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Smooth-particle applied mechanics~SPAM! provides several approaches to approximate solutions of the
continuum equations for both fluids and solids. Though many of the usual formulations conserve mass,~linear!
momentum, and energy, the angular momentum is typicallