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Smooth-particle applied mechanics: Conservation of angular momentum with tensile stability
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Smooth-particle applied mechani€SPAM) provides several approaches to approximate solutions of the
continuum equations for both fluids and solids. Though many of the usual formulations conservéineass,
momentum, and energy, the angular momentum is typicaltconserved by SPAM. A second difficulty with
the usual formulations is thdensile stress states often exhibit an exponentially fast high-frequency short-
wavelength instability, “tensile instability.” We discuss these twin defects of SPAM and illustrate them for a
rotating elastic body. We formulate ways to conserve angular momentum while at the same time delaying the
symptoms of tensile instability for many sound-traversal times. These ideas should prove useful in more
general situations.
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[. INTRODUCTION confirming the familiar resul{subject to the central-force
assumptiopthat angular momentum is conserved. HErss

Isolated systems of particles which interact with “central” the scalar magnitude of the forde=—ddg/dr.
forces, such as the forces derived from pair potentials, con- In continuum mechanics angular momentum in a medium
serve the total angular momentum of the systerKeeping  subject to internal stresses evolves in a similar way. Changes
in mind that the fundamental forces in nature are pairwisein overall angular momentum only occur through torques
additive Coulomb forces, it is not surprising that this sameexerted by external forces. The total angular momentum in a
conservation principle is obeyed by macroscopic samples afontinuum becomes an integral over the volu@ea in the
“real materials” too. To demonstrate conservation of angulartwo-dimensional cases we emphasize here
momentum for the simplest sufficiently general model sys-
tem case, considpr a_tw_o-dimepsional system composhid of L:f dxf dyp(xvy—yvy),
mutually interacting similar particles of mass Assume that
the potential energy is a sum of pair termi¢r) dependin ) )
onlypthe distanceggf separation, 'l?he totalfcc))untgrclock(‘ij where the mass densitp as well as the velocityo

wise) angular momentum of such a system is given by a suni- (Vx>y) depend continuously upon the spatialy) coor-
of all the particle contributions: dinates. The velocities respond to the stress tensdas-

sumed to be symmetric, in order to avoid infinite angular
. acceleration rates for small elements of the continuum
LEZ m[(XUy)i—(yvx)i]IZ m(r 9)i=§i: m(rvp); - through the equation of motion

Herex andy andr?=x?+y? are all measured from the cen- pv=V-o.
ter of mass of the system.

Let us define the coordinate separatiofs=x;—x; and
yij=Yi—Y; for all thosepairs of particles which are close

In the present work we consider two-dimensional solids with
an elastic stress tensor

enough to interact through the pair pote.nt'taQr). Then, o=\(V-u)l +7[Vu+Vu'].
differentiation of the angular momentum with respect to time
gives where the two Lamelastic constants and z are equal. For
small stresses this continuum model corresponds exactly to a
[ = X (VE/T )i — V- (XE/E ). macroscopic ll—o0) description of an elastically isotropic
2 2 DRI = YT ]

microscopic system of point masses interacting with central
forces. In the continuum stress ten$as the unit tensor and

ZE [xi; (YF/T )i — i (XF/r);;1=0, u is the vector displacement from the stress-free configura-
i< tion. Vu' is the transpose oWu. We choose the two-
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dimensional situation throughout this work in order to sim-sure tensor® (or stress tensors= — P) for eachij pair of
plify the description. All of the ideas which we explore are particles close enough to interact:
equally valid and useful for more general constitutive rela-
tions and in three space dimensions. S 2 2

In the discussion that follows we focus on particle [r‘_vi__m; [(P1p%)i+ (PIp%);]- Viw .
method for solving thecontinuum equations of motion,
smooth-particle applied mechani¢gSPAM). This classic  Although the “self” term, withi=j, is included in the sum
method was developed, simultaneously and independentlit, makes no contribution because the weight-function gradi-
by Lucy and by Monaghan, in 197[1,2]. We begin by ent vanishes for;;=0. Because the combination of antisym-
sketching the structure of the method in Sec. Il. Though thenetric terms,V;w;; + V;w;; , vanishes foi #j, it is evident
typical formulations of SPAMdo conserve massilinean  that the summed-up linear momentum changes vanish, so
momentum, and energy, thelo notconserveangular mo-  that the overall linear momentum is conserved too. Likewise,
mentum([3,4]. In Sec. Il we analyze momentum conserva-the total smooth-particle energym(e+v?/2) is conserved.
tion in continuum mechanics and show how the lack of con-The time rates of change of the individual particles’ internal
servation using SPAM can be expressed as a sum of shoignergiede} follow from the smooth-particle “energy equa-
ranged particle pair terms. The simplest formulation of;jq
SPAM is subject to a fast-growing “tensile instability5,6].
In Sec. IV we show that this instability can be avoided, for ,
relatively long times, by simple algorithms based on the {&=—_> (M2)[(P/p?)i+(P/p?);]:(vj—v)) Viw;
physical concepts of velocity averagifg,8] and von Neu- )
mann’s artificial viscosity{9]. To assess the usefulness of
these approaches, we analyze the time development of plane — > m{(Q/p?)i+(Q/p);1-Viw .
waves, in Sec. V, as well as the steady rotation of an elastic )
body, in Sec. VI. The difficulties in solving the latter problem
suggest a variety of ways to conserve angular momentu
exactly while avoiding tensile instability. We develop and

