processes and a variety of boundary conditions, we considered next a strongly nonlinear 
convective problem, the Rayleigh-Benard instability ofwhich Lorenz' chaotic "butterflyattractor" 
is a caricature. 

8. RAYLEIGH-BENARD INSTABILITY 


The mechanical instability of a nearly-incompressible liquid, heated from below in a gravi­
tational field, has been described-crudely-by Lorenz' classic set of three coupled nonlinear 
equations [20], measured in a host of laboratory experiments, and simulated with molecular dy­
namics, using tens of thousands of particles [7-9]. The history of hydrodynamic investigations 



169 Molecular Dynamics 

·0iI' •• 00·&0. . 

'~"O' •• O•• 

~'1 •• ~ ••••• ",.'" 

••• 0 ••••• 0 .0 ••• 
:·.·.·0·0·.·.·.·.·.·.·."'.·..... · .. 

••• 0.0•••0°•••••••••••••• 0 ••• 
: •• 0° ..... 0 ••• "' •• 0 •••••• °••••• 

: 0 0...°.".·.·.·0·0·.·.·0· 0... ~ 
.000~ .... "iI.. .0 •• '" 
: .. 0 '. '. '" 'II ............ 1'. • .... • : 


",. 0 .."00 •••••••••• '" ° ............... • •• 

o ....... ° .. , • • • "'. • 0 


'1 .. ,0.'0'" ••• ' ° 
6 

"''#. '# .. ' .. '. ° : e : : : : : : : ",' : ", • • " 0.

'0" °:0:"';.:. :.:."',0., 
.. " '" • • • ° .. • 
r:o~",:,,"; 0 ••• iI '.0.,0 

" '..' 0'·iI·· ... OO ,,· 

Cusp Lucy Monaghan 

Figure 5. Relaxed 400-particle drops for the equation of state P "'" p2 - 1 with 
a constant shear viscosity and with surface tension. The ranges of the weighting 
functions were all 2.5. The original shapes were rectangular. From left to right, the 
three weight functions are we, WL, and WM. 

spans a century. The references listed in the work by Goldhirsch, Pelz, and Orszag [10] provide 
access to the early research. 

We investigated first the gas-phase analog of this system, using the smoothed-particle method, 
and still retaining the two-dimensional ideal gas hydrostatic pressure-density-energy relation, 
with Lucy's weighting function. The problem requires also a gravitational field g. To maintain 
thermal contact at the upper [cold] boundary, 9 cannot be too large. We chose it in such a way 
that the maxlmum-to-minimum density ratio was not too large, always less than 2. We again 
incorporated shear viscosity ['1]] in this problem, and heat conductivity [K] contributions to e for 
each particle, as outlined by Monaghan [3]. 

Just as in our simpler transport test problems, the top and bottom boundaries were again 
made up of rows of particles at three times the normal linear density, as was shown in Figure 3. 
The boundary values of the coordinates, velocities, and energy densities were all held fixed. 

The usual linear analysis of the Boussinesq approximation to the Rayleigh-Benard problem 
deals with the linear instability of a nearly-incompressible fluid to convection rolls. For a "critical" 
value [of order (211')4] of the Rayleigh number R, convection rolls appear. R is given by 

R = (81np) (!:l.T) g(!:l.y)4,
8T p!:l.y vD 

where v is the kinematic viscosity, D is the thermal diffusivity, and !:l.y is the height of the 
system. The convection rolls can give way to chaos (according to the simplified Lorenz model) 
at a Rayleigh number of order 20 times greater than that required for the rolls. 

Convective chaos seems much harder to come by when the full equations are solved [10]. With a 
few hundred smoothed particles, our ideal-gas simulations required a much larger R, of order 106 , 

to generate unsteady flows. For an ideal gas [21] with a sizable temperature gradient, the Rayleigh 
number approaches the dimensionless ratio (g(!:l.y)3)j(vD). The importance of this ratio can be 
seen by comparing four different power levels characterizing the nonequilibrium flow, convection, 
conduction, buoyancy, and viscous dissipation. First, to see vigorous convection, it is necessary 
that the convective rate of energy transport exceed the (unstable) conductive rate: 

(~~) CONVECTION = N kT (;y) > (~~) CONDUCTION KT!:l.x ~ KT, 

giving a lower bound for the roll velocity: 
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A second inequality results if we insist that the energy released by buoyancy must exceed the 
energy dissipation due to shear viscosity, 

Thus, the dimensionless ratio of this upper velocity bound to the lower velocity bound, 
g(tJ..y)3jvD, resembles the Rayleigh number. 

Although the uncertain connection between the truncated incompressible linear theory and the 
highly-nonlinear simulation makes a definite prediction for the onset of rolls difficult, we had no 
difficulty generating rolls. The rolls can be portrayed in two distinct ways, first as unsmoothed {v} 
and then as smoothed {(v}} velocity fields. The spatially-smoothed rolls have the more plausible 
appearance. The contrast of this 240-bulk-particle simulation with previous simulations, both 

(i) conventional continuum solutions which provide "fully resolved" fields 	 [10] with a few 
thousand degrees of freedom and 

(ii) 	 conventional molecular dynamics, with which the time-and-space averaged dynamics of as 
many as 57,600 atoms has been used, 

suggests that the smoothed-particle approach to nonequilibrium simulations is well worth pursu­
ing. 

Accordingly, we have also studied the Rayleigh-Benard problem using a macroscopic dense­
fluid equation of state which corresponds to a simple interatomic pair potential [22] with three 
vanishing derivatives at the cutoff distance, r = a : 

The maximum interaction strength is chosen equal to 100C'. This choice results in an effective 
collision diameter, at a temperature equal to f, of 0.8269a. The mechanical and thermal equa­
tions of state in the vicinity of unit density, Na2 V, and temperature, kT € were measured 
with molecular dynamics simulations. We represent the results of these simulations with simple 
quadratic forms. At unit (number) density and reduced temperature p, kTjC' , PVjNe: and EjNe: 
are, respectively, 1.00, 1.00, 5.04 and 1.44. For small deviations from this standard state, the 
following expansions apply: 

PV 
Ne: = 5 + 86p + 2.5& + 96p2 + 26pbC'; 

-
kT 	

= 1 - 6p +0.76e: 0.86p2 - O.50pbe:;
e: 
e E 	 2

1.443 + 1.50p + 1.50T + 2.46p + 1.26p6T;
E: N e: 

6p=- (N;2) -1.000; DC'=- (:e:) 1.443; 6T (k:) 1.000; m=1. 

The first two expansions provide local-equilibrium pressures, which contribute to the accelera­
tions {~~}, and local temperatures, which drive the heat flux. Both contribute to {~~}. The 
additional expansion of energy as a series in 6p and 6T is made necessary by our thermal boundary 
conditions. On the boundaries of the box containing the Rayleigh-Benard fluid, where energy 
must be calculated from the observed density and a specified boundary temperature, the special 
thermal equation giving fi =- e(6p,67) is required. For such boundaries, the cusp weight function 
is less prone to "escapees" than are the smoother choices of Lucy and Monaghan. Once start-up 
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transients have relaxed, escapees (which require reflection and replacement within the system) are 
rare using the cusp weight function. We found that a bulk viscosity coefficient equal to the shear 
viscosity was useful in stabilizing the initial phases of dense-fluid Rayleigh-Benard simulations. 

Figure 6 shows two typical resulting flow patterns, using the averaged-flow representation for 
((pV)i) ::= m L: Wij vi> for this simple model of a dense fluid. The general impression that movies 
of these simulations provide is the presence of chaotic velocity fluctuations over a wide range of 
wavelengths. We can anticipate that a quantitative comparison of the particle simulation with 
more-traditional continuum methods would bear out this emphasis of fluctuations by smoothed­
particle applied mechanics. 

Figure 6. Two roll patterns {(v)} for a dense-fluid Rayleigh-Benard flow with cold 
and hot boundary temperatures of 0.50 and 10.00. The mean bulk density and 
number density are both unity. The shear viscosity and thermal conductivity are 
both equal to 0.1 and the range of We is 2.5. 

9. IRREVERSIBILITY AND CHAOS 

In nonequilibrium statistical mechanics, the "molecular chaos," described by Boltzmann, is 
ubiquitous. It is amusing to find that it also underlies the smoothed-particle continuum ap­
proach to hydrodynamics. In smoothed-particle applied mechanics, a truly stationary state, 
without fluctuations, is possible only if the underlying w-fluid freezes. This observation suggests 
a promising research area The usual macroscopic hydrodynamic equations lose the microscopic 
chaos inherent in the fluids they describe by ignoring fluctuations. When fluctuations are impor­
tant then smoothed-particle simulations provide a natural way to include them. 

Chaotic fluctuations can be quantified by measuring the Lyapunov spectrum. The spectra de­
scribe the exponential growth and decay rates for perturbations to the solutions of the differential 
equations. The calculations are relatively expensive to carry out because the complete spectrum, 
for a system described by I time-dependent variables, requires the solution of I + 1 sets of I 
differential equations. Comparisons of approximate continuum studies of Lyapunov spectra with 
accurate molecular counterparts suggested that the two types of spectra have similar shapes [21]. 
We have explored the Lyapunov spectrum for a periodic two-dimensional ideal gas, using 16 
smoothed particles. The complete spectra of 80 Lyapunov exponents (two coordinates, two ve­
locities, and an internal energy for each particle) resulting from two such studies are shown in 
Figure 7. The spectrum has a shape reminiscent of that for a two-dimensional solid. It appears 
that the exponents associated with the energy vanish. There are eight pairs of these. Though we 
have not been able to prove that this should be the case, the numerical work suggests it. Two van­
ishing exponents are required by the time-symmetry of the equations of motion. Otherwise, the 
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Figure 7. Lyapunov spectra for two-dimensional ideal gases made up of 16 smoothed 
particles, each with unit mass and described by Lucy's weighting function with a 
range of 1.5. The particles originally occupied a perfect triangular lattice, with a 
periodic area 4 x (12) 1/2. The initial ratios of internal to kinetic energy are indicated. 

spectrum exhibits the expected Smale-pair symmetry, with 40 sets of paired exponents {A, -A}, 
and strongly resembles many-body spectra obtained from solid-phase atomistic studies [22]. 

Goldhirsch, Pelz, and Orszag emphasize the difficulty in establishing chaos, from numerical 
solutions, in systems of partial differential equations. There is no doubt that at sufficiently 
small Rayleigh numbers the Rayleigh-Benard system does exhibit nonconvective solutions. In 
molecular dynamics, on the other hand, chaos is relatively easy to quantify, provided that the 
time integration is accurate. It occurs even in one- and two-body systems [23J. 

To approach the description of flows given by continuum mechanics, the limit of a large number 
of degrees of freedom must be taken. This limit can be approached in many different ways, by 
refining a regular spatial mesh or by introducing many smoothed particles. There is no logical 
reason to insist on a regular grid or to prefer one approach to the other. In any case, the limit 
is mathematical only, while the physical features of simulations are statistical in nature .. Thus, 
our results suggest that the fluctuations in a simulation can depend very much on the choice of 
approximation method. 

10. PARALLEL PROCESSING AND HYBRID SIMULATIONS 

There is no difficulty in treating as many as 10,000 atoms or 10,000 smoothed particles in 
a single-processor simulation. Even such a modest calculation is prohibitively expensive unless 
the system is first subdivided into cells, of width equal to the range of ¢(r) or w(r), so that 
only interactions between neighboring cells need to be considered. When an additional, coarser 
cell subdivision is repeated on a larger scale, the larger cells can be associated with individual 
processors in a massively-parallel computer. In this way, millions of atoms or smoothed particles 
can be treated at present, with billions in the near term [6J. 

