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Ergodic mixing is prerequisite to any statistical-mechanical calculation of properties derived from atomistic 
dynamical simulations. Thus the time-reversible thermostats and ergostats used in simulating Gibbsian equi
librium dynamics or nonequilibrium steady-state dynamics should impose ergodicity and mixing. Though it is 
hard to visualize many-dimensional phase-space distributions, recent developments provide several practical 
numerical approaches to the problem of ergodic mixing. Here we apply three of these approaches to a useful 
non equilibrium test problem, an oscillator in a temperature gradient. [S 1063-651X(97)097I 1-0] 
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I. INTRODUCTION 

The simplest equilibrium and nonequilibrium many-body 
problems are steady states. These include Gibbs' equilibrium 
ensembles, for which the stationary smooth phase-space dis
tributions are exactly known, as well as the prototypical non
equilibrium flows which define the basic diffusive, viscous, 
and heat-conducting transport coefficients. The steady non
equilibrium flows generate relatively complicated multifrac
tal phase-space structures. Because the work done by the 
special boundary conditions, or driving forces, used to stimu
late nonequilibrium flows, is inevitably converted to heat, 
hcat reservoirs, capable of extracting the gencrated heat, 
must be included in the simulations [1,2]' For the application 
of statistical mechanics to such dynamical simulations, it is 
desirable that the overall dynamics be simultaneously "er
godic," " and "time reversible." Let us bcgin by 
defining these terms. 

An "ergodic" dynamics must eventually approach each 
and everyone of the microstates which could serve as an 
initial condition. Thus an isolated ergodic system would be 
required to approach all the energv states consistent with the 
initial encrgy, for example. An e;godic equilibrium systcm, 
with a volume V, and in contact with a thermal bath, or 
"thermostat," at temperature T, would bc required to ap
proach all the energy states possible within the fixed volume. 
Any computationally useful ergodic dynamics would neces
sarily gencrate these energy statcs with a probability density 
given by Gibbs' canonical distribution, fOibhsrxe -HlkT. Er
godicity becomes computationally irrelevant for large sys
tems, because the time required to access all states diverges 
strongly with system size. Ergodicity is likewise computa
tionally irrelevant for very high energy states, due to their 
U'vl~HtS'U"''v probability. 

A "mixing" dynamics evcntually loses all correlations 
linking the developing trajectory to its initial conditions. The 

~ mixing property, in the full phase space. is fundamental to 
the simulation of stationary nonequilibrium states [3]. for it 
ensures that the time-averaged properties are independent of 
the initial conditions. For the dynamics to be mixing. the 
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trajectories initiated at two neighboring initial conditions 
must eventually separate from each other and become uncor
related. Mixing is important for statistical mechanics in that 
it implies the independence of measured averages to the ini
tial conditions. Without mixing, the results of numerical ex
periments would not be reproducible. Mixing typically relies 
on the "Lyapunov instability" of the dynamics-the expo
nential separation of neighboring trajectories. But Lyapunov 
instability does not guarantee mixing. Consider, for example, 
the equations of motion for a particular Nose-Hoover oscil
lator [4-6] with mass, force constant, and temperature all 
chosen as unity: 

q=p; p 

Here q, p, and { are, respectively, the oscillator coordinate, 
momentum, and friction coefficient. Thesc cquations provide 
both chaotic and regular solutions, depending on the initial 
values. The boundaries separating such solutions are, without 
doubt, complicated. Choosing the initial values 
{Qo,Po,{o}={O,5,O}, and integrating numerically, thc mo
tion is found to be chaotic in the three-dimensional {q,p, {} 
space, with a Lyapunov exponent of order 0.01 [5]. Although 
the chaotic covered by this solution has the same 
dimensionality as that of the full space, three, the solution 
does not completely fill the space. Other initial conditions, 
separated only infinitesimally from chaotic ones, occupy in
stead two-dimensional quasiperiodic tubular regions which 
surround a countable infinity of stable periodic orbits. The 
measures of the chaotic and regular regions are roughly 
equal. A slightly more complicated set of equations, with 
two thermostatting variables rather than one, 

provides a dynamics which is simultaneously chaotic, er
godic, and mixing [11]. 