apply three methods to this problem in Secs. VIl and VI, . . . X .

pointing out in our conclusioSec. 1X) that some of these all th? sm(_)oth-partlcle equatlo_mii ISa nor_mallzgd vyelght

methods can be successfully generalized to more c:ompl?(-un.Ct.Ion with at Ieast,tvvo continuous spatla_l de_rlvat|ve§ and

cated applications of SPAM. a finite rangeh_. Lucys quartic weight funqlon is the sim-
We are well aware that many more-complicated particleOIESt polynomial satisfying all these conditions:

methods have been, and are being, develddéxili]. For

the most part these more elaborate schemes rely on a spatiabv(r<h): i( 1_[

interpolation grid in addition to the grid defined by the par- 2 h

ticle positions themselves. Though some of these more com-

plicated approaches can also cure the decays and instabiliti#@he range ofw is usually chosen such that each particle

we have studied here, we believe that the relative simplicityinteracts with 20 or 30 others. Density can be computed in

and efficiency of the simpler SPAM methods is better suiteckither one of the two waysi) summing up weight functions,

to large-scale numerical implementations.

The heat-fluxQ contributions cancel in pairs while the work
Mone by the pressure tensdf®} exactly compensates the

corresponding change in the kinetic enekgy:=mv-v. In

3

1+3;
h

h
*}f 2ardrw(r)=1.
0

pi=p(r)=mx, W(ri_rj)EmE Wij
Il. SMOOTH-PARTICLE APPLIED MECHANICS i

~ The smooth-particle methofil-16] for solving con-  or (ii) integrating the sum'’s time derivative, so as to solve the
tinuum problems isot consistent with the fundamental con- smooth-particle analog of the continuity equation

servation principal for angular momentum. This is because

the approachunlike fundamental continuum mechanids .

nonlocaland the forces are not central. SPAM us&gended pi=m> (vi—v;) Viw;; .

particles which typically exert torques on one another .

through shear stress. In fluids the shear stress is a CONSKY the summed-up form the maximum contribution to the
guence of Newtonian visco_sity. In elas_tic soIids.the S,heaEiensity comes from the self-termw; (r,;=0). The two
stress results from deformation. Just as in three dimensionsigeihqds are identical, provided that the initial densities for

rotationally invariant shear stress magnitude can be definegl . continuity equation used i) are chosen to match the

in two dimensions as summed-up values used (). The continuity formulation is
1 more useful for systems which maintain well-defined sur-
) 2 2 faces.
Us“‘*"_a"3’+4(aXX Tyy)- Because the elastic displacemeiits and their corre-
sponding strains have no unambiguous meaning in particle
In any case smooth particles move according to motiorsimulations it is necessary to relate the stresses back to an
equations withnoncentraltensor forces involving the pres- initial condition. The time development of the stresses can
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then be evaluated by solving the corresponding differential Notice the close resemblance to the expression of the
equations involving the velocity gradient¥s = (d/dt)Vu: polar-coordinate shear stress, in terms of the Cartesian-
. coordinate stress tensor:
o=\(V-v)l+ 5[ Vu+Vu'],
0= — (Oyx— 0yy)SIN(26) + 0,,COKL20)
supplemented by the additional changes resulting from coor-
. . _ 2,2
dinate rotations _ Xy _ N X=—y
. . ) . L (T 7yy) r2 Ty
Oyx— Oyxx—200yy, Oyy— 0y T 200y,
Consider a small element of “surfacéactually a length in
&Xy—> &Xy+ o(Tx—Tyy), two dimensiony rd 4. The corresponding applied torque
dT=ro,,rd6 differs from the shear stress , on the surface
where the local counterclockwise angular veloeitys given  element by the factor?dé.

by Numerical investigation of isolateorque-fre¢ rotating
bodies shows that the pairwise-additive smooth-particle con-
1 @_@) tributions to the internal torque sum
=2\ x oy

TZE Tij:E L”EL

The coordinate-rotation corrections follow naturally from the
rigid-body rotation, at the angular frequencyw

=3[ (dvy19x) = (v y)]: can be either positive or negative, with roughly equal num-
bers of each. There is an overall tendency, in the simple
Oxy= T €08 2wt), 0y=—siN20t), oyy=+sin2wt). problems we studied, toward decay, withL negative, in

. ) the short term. At long times the angular momentum com-
These differential equations, f@er,,,oyy,0yy}, along with  puted with SPAM fluctuates about zero. Evidently it is very
those for{p,x,y,v,,v,,€} can all be solved conveniently desirable to improve SPAM so as to avoid this spurious be-
and accurately with fourth-order Runge-Kutta integration. Ifhavior. Before implementing this improvement it is useful to
accuracy is not so important as speed, a lower-order integraompare thd. expression from SPAM witl. from conven-
tor can be used. tional continuum mechanics.

MOMENTUM .
A straightforward approach to calculatihgin continuum

A. L using SPAM mechanics can be based on the spatially averaged rate of

Substitution of the smooth-particle equations of motionchange of the angular momentum, in a smial d region
for {z}=z}(a,p,w)} into the particle representation ol with the sides of the region parallel to tkRandy axes. To do

gives a(spurious time rate of change for the angular mo- S° I 'S, convenient to expand the stress d|verge‘71§:e asa
mentum: Taylor’s series about the cent@f mass of the region. The

value at the region’s center makes no net contribution. When
the nonvanishing linear terms are accumulated the expres-

. d . . .
L= amz (xy=yx) sion for L 4x 4 becomes

=m>, (Xy—yX) Lgxa=pd*(8x 3y — 8y %)

= oo Sloa{ 525

]

T12
j

ﬁza'xy B &zaxy

ax?  ay?

:m; (XijYij)

Here —d/2< 6x, dy<+d/2 are coordinates relative to the

dXxd square’s center. From the physical standpoint this ex-

pression should be equivalent to a sum of the net torques

exerted by surrounding material on the four facesd(2,

X (W) +d/2). It is possible to confirm this correspondence in de-

_ ) _ tail, by carrying out Taylor’s series expansionaf, includ-

Generally there is no reason to expect this sum to vanishng quadratic terméhe constant and linear terms all cangel

Numerical evaluation confirms thatis typically nonzero. though we do not reproduce the details here. If the orienta-

X (W) —m2, (><?,-—yi2j)[(P—X2y +
ij p
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tion of the smalldx d region were rotated through an angle Y
/4, an alternative expression would result:

d4

) &Z(O'XX— Tyy)
Laxd=35| —oxay

axay

The smooth-particle expression forof Sec. Il A is es-
sentially the rotationally invariant combination of the two

results forl 4 4. In SPAM we expect that the lengthwould
approximate the range of the smooth-particle weight func-
tion so that the stress derivatives could just as well be ap-
proximated by an appropriate sum:

. FIG. 1. Time development of the total kinetic energy in a many-
Li=m2 (W/rz)ij[(XY)ij(sz_ U?y)_(xz_yz)ijo-fy]v body system in which a single particle is given a small initial ve-

) locity, 10 0. Initially the remaining particles make up a motionless
triangular lattice under uniform tension. The kinetic energy using

componentsc=, indicates the sum ofx stress components ¢ "Usual” SPAM algorithm, which incorporates no velocity aver-
aging and no artificial viscosity, with initial hydrostatic stresses

for particlesi andj, for instance. Another way to express the_(gxX+ 7,,)/2 of 0.01 and 0.02, shows the stress-dependent expo-

angular momentum as a sum of single-particle torqu'e Cor"t”ﬁential growth characteristic of tensile instability. Velocity averag-

. _ N . . " _ . N _ 1 .
butions Tj=L, is to defineL=XL;, whereLi=3Z.iLij,  ing, with I = () monaghan@Nd an initial stress of 0.02 shows no such
using the SPAM{L;;=T;;} discussed in Sec. Il A. instability for the time interval shown. The lattice “collision time”
is of order unity.

where we use the notatian™ to indicatesumsof thei andj

IV. TENSILE INSTABILITY FOR SPAM
. . purpose and requires nothing more than a simple test. Veloc-
Swegle, Hicks, and Attawa}p] displayed clear examples iy, ayeraging appeals to us because it has also the effect of
of a smooth-particle “tensile instability.” Ever since, that ,rqqycing smoother flow fields than does standard SPAM.
instability has been used to criticize the method. Swegleghe short-time exponential tensile instability disappears
Hicks, and Attaway found that neighboring smooth particles,ompetely if the smooth-particle equation relating the coor-

tend to clump together, exponentially fast at first, when the inates to the velocities: =p: . is replaced by a velocit
local stress is tensile rather than compressive. It is easy to sgé . . i—=Uis P 1 by } y
quation using thaveragedvelocity at locationr; :

how this arises: if the stress and density are both sIowI;’a
varying in space, then the smooth-particle equation of mo-
tion resembles a particle motion equation from ordinary r=w); (v)=> v-W--/ > W_:TE VWi
Newtonian mechanics, ' ' T - R

S N 2y 1.9 . R Vv Note that the term with=j is typically the largest one in the
U'_m; [alpit(alp™);] V'W"m; Vi sum. An alternative slightly more-complicated form is Mon-
aghan’s velocity-averaging equation
A compressivestress, witho negative, corresponds to ordi-
nary molecular dynamics, witlv(r) playing the role of a ) e
smooth repulsive potential. fensilestress, witho positive, ri=(v)Monaghan <U>MonaghanEUi+E [v,-—vi]—__J.
corresponds to a purely attractive potential, and is an un- Pij
stable situation. L
Figure 1 shows the development of the tensile instability T —

for a moving particle at the center of an otherwise motionless pi=g(pitey) or Vpipy.
hexagonal sample. The velocity increases, exponentially fast,
for five orders of magnitude. This unphysical instability Figure 1 shows clearly that the unstable exponential growth
needs to be tamed in order for SPAM to be applied to probef kinetic energy associated with tension in standard SPAM
lems with tensile stresses. Any mechanism which preventdisappears when Monaghan’s velocity averaging is used. We
particles from approaching one another, or which substanwill see that the extra complexity of Monaghan’s approach is
tially slows their approach, will do. For example, additional compensated by improved stability in problems involving
repulsive forceg6], an analog of von Neumann’s artificial tension. Either of the two averaging forms has the effect of
viscosity[1,9], a velocity-dependent central force, or veloc- decreasingthe relative velocities of approachingr reced-
ity averaging[7,8], all of which can cause approaching par- ing) particles while exactly conserving linear momentum.
ticles to slow, are possibilities for taming the instability. We The tensile instability is not a problem for long-wavelength
found that elastically reflecting the radial component of ve-disturbances. The short-ranged nature of the instability can
locity for approaching pairs of particles,=v;;r;; /|r;;|, ata  be studied by analyzing the oscillation of plane waves, as we
fixed closest-approach distance, works quite nicely for thislescribe in the following section.
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For Hooke’s law harmonic forces, with force constann a
two-dimensional triangular latticevith six nearest-neighbor
interactions for each partidlethe Lameconstants\ and »
are equal(to y3/16«) so that the longitudinal wave speed
exceeds the transverse wave speed/By

The angular momentum in the transverse wave, averaged
over all space, is zero, but thgcal angular momentum den-
sity

a)

X X

FIG. 2. Deformation of the unit square with the simple shear | =—pyx=+wpAyy sin(ky)sin(wt)
u,=Yy/4. If the deformed configuratio@) is taken as a constraint-
free initial condition the resulting motion oscillates symmetrically
(b) and without any rotation about the center of mass.

oscillates in space and time. Just as in Sec. Il B, we consider
the angular momentum contained within a sntedld region
which moves with the flow velocity. In ad, dy) system of
V. ELASTIC PLANE-WAVE TEST PROBLEMS coordinates, fixed on the center of mass of the region and
comoving with it, the corresponding velocityi, , év ) var-
One might imagine studying the oscillation of angularies linearly. The first-order terrtin 8y) then follows from
momentum in a deformed square, as is shown in Fig. 2, buhe Taylor's series fov, :
a little reflection shows that the square undergoes purely vi-
brational oscillations, without any angular momentum. One vy
of the horizontal boundaries of the square could be explicitly V= ‘WW =koyvy,
constrained in order to exert a torque, but a simpler implicit
boundary-free problem results if instead we consider a standso that the angular momentum of tted region is propor-
ing plane shear wave, with wave vectds, (k,)=(0,27/)\) tional to the mean value ofy? throughout the region. Its
parallel to they direction. In such a wave the local angular time derivative varies as cdg{cos(wt):
momentum density varies periodically in space and time. Let
the amplitude of oscillation ba, with the initial condition
such that the kinetic energy vanishes. ®haisplacement in
this motion has the following form:

: : . d?
Lyxg=1d%=pd?(— dyx)= pdzwzkEAXCOS( ky)coq wt).

The time-rate-of-change can alternatively be calculated di-

U, (y,t)=A,sin(ky)cog wt). rectly from the equation of motion for the smdlk d square:
The corresponding elastic = straim,,= du,/dy+ du,/dx 22 _ N2/ -
gives the only nonvanishing stress componepj= e, . pd dt< 8y &)= pd*(= oy 5x)
This stress component must satisfy the continuum equation .
of motion, pz}EV-a. The solution consistent with our as- =pd2< _ éyz@>
sumed initial conditiorispecified in terms of the local strgss ay
is
o 5y2 (720'Xy

€xy= KACOZKy) O wt) — 0, = 7k AcOg Ky)cOg wt), =pd? - o ay?

- . . - . 41,3

x=— wA,sin(ky)sin(wt) —x= — w2A,sin(ky)cog wt). _ 12" A.cogky)cog ot).

The stress and acceleration satisfy the usual continuum mo- _
tion equation That the two expressions far must agree again implies the
exact dispersion relatioo;y= w/k= \7/p.

Both the angular momentum and its rate of change vanish
as thesquareof the volume element’s size. This problem is
or an excellent test for smooth-particle methods. Using a peri-
= —pwAsin(ky)cog wt), odic crystal, 24 in width and 24/4 in height, described by
576 particles at a mass density ¢#/3, leads to a near-
o eperfect periodic motion, with period 35. See Fig. 3 for two
sound speed;= w/k=\7/p. An exactly similar argument, example problems, both with maximum displacemeiits
but for a displacement in thegdirection, leads to a solution gjther thex or they direction equal to 0.25. For the trans-
of the'corn_aspon('jing mo_tion equatiqn qnd gives the corregg e wave, withx displacements, the correspondingk
sponding dispersion relation for longitudinal waves: ratio closely approximates the transverse sound velazity

dTyy

= — nk?A.si
3y nkA,sin(ky)coq wt)

pX=

=/3/8:
— Asin(k _wlke 2T o
Uyly, ) =Aysin(ky)cod wt) = ¢ = olk=\ — = wlk=(27/35)/(27/24\/3/4) = 0.59=0.61= - .
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0.3

0.2

energy

0.1

energy

HE

0 time 100

FIG. 3. Evolution of plane waves in a 224 sample of periodic
linear elastic solid. The time variations of the kinetitasheg and
internal (full curve) energies are shown. The initial condition is a
sinusoidally deformed lattice, motionless, and with a sinusoidal dis-
tribution of the initial stresses. Both the transvefaeand longitu-
dinal (b) energies are shown. The oscillation frequencies agree with
macroscopic linear elastic theory within about 1%.

The time dependence of the local angular momentum obeys
the analysis given above. X

A similar simulation, withA,=0.25 rather thai\,, like-
wise reproduces the expected motionlfmrgitudinal waves, FIG. 4. Configurations of 217 particles after a nominal rotation
with ¢, = \/% See again Fig. 3. Evidently there is no prob-of 2/3 using standard molecular dynami@, standard smooth-
lem with either tensile instability or with angular momentum particle mechanicgb) with summed-up densities, and smooth-
conservation for these two simple test problems. We als®article mechanics with densities based on the continuity equation
confirmed that these solutions are stable to small randorff) With initial valuesp(t=0)= \4/3.
perturbations of the initial conditions. Let us turn next to a

more challenging example. wave motions of the preceding section. Figure 4 shows snap-
shots of the motion of three 217-particle elastic solids with
VI. ROTATING TENSILE TEST PROBLEM equal Lameconstants. At the top we see a standard molecu-

lar dynamics simulation, using fourth-order Runge-Kutta in-

The stationary state of a rotating compressithiek is a  tegration with a nearest-neighbor pair potentiak 3 (1
standard problem in elasticity theory. In a rotating disk of —r)? and a particle mass of unity has a stress-free density of
radiusR, densityp, and with equal elastic constamts=7%  ,/4/3 and two equal elastic constants=\=+/3/16. In all
the (radia) displacement and nonvanishing stress-tensotases, the initial velocities are chosen to correspond to rigid-
components are body rotation, with a maximum speédt the vertices of the

) ) ) hexagon equal to 0.1. This maximum speed is a bit less than

_pro (Rz— ZL) 5pw

U= o= 10% of the longitudinal sound speed. This relatively slow
" 6 3 o112 motion guarantees sufficiently small straifef order 0.2
=0.01) for the applicability of linear elasticity.
5pw? ) 3r? In the center of Fig. 4 we see the corresponding SPAM
R 5 | simulation, using Lucy’s weight function with a range equal
to three times the initial nearest-neighbor separation. Here
Discrete particles suggest using a hexagonal sample shapee use the simple summation approach to density,
Detailed stress and displacement comparisons with moleci=mZw. Below we integrate the continuity equation from
lar dynamics show only small deviations between the circuthe specified initial density=\/4/3. There are quite definite
lar and hexagonal sample shapes. quantitative differences in the last two approaches, with the
With SPAM, the stability of aotating compressible solid hexagonal lattice persisting better when the continuity equa-
is quite different to molecular dynamics and to the plane-ion is used. The summation approach has the advantage that

(R*=r?),

T99= 12
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Monaghan’s slightly more complicated suggestigrhich
has the advantage of exactly conserving linear momentum
provides similar resultéshown at the right of Fig. )5 Mon-
aghan’s form for the average is different:

a) e)

'l'i:Ui"'; (vj—vWij/pij ¢,

where the mean densify; can be either arithmetic or geo-
metric:

pitp;
Pii="%  OF pij=Npipj-

It should be pointed outbut has not been, so far as we

know) that thevelocity-averagedorms forr are inconsistent
with the usual smooth-particle continuity and energy equa-
tions. We do not wish to carry out a full investigation here. A
thorough investigation is certainly warranted. Here we have
chosen to solve a few selected problems using continuity
equations properly modified for velocity averaging:

.PiEm; (vi—vj)- Viw;

- " or [')iEmE <Ui_Uj>MonaghaﬁViWij .
J

FIG. 5. Configurations of 217 particles after nomingl rOtationsResults from both these approaches appear in the lower part
of 2/3 (top row) and 2w (second row using SPAM withr=(v)  f Fig. 5. The usual SPAM velocity average is used on the
(a,b and SPAM with Monaghan's average=(v)monaghan(€.f)- The |eft and Monaghan’s velocity average on the right.
two types of average velocity are described in Sec. VI. Densities in - Notice that it is possible to simulate the rotation fairly
thege four si.mulat.ions ar_e_gll computed from the usual .S_PAM Conyell for a complete rotation, a time of order 30 sound tra-
tinuity equation with the initial valug(t=0)= 4/3. Densities be-  yersal times, when velocity averaging is used. Though the
low, (c,d) and(g,h), for the same nominal rotations ofn23 (third 5 velocity averaging ideas illustrated here, as well as sev-
row) and 2 (fourth row) are computed using the chain-rule gen- o5 ihers, can be used to avoid the tensile instability, all the
bzl of e ontrLty st e e L e S0 o SeCSPAM simlatons, modifed o no,sufer rom a reliey
Monaghan's velocity-averaging algorithm. ;gﬁ)(l)c\jlvilr?sssgétg%g.]ular momentum. We cure this loss in the
the total system mass obtained by integrating the mass den-

sity p is equal toNm, whereN is the number of particles and v|. ANGULAR MOMENTUM CONSERVATION IN SPAM

i

(W//r)ij .

all the particle masses are the samme Nevertheless, in the USING GAUSS'S PRINCIPLE

remaining simulations we have used the continuity-equation

approach, which generated “better” solutions from the An overall correction could be constructed by adding a

shape-conserving standpoint. torque counteracting the change associated with gaphir:

The molecular dynamics algorithm provides stable solu-

tions which conserve both energy and angular momentum as_ . Pyx Pyx Pyy Pyy

accurately as desirgdp to the precision carried by the com- TijoeLij =m(Xi;yij) (_2 + ( _2) N ( _2) N ( _2)

putep. The standard SPAM algorithm, with the same number R

of particles, the same elastic equation of state, and the same p p

; o ! X M

stress-free density, behaves qualitatively differently. It results X (W' )= m(xizj _inj) (_2y> + _2y)

in a loss of 1%(5%) percent of the angular momentum after [ P

a rotation of 60° (120°) degrees. Figuréabove shows the

improved motion which results when the particle velocitiesThis correction violates conservation of energy to the extent

are replaced by the local averages described in Sec. IV. Othat the rotational kinetic energies are changed; and it is not

the left we use the ordinary SPAM velocity average: at all clear that sufficient radial kinetic energy is available to
correct for this violation. Furthermore, more complicated
situations cannot be simply treated in this way. A good ex-
ample is a system composedtafo specimens, identical ex-

: . m
{ri=vit—=iri=(v E;; UjWij 1 pi=m>, Wij -
1
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cept for the direction of rotation, clockwise for one and
counterclockwise for the other. Evidently the equations of .
motion conserve angular momentum exactly for such a sys- 2 75t
tem despite the exactly compensating losses in the two speci- _§_ cVom
mens. E
Except in certain special cases SPAM does not conserve g 60
angular momentum. In smooth-particle mechanics it is desir- = <V >spam
able to conserve the angular momenturthout disturbing F
energy conservation. Consider imposing the energy and an- & B}
gular momentum constraints simultaneously, 0 . e ———
time
E=0=2 m(e+v-v), L=O=E m(xy—yXx) FIG. 6. Angular momentum as a function of time for the 217

particles shown in Fig. 5 using SPAM with velocity averaging, with
r=(v) and with Monaghan’s velocity averages (v )monaghan All
densities here are from the continuity equation, corresponding to the
top two rows of Fig. 5.

by using the generalized equations of motion

{mo =Fspant 7.

Here the constraint forcé keeps both the energy and the center-to-perimeter distancein the stress-free state, aid
angular momentum fixed. Out of all the possible constraint=7,19,37,61...=1+3n+3n? particles with initial tan-
forces Gauss’ principl¢15,16 (of least constraintcan be
used to pick the smallegin an rms senge The result iden-
tifies two multipliersa, which constrains the enerdy, and

B, which constrains the angular momentunThe equations
of motion which result are

gential particle velocities 6=0.1r/n were followed for the
time 2, which would correspond to a complete rotation
(and several sound-traversal timeBor illustrative purposes
we use the case=8—N=217 in the figures.

Standard SPAM, due to the tensile instability, is unable to
retain the hexagonal sample shape for long. Whether the ini-
tial density is chosen everywhere equal to the ideal stress-
free triangular-lattice density= \/4/3=1.1547(and updated
by integrating thep continuity equatiopor is instead evalu-
Here R?==r2 is the moment of inertia about the center of 2€d by approximate smooth-particle summing==;w;; ,
mass. The denominatR?— (L2/2K)] vanishes for a pure whereT 1.1&_351 |s_the_ approximate _perfect-lattlce density, the
rigid-body motion, for which the constraints are unnecessary/€sulting simulation is still poor. Either of these approaches
Unfortunately the same denominator vanishes periodically irFatisfies the smooth-particle continuity equation
the more general case, so that this constraint method is not
generally useful. The physical significance of the multipliers
is clear: the Lagrange multipliet controls the kinetic en- bz—pv-vaiEmz (vi—vj) - Viw(rj)).
ergy through a generalized frictional foréehich can either ]
add or subtract energythe Lagrange multiplied controls

the angular momentum by exerting torques on every particle.r

The singular divergence of the multipliers occurs when there hough the hexagonal sample shape survives fairly well for
o gu gence o P a complete revolution, the angular momentum is decreased
is insufficient radial kinetic energy to compensate for the

work of keeping the anaular momentum constant. In the fol_to about half its initial value. See Fig. 6. In the absence of
. ping gu . ' . constraint forces angular momentum decays relatively
lowing section we describe an alternative approach which

does not suffer from the singular behavior of the two Gausslpromr;tly. \?elocity a\(/jeraging clur_es thebter:jsile instarl?illity, ath
principle multipliers. east for a few sound-traversal times, but does not help wit

angular momentum conservation. In curing the angular mo-
mentum loss, as described below, we retain velocity averag-
Viil. ANGULAR MOMENTUM CONSERVATION IN SPAM ing in order to stave off tensile instability too.