Even so, the twin requirements of atomistic detail (for realism) and micron size (for relevance) 
can only be met through hybrid models which combine the microscopic and macroscopic ap­
proaches. Of many possibilities, smoothed-particle applied mechanics is aesthetically appealing, 
as a hybrid base, because its structure resembles that of molecular dynamics. How can the two 
simulation methods best be combined? 
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The simplest possible prototypical hybrid scheme treats two-dimensional atoms and smoothed 
particles with identical masses, with comparable force- and weight-function ranges, and with a 
vanishing laboratory-frame velocity. Private densities and kinetic energies can then be calculated 
for all particles, both atoms and smoothed particles, in the same way, Pi mE w(rij)i kTi == 
(m2 / Pi) E w(rij) vJ. The accelerations of the atoms and particles are calculated by superposing 
two kinds of contributions: 

or 

where Pi is the pressure tensor for particle i. In order that these contributions sum to zero in 
a pairwise way, it is convenient to use the atomistic forces for any pairs involving at least one 
atom, and to use the continuum force for only those pairs involving two continuum particles. 

This somewhat arbitrary allocation of force types conserves momentum, and is also exactly 
consistent with energy conservation provided that the energy contains both "potential" and 
"internal" contributions. Potential energies, obtained by summing pair potential contributions, 
<f>(r)/2, are allocated to all pair members, either atomistic and smoothed, which interact with an 
atom. Internal energies, for smoothed particles only, are computed by integrating the smoothed­
particle equation for ~~. The resulting total energy 

is a constant of the motion. Note that the second sum involves only smoothed particles, while 
the first and third can include contributions from all particles. 

We have evaluated this scheme by using the same series of tests used to evaluate smoothed­
particle approaches: first, equilibrium periodic simulations, next, linear transport simulations, 
and, finally, the nonlinear Rayleigh-Benard problem. We have not yet carried out a detailed 
study of methods for (i), changing particle type during simulation and (ii), changing particle 
size as a function of time and location. The partial results obtained so far all suggest that 
this general approach is a viable method for large-scale simulations of flows combining atomistic 
and continuum parts. The main nonphysical feature of the present hybrid scheme is the gradual 
dissipation, through viscosity and heat conduction, ofthe atomistic kinetic energy, by the adjacent 
continuum. 

11. CONCLUSIONS 

Time and money requirements for modern structural and flow programs make intercompar­
isons within and between groups of investigators increasingly difficult. The widespread use of 
smoothed-particle applied mechanics will perhaps exacerbate this trend. The many choices un­
derlying a calculation, both in characterizing the numerical approximations and in formulating 
constitutive equations, conspire against replication. Relatively simple equations of state, P p2 
or p2 -1, for instance, round numbers of particles, 100 or 1000, and easily reproducible boundary 
conditions would all be helpful in countering the trend toward computational complexity. The 
temptation to avoid cross checking as problems become more complicated must be avoided. With 
this one caveat, smoothed-particle applied mechanics appears to be a very useful component of 
such validation programs. 

Relatively rapid advances in hardware, coupled with much slower advances in software mandate 
that the simplest methods be used for simulation. These methods are also more easily imple­
mented and checked, and the results are more easily communicated to others. They are ideal both 
for students and for research investigations. Nevertheless, smoothed-particle applied mechanics 
has many loose ends: the assumed constitutive properties P(p, T), e(p, T), 1J(p, T), 1Jv (p, T), 
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K(p, T)j the prescribed boundary conditions, and the ad hoc weighting functions. Reproducibil­
ity, the sine qua non of science, can only be obtained with diligence. The use of an accurate time 
integrator (here the classic fourth-order Runge-Kutta method) avoids possible discrepancies and 
instabilities from lower-order difference schemes. 

The close kinship which we have established here between molecular dynamics and smoothed 
particle dynamics has proved very helpful in developing a hybrid interface linking the two ap­
proaches. 
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