A "time-reversible" dynamics can bc made to return to 
its time-reversed initial state by changing the initial condi
tions, with no change to the equations which generate the 
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dynamics. In the examples given above, integrating from 
{qo,Po, or {qo,Po,(o,?]o} for a time t, changing the 
signs of Pt and ~t' and once again integrating for a time t, 
results in the time-reversed initial state {q 0 , -- Po, ~o} or 
{qo, - Po, - ~o, ?]o}· All the fundamental equations of phys
ics are time reversible, suggesting that the thermostats and 
ergostats for physical simulations should have this property 
too [7-9]. In fact, the most successful model thermostats 
have this property, which greatly simplifies theoretical analy
ses [1,2]' 

Many types of heat reservoirs, designed to control tem
perature, or energy, or stress, have been developed as gener
alizations of the simpler Nose-Hoover approach. We select 
three of them [6,8,10] for detailed discussion in Sec. II. All 
three time-reversible methods appear to be both ergodic and 
mixing for that prototypical hard-to-mix problem, the one
dimensional harmonic oscillator. For that reason, these more 
general thermostats would appear to be useful for nonequi
librium simulations. In Sec. III we study the ergodicity and 
mixing properties for all three types of time-reversible ther
mostats, by applying them to a non equilibrium oscillator 
problem [11]. Two of the three thermostats perform quite 
well away from equilibrium. In Sec. IV we summarize the 
conclusions drawn from this work. 

II. MODEL HEAT RESERVOIRS 

AND THERMOSTAT FORCES 


Nonequilibrium steady states necessarily involve the in
teraction of a driven system with at least one heat reservoir. 
Typically, a heat reservoir is characterized by its ideal-gas
thermometer temperature T [12]. A physical picture of such 
a heat reservoir is a gas of very small weakly interacting 
particles. In practice, such a heat reservoir is modeled by 
adding "thermostat forces" to the dynamics of all those de
grees of freedom subject to the thermostat. The thermostat 
forces, like the heat reservoir which they represent, are cho
sen for their ability to reproduce a Gibbsian canonical distri

2
bution for the system velocities f Gibbs C( e - mu 12kT indepen
dent of the initial conditions. Energy reservoirs, represented 
by "ergostat forces" can be similarly defined. It has recently 
been shown that the fractal structures generated by the time
reversible thermostatted equations of motion have exact 
counterparts in systems free of the thermostats, provided that 
hard-disk or hard-sphere interactions are used [13]. 

Probabilistic thermostats have their roots in kinetic theory 
and the Langevin equation, and can be represented in simu
lations by stochastically reflecting walls. The intrinsic irre
versibility of the stochastic dynamics which results precludes 
theoretical analyses based on trajectory properties. See the 
discussion of this point in the proceedings of a recent NATO 
conference [14]. We do not consider such stochastic irrevers
ible boundary conditions here. There are many alternative 
descriptions of boundaries which are both deterministic and 
time reversible. For example, walls can be composed of 
"tethered particles" [15]. The oscillations of these tethered 
boundary particles are governed by feedback forces which 
control their kinetic or total energy. Ashurst's more sophis
ticated "fluid walls" [16] are closer to reality. Ashurst's 
walls confine a group of collectively thermostatted, or er

gostatted, particles between two elastic reflecting surfaces. 
Computational thermostats were first constructed in an ad 

hoc way [16,17]' The algorithm representing the thermostat-~ 
ting action was called "velocity scaling," because all the 
thermostatted velocities were periodically multiplied by a 
numerical scale factor, so as to match the instantaneous sec
ond moment of the velocity distribution to the desired ideal
gas-thermometer temperature T: 

Though this periodic rescaling process is not time reversible, 
it becomes so in the limiting case of continuous rescaling. In 
that limit, the thermos tatting process can be described by a 
feedback equation which contains a Lagrange multiplier ~. 

The multiplier constrains the second moment to match the 
temperature: 

p=F-~p; 2: F(plm)12K~k= 2: pplm=O, 

where K is the kinetic energy. Exactly this same time
reversible motion equation results if Gauss' principle of least 
constraint [18], or Hamilton's principle of least action [19], 
is used in conjunction with the requirement of constant ki
netic energy. Similar motion equations, but with a different 
recipe for ~, result if energy, rather than temperature, is con
trolled. 

Nose developed a thermostat designed to reproduce 
Gibbs' canonical ensemble [20,21], and including a "time-~ 
scaling" variable s. Hoover emphasized the superiority of 
the simpler "Nose-Hoover" form of this thermostat [4]. 
Very recently, Dettmann, and Morriss [22] showed that these 
Nose-Hoover equations of motion follow from a special 
Hamiltonian which avoids Nose's time scaling. For a one
dimensional oscillator, with unit mass and force constant, 
and with temperature and thermostat relaxation time of unity, 
the time-reversible Nose-Hoover oscillator equations of mo
tion describe the motion in a three-dimensional {q,p,n 
space: 

q=p; P q - (,P; 1. 

In the time-reversed motion both p and ( change sign. The 
main advantage of this Nose-Hoover thermostat is simplic
ity. For a system which is sufficiently mixing to promote 
ergodicity, it is hard to imagine a simpler thermostat. A har
monic system, on the other hand, behaves in a very compli
cated way under the influence of a Nose-Hoover thermostat. 
The extended oscillator phase space { q,p,~} is typically par
titioned into both chaotic and regular regions, with the regu
lar regions enclosing a countable set of stable periodic orbits. 
See the illustrations in Ref. [5]. Because of this undesirable 
complexity, special thermostats have been developed. Ide
ally, such a thermostat will generate ergodic dynamics for 
relatively small equilibrium systems, and will generate a 
mixing dynamics both at, and away from, equilibrium._" 

Kusnezov, Bulgac, and Bauer [9], and Hoover and Holian 
[8] provide recent general overviews of this approach. See 
especially Iu and Bulgac's interesting application of a some
what more complex "Brownian" thermostat to the dynamics 
of small metal clusters [10]. The most straightforward exten
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sion of Nose's thermostat idea is to include control of addi
tional velocity moments. The harmonic oscillator, with both 
second- and fourth-moment control, was investigated from 
this point of view by Hoover and Holian [8]: 

q p; p=-q-{p 

The extra control variable t was designed to correct the 
phase-space partitioning of the Nose-Hoover thermostat. The 
partitioning, into chaotic and regular regions, gives long-time 
averages which depend on the initial conditions. For ex
ample, though (K) is correctly controlled, lack of ergodicity 

an incorrect fluctuation of the kinetic energy (AK2
). 

Hoover and Holian found that controlling both the second 
moment (K) and the fourth moment (K2) was sufficient to 
get the complete Gibbs' canonical distribution for a har
monic oscillator. Posch and Hoover [11] showed later that 
these same {q,p,{,g} motion equations can be easily ex
tended to a nonequilibrium oscillator, with a temperature 
varying in space, T=T(q), without losing the ergodicity 
property. Bulgac, lu, and Kusnezov [10] controlled the first 
four moments of the velocity in isothermal simulations of a 
small cluster of metal atoms. As the result of many trials, not 
reproduced here, we found that their control variables which 
interact with the odd moments of the velocity distribution 
(p) and (p3) were not useful for promoting ergodicity in an 
oscillator. Accordingly, we consider here only the Bulgac
lu-Kusnezov control of the oscillator's second and fourth 
moments (p2) and (p4): 

The control variable { has a stationary equilibrium distribu

tion ex: e , providing a somewhat stiffer control than 
Nose's, together with a relatively erratic dynamics. The 
fourth-moment control variable t is identical to that used by 
Hoover and Holian [8]. 

Rather than considering more moments, Martyna, Klein, 
and Tuckerman [6] took a qualitatively different approach, 
generalizing the Kose-Hoover thermostat by introducing a 
"chain" of nearest-neighbor thermostat variables, control
ling all the second moments in the chain. At equilibrium, 
each of the variables in such a chain has a Gaussian distri
bution and is linked to no more than two adjacent control 
variables. In the present work we cxplore the simplest of 
these thermostat chains, in which just two thermostat vari
ables { and t control the kinetic energy. The equations of 
motion are quadratic: 

q=p; p=-q 

.\1artyna, Klein, and Tuckerman showed that this system is 
time-reversible and ergodic at equilibrium. Because the two 

time averages (t) and <U> both vanish at equilibrium, the 
long-time-averaged temperature (p2) necessarily converges 
to its target value, here unity. Martyna, Klein, and Tucker-

man had intended their chains to be useful away from equi
librium too. But Holian pointed out that the chain thermo
stats fail whenever, as is usual away from equilibrium, 
is nonzero [8,23,24]' In what follows, we apply the Hoover
Holian, Bulgac-lu-Kusnezov, and Martyna-Klein
Tuckerman temperature controls to a classical one
dimensional harmonic oscillator driven from equilibrium by 
a space-dependent thermostat. The Hoover-Holian and 
Martyna-Klein-Tuckerman approaches, applied to the har
monic oscillator, give a Gaussian distribution in the phase 
space, for the four variables {q,p, {, t}. In these cases it is 
easy to verify that Liou ville's theorem for the stationary flow 
takes the form 

The Bulgac-lu-Kusnezov approach leads instead to the very 
similar relations: 

We discuss the extension of all these ideas to the nonequi
librium case in the following section. 

III. ERGODICITY TESTS FOR A THERMOSTATTED 
NONEQUILmRIUM OSCILLATOR 

For simplicity, we continue to consider the illustrative 
problem of a single harmonic oscillator, with unit mass and 
force constant. Such an oscillator, if isolated from external 
forces or controls, simply traces out a constant-energy circle 
in its {q,p} phase space. At thermal equilibrium, with a heat 
reservoir at temperature T, a thermostatted oscillator should 
arrive at any combination of coordinate q and momentum p 
with a relative frequency given by Gibbs' stationary canoni
cal distribution. For a temperature of unity 

f(q,p)rxe 

The two-moment thermostat explored by Hoover and Holian 
(HH) and the similar, but somewhat stiffer thermostat based 
on Bulgac. lu, and Kusnezov's work (BlK), together with 
the "chain thermostat" invented by Martyna, Klein, and 
Tuckerman (MKT), can all three provide phase
space distributions for the harmonic oscillator in {q,p, {, t} 
space [1,6,8]' In the stationary equilibrium state, despite their 
different dynamics, the three thermostats correspond to simi
lar extended canonical distributions, 

For simplicity, we continue to set all the adjustable param
eters equal to unity in the nonequilibrium case too. Careful 
equilibrium investigations had previously been carried out in 
the HH and MKT cases, establishing that the entire four
dimensional Gaussian distribution results from an arbitrary 
initial condition. The equilibrium results, which we include 
in Table I, indicate that the BlK case is likewise ergodic. 
Here, and in what follows, we exclude from consideration 
exceptional zero-measure sets of initial conditions with 
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TABLE I. Dependence of the time-averaged "energies" EMKT=(q2 +C2+g2)/2 or 

(q2+p2+g2)/2+C4/4 and external entropy production S/k: (Slk)=( cf:Ptanh(q») on the deviation 
from equilibrium € for the Hoover-Holian. Bulgac-Ju-Kusnezov, and Martyna-Klein-Tuckerman thermostat
ted oscillators. Time averages are given for 107 

, , and 109 time steps of 0.001. where the maximum- and 
mimimum-energy trajectories after steps were then followed, and compared, for an additional 109 time 
steps. 

€ SHl1lk SBJKlk EMKT SMKTlk 

104 0.0 1.89< 2.11 0.000.0.000 1.69< 1.81 0.000,0.000 1.97< 2.03 0.000.0.000 
105 0.0 1.99, 2.00 0.000,0.000 1.76. 1.75 0.000,0.000 2.00, 2.00 0.000,0.000 
106 0.0 2.00,2.00 0.000,0.000 1.75, 1.75 0.000,0.000 2.00,2.00 0.000,0.000 

0.1 1.89< 2.17 0.001,0.002 1.50< 1.83 0.038,0.007 1.95< 2.04 0.001,0.002 

105 0.1 2.03, 2.02 0.001,0.001 1.49, 1.52 0.038,0.035 2.00,2.00 0.001.0.001 
106 0.1 2.01,2.01 0.001,0.001 1.49. 1.50 0.03S.0038 2.01,2.00 0.001,0.001 
IO~ 0.2 1.91 < 2.15 0.002,0.007 1.73< 1.88 0.026,0.030 1.96< 2.03 0.003,0.006 
105 0.2 2.04, 2.04 0.004,0.004 1.81. 1.80 0.025.0.025 2.00, 1.99 0.005,0.005 

106 0.2 2.04, 2.04 0.004,0.004 1.81. 1.81 0.025,0.025 2.00, 2.00 0.005,0.005 

104 0.3 2.00< 2.20 0.006,0.010 1.78< 1.90 0.049,0.070 1.94< 1.99 0.008,0.011 

105 0.3 2.06, 2.06 0.OOS,0.008 1.84, 1.83 0.063,0063 1.97, 1.96 0.010,0.009 

106 0.3 2.08, 2.07 0.008,0.00S 1.84, 1.84 0.062,0.062 1.97, 1.96 0.010,0.010 
104 0.4 2.04< 2.25 0.013,0.021 1.95< 2.07 0.1] 2,0.123 1.88< 1.96 0.017,0.019 

105 0.4 2.14,2.14 0.016,0.016 2.01,2.01 0.122,0.121 1.92, 1.91 0.019,0.018 
106 0.4 2.15,2.13 0.016,0.016 2.02, 2.02 0.121,0.120 1.92, 1.92 0.018,0.018 
104 0.5 2.15< 2.38 0.024,0.036 2.18< 2.41 0.172.0.197 1.82< 1.88 0.033,0.039 

105 0.5 2.26, 2.29 0.03 1.0.029 2.29, 2.28 0.185,0.182 1.85, 1.85 0.037,0.036 
106 0.5 2.28, 2.27 0.029.0.028 2.30, 2.29 0.184,0.185 1.85, 1.85 0.036,0035 

104 0.6 2.29< 2.61 0.040,0.063 2.70< 2.88 0.325,0.325 1.75< 1.91 0.049,0.OSO 

105 0.6 2.44. 2.44 0.050,0.048 2.85, 2.82 0.219,0.243 1.82, 1.82 0.065,0.064 

106 0.6 2.45, 2.45 0.051,0.051 2.85, 2.84 0.213,0.215 1.83. 1.82 0.066,0.065 

104 0.7 2.44< 4.17 0.059,0.064 3.03< 7.98 0.398,0.428 1.74< 3.32 0.065,0.236 

105 0.7 4.14, 4.10 0.059,0.058 7.51,7.99 0.425,0.427 3.02, 3.33 0.205.0.233 

106 0.7 4.17, 4.16 0.058,0.058 7.95, 7.99 0.426,0.426 3.30, 3.33 0.230,0.233 

104 0.8 1.22< 2.83 0.002,0.115 2.51< 2.6S 0.250,0.271 1.74< 3.41 0.106,0.257 

105 O.S 1.42, 1.36 0.037,0.039 2.53, 2.53 0.251,0.252 3.41, 3.41 0.256,0.257 

106 O.S 1.30, 1.30 0.039,0.039 2.53,2.53 0.252,0.252 3.41,3.41 0.257,0.257 

104 0.9 2.99< 3.33 0.135,0.230 1.11< 1.37 0.090,0.175 1.86< 2.07 0.228,0.249 

105 0.9 3.19, 3.18 0.257,0.255 1.11, 1.11 0.090,0.091 1.87, 1.87 0.239,0.239 

106 0.9 3.19,3.19 0.263,0.263 1.11, 1.11 0.090,0.090 1.87. 1.87 0.239,0.239 

104 1.0 2.95< 3.35 0.212,0.250 3.00< 10.41 1.446,0.730 1.88< 2.02 0.279,0.286 

105 1.0 3.13, 3.12 0.227,0.233 3.09,10.42 1.511,0.729 1.S8. 1.88 0.283,0,283 

106 1.0 3.15, 3.14 0.236,0.234 3.09,10.42 1.512,0.729 1.88. 1.88 0.283,0.283 

q = p = O. Martyna, Klein, and Tuckennan [6] carefully veri asymptotically linear, for small E, which in turn would imply 
fied that these negligible sets repel, rather than attract, the that the external thermodynamic dissipation is quadratic in E: 
phase-space flow. 

Here we apply all three thermostat approaches HH, BJK, 
and MKT to a one-parameter nonequilibrium problem [I 
an oscillator with a coordinate-dependent temperature: Ik 3 

T( q) 1.0+ Etanh( q). 

The numerical results we obtain for the HH and MKT therThough it is plausible that linear-response theory could be 
mostats appear to be consistent with this expectation for E up "-,,,applied to this problem, for small E, the known multifractal 
to about 0.5. The BJK thermostat, on the other hand, exhibits nature of the phase-space distributions which result, suggests 
considerable nonlinearity, including limit cycles, in this same that the theory would be difficult to work out. In the present 
range of E.work we carry out numerical explorations of these nonequi

Holian pointed out to us that the time averages of theselibrium systems, considering a range O<SE<S 1. We would 
expect the corresponding heat-flux perturbation to become various expressions for the dissipation (Slk) can all be ex
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C,WKT = 0.00 E,WKT =0.30 = 0.60 

FIG. 1. Poincare sections p=O for a harmonic oscillator in a temperature gradient. The three {q",~} cases shown here, for the MKT 
thermostat, suggest the gradual shift from a smooth equilibrium distribution function to a limit cycle through intermediate multifractal 
distributions. The systems studied in the present work all appear to provide distributions independent of initial conditions with the exception 
of the BJK thermostat at (3= 1.0. 

pressed in a simple form which emphasizes the importance 
of the temperature perturbation proportional to tanh(q): 

These three alternative expressions for S follow from 
time averages of the time derivative of an energyllke qua
dratic fom1: 

What about ergodieity and mixing for the nonequilibrium 
eases? Here, sinee the distributions are multifraetal, rather 
than Gaussian, ergodicity is arguably less significant than the 
slightly different requirement, implied by mixing, that time
averaged values be independent of the initial conditions. In 
far-from-equilibrium problems the multifractal distributions 
can even collapse to one-dimensional limit cycles, stable to 
machine accuracy and independent of the initial conditions. 
Space-filling ergodicity is evidently impossible under such 
conditions. Figure 1 illustrates the kinds of flows which re
sult, through a series of typical Poincare sections for the 
MKT thermostat. These are three-dimensional sections cut 
through the four-dimensional solution space. The sections 
for the HH thermostat are similar. The sections show quite 
clearly the structural changes induced by increasing the tem
perature gradient. The Poincare section of the space-filling 
equilibrium distribution becomes transformed, by increasing 
the temperature gradient, through a series of more-and-more 
"HJl5UHll attractors, until a limit cycle is reached. The HH and 
MKT trajectories converge to limit cycles at IE=0.7. For the 
MKT trajectory the corresponding Poincare section reduces 
to four isolated points. The existence of such robust Iimit

solutions, for time-reversible motion equations, ap
pears somewhat paradoxical. The BJK thermostat behaves 
differently. It already shows a limit cycle at a relatively small 

temperature gradient, willi €= 0.1. See tl1e representative 
BJK trajectory projection shown in 2. 

Just as no experiment can exclude uncertainty in its resuJ.t, 
no numerical experiment, or test of ergodicity, can be com
pletely definitive. Let us consider the implications of ergod·· 
icity for computation. At equilibrium, where the distribution 
is usually known, any allowed state should eventually occur, 
and recur. Likewise, any two trajectories, independent of 
their initial conditions, will eventually, and repeatedly, ap
proach one another. Though these recurrence and concur
rence properties could be tested, for sufficiently 
low-dimensional systems such as ours, they are of no signifi
cance whatever for statistical mechanics. This is because the 
recurrence and concurrence times, even for very small sys
tems, exceed the age of the universe. Accordingly, we do not 
investigate recurrence and concurrence numerically. Away 
from equilibrium there is no guarantee that a measure can be 
determined throughout space. The limit cycles indicate that, 
sufficiently far from equilibrium, the measure can vanish al
most everywhere. 

FIG. 2. {q,p, n trajectory for a harmonic oscillator, 
using the BJK thermostat with (3= 0.11. This trajectory is a limit 
cycle. 
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What are some practical tests of the dynamics which do 0.10 1 
have significance for statistical mechanics, both at and away ,., • 

'" t from equilibrium? At equilibrium, ergodicity requires that 
~ 

0.05 f 
mean values, fluctuations, and dynamical measures of insta
bility and dissipation must all be independent of the initial 
conditions. A way from equilibrium the equivalent mixing 
property simply corresponds to the reproducibility of experi
mental averages. Thus the time averages of various mo
ments, such as (q;pj~ke>, together with the Lyapunov expo
nents ({ A;} >, and their fluctuations, and the external entropy 

production (S) and its fluctuation, must all converge to val
ues independent of the initial choice {q, p, ~, no. 

Based on preliminary investigations of all the quantities 
just mentioned, we have chosen to tabulate here time aver
ages for two useful diagnostic quantities, the "energies" 
(q2+p2+~2+e)12 and [(q2+p2,e)/2]+[~4/4] and the 

external entropy production rate Slk= LA;. We generated 
these data by first selecting 100 sets of initial conditions 
{q,p,~,~} drawn at random from the eqUilibrium probability 
density 

f HH.~fKT(X e 

These initial data would allow us to detect the presence of 
topologically isolated phase-space regions with measures of 
order of 0.01 or more. The 100 sets of differential equations 
corresponding to the initial data were first integrated forward 
for ten million time steps, with dt=O.OOl, to a time of 
10000, using the classic fourth-order Runge-Kutta method. 
Next, the two trajectories corresponding to the extreme time
averaged energy values in the set, the maximum and the 
minimum, were integrated forward in time for an additional 
billion time steps. The resulting data are displayed in Table I. 

For small deviations from equilibrium the maximum and 
minimum values of energy and entropy production evidently 
approach a common limit fairly quickly, with the separation 
between the two diminishing, roughly as the inverse square 
root of the run length. Near 10=0.7, where all three thermo
stats lead to limit cycles, it is evident that the situation is 
becoming more complicated. "Short" calculations, corre
sponding to millions of time steps and thousands of oscilla
tions, can have very different time averages. Quite remark
ably, longer calculations, with billions of time steps, indicate 
that all of the three approaches to thermostatting considered 
here lead to averages free of dependence on the initial con
ditions. The only apparent exception which we found in the 
nonequilibrium states shown in the table is the Bulgac-Ju
Kusnezov thermostat, at the highest value of 10, 1.0. Here the 
minimum- and maximum-energy sets of {q,p, ~, g} lead to 
periodic orbits, appearing as four- and two-point limit cycles 
in the p = 0 Poincare plane. 

For all three thermostat types, the rate of convergence is 
dramatically slowed by the multi fractal nature of the distri
bution functions in the vicinity of (3=0.7. Here the dissipa
tion rate and the largest Lyapunov exponent Al have roughly 
equal magnitudes. For the chaotic states which preceded the 
cycle at 10= 0.7 we show the HH and MKT Lyapunov spectra 
in Fig. 3. These two thermostats evidently provide relatively 
simple space-filling ergodic nonequilibrium trajectories for a 
relatively wide range of oscillator temperature gradients. The 
change occurring in the rate of convergence of the time av
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FIG. 3. Lyapunov spectra for thermostatted nonequilibrium os
cillators using the HH and MKT thermostats. Both sets of four flow 
equations are characterized here by their four Lyapunov exponents. 
For higher values of the dimensionless temperature gradient E the 
spectra reveal limit 

erages is reflected in the Lyapunov spectra {A}. The magni

tude of the dissipative shrinking in phase space, LA= Slk, 
exceeds the spreading tendency expressed by the largest ex
ponent A1 when the temperature gradient magnitude 10 
reaches about 0.7 in these two cases. Evidently the strong 
nonlinearity associated with the cubic control variable bBJK 

destroys the relatively simple response of the oscillator to a 
temperature gradient. 

IV, CONCLUSION 

In principle, equilibrium tests for ergodicity can be based 
on recurrence and concurrence, as well as on time-a\'eraged 
values of moments, entropy production, and the Lyapunov 
spectrum. In practice, only the time averages can have sig
nificance for statistical mechanics. We have studied a variety 
of phase functions to check the ergodicity and dependence of 
dynamical averages on the initial conditions, all for the same 
simple nonequilibrium system, but with three different ther
mostat types. We found that any of them, Hoover-Holian, 
Bulgac-Ju-Kusnezov, or Martyna-Klein-Tuckerman, can eas
ily provide stationary nonequilibrium states which are mix
ing, so giving dynamical averages independent of the initial 
conditions. The Lyapunov spectra reveal the erratic unpre
dictable nature of the BJK thermostat more clearly than do 
the simple averages of phase variables. 

The Hoover-Holian and Bulgac-Ju-Kusnezov temperature 
controls have the advantage of precise temperature eontrol, 
even far from equilibrium. The Martyna-Klein-Tuckerman 
thermostat, which lacks this characteristic, does have the vir
tue of additional simplicity--the underlying equations are 
quadratic forms. Both the MKT and HH thermostats appear 
to exhibit a roughly linear response over a wide range of 
nonequilibrium conditions. The minimum-to-maximum en
ergy ranges shown in the table indicate considerably smaller 
fluctuations for the MKT chain approach than for the others. 
The more elaborate forms of the BUlgac-Ju-Kusnezov ther
mostats, given in the references, could be particularly desir- ~ 
able if the details of the moment fluctuations were specially 
important. The extra flexibility of the BJK thermostat is not 
specially helpful in sampling the phase-space efficiently for 
the heat-flow problem studied here and leads to a particularly 
erratic dynamics. 
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