USING TORQUE SCALING Gauss' principle suggests that angular momentum be con-

We carried out a wide range of simulations to test theS€rved by adding an additional force proportional to each
various ideas for stabilizing a rotating body. Here we reporfParticle’s distance from the center of mass. We reject that
some sample results for hexagonal specimens with a maxidea in favor of I(_)cal corrections which do not d_epend upon
mum rotational velocity of 0.Xwhere the nearest-neighbor the global coordinates. _To get a local formulation consider
triangular-lattice spacing is unity and the transverse and lorthe time rates of chang.;;} of the angular momenta asso-
gitudinal sound velocities are, respectivel{a/8 and/9/8).  ciated with all interacting pairs of particles:

We reduced the variety of possible algorithms by choosing to

omit von Neumann’s artificial viscosity and to use Lucy’s q

wgght functhn, thh a range three tlmgs the ngarest— L= _mz (xy—yx)=z Ly,
neighbor spacingy=3. Regular hexagons, with a maximum dt i

Fy=— aX—By, Fy=— ay-i-,BX;

a=—BL/(2K), B=L/[mR—(mL?%2K)].
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) us to be thesimplestdefinitions throughout:
> > .
0= 2 [(olp)i+(olp?);]-Vw(ry),
X X (VU)iE; (il pip)) Viw(rij), vij=vi—vj,
> pij=(pi+pj)/2.
Nevertheless, many variations and combinations are pos-
sible: (i) restricting the distance of closest approach, or not;

X X (i) using von Neumann’s viscosity, or ndiji) computing
density as a sum or by integrating the continuity equation;
FIG. 7. Configurations of 217 particles, with angular momentum(jy) advancing the coordinates with

held fixed, after nominal rotations of2 SPAM usingLij torque
scaling appears at the top and with scaling at the bottomr r=v or (v) Oor (v)vonaghan
=(v) (a,p and SPAM with Monaghan’s averagé;(u)Monaghan

LijE(Xijyij)

+

_(Xizj_yizj) (W'7r);; .

I-_ij<0*>R+1|._i |-_”'>0*>R_1|._i

(c.d) are shown. The two types of average velocity are described ifV) constraining the angular momentum with Gauss’ prin-
Sec. VI. Summed-up densitigg=mZ;w;; perform much less well  ciple, with {T;=L;}, or with {T;;=L;;}. Just these 2
than do the continuity-equation densities used in all these simulax 2 x 3x 3=72 combinations, most of which we have ex-
tions. plored, could be expanded to include weight function(s
<h) other than Lucy’s, and with ranges other than 3, as
Py Py Pyy Pyy , well as less accurate but more efficient time integrators. An
— |t ] ] (W 1) even greater variety of algorithms can be generated by fol-
P P P 7 P lowing the consequences of velocity averaging, as we indi-
cated at the end of Sec. VI. We have made an effort to
ﬁ/ P_xy specify precisely here what we have done in order that others
p? p? ) could reproduce our results without excessive difficulty.
J We have seen that the combination of Monaghan’s veloc-
One can equally well define individual particle time rates ofity averaging with a conservative local constraint on the an-
. - gular momentum provides good solutions of a rotating body
change in terms of sums of the; : under tensile stress conditions and for man d-
y sound-traversal
times. In a more general situation, such as the fragmentation
I'_-=E S0 of a bar by a projectilelocal conservation of angular mo-
tag T mentum is necessary. To see that the locality of the constraint
is essential, consider a system composed of two mirror-
In a typical SPAM simulation several thousandslgf are ~ image counter rotating hexagons. One rotates clockwise
negative. The rest are positive, and the sum is nearly zergvhile its twin rotates counterclockwise. No matter how
The sum could be made to kexactlyzero by rescaling the Poorly angular momentum is conserved locally, the global
negative and positive;; sum vanlshes. Any general treatment requires dividing the
system into parts, each of which must satisfy its own angular
momentum balance. With this separation into parts there is
i i no problem rescaling the positive and negatiig} or {L;}
. _ for each part, resulting in both local and global conservation.
whereR? is the sum of all the positive;; divided by minus Under compressive loads the various smooth-particle
the sum of the negative;; . In an exactly similar wayL} methods have no special drawbacks. In general, one cannot
can also be scaled so as to vanish exactly. These two ideagpect smooth particles to perform well using the present
provide definite improvements over the usual SPAM algo-methods inquasistatictensile simulations. The present work
rithm. Snapshots taken after a full revolution at fixed angulaldemonstrates that velocity averagifay viscosity, or a mini-
momentum and with both kinds of velocity averaging aremum distance of closest approacban provide accurate
shown in Fig. 7. simulations for times on the order of 20 sound-traversal
times.

IX. SUMMARY AND CONCLUSIONS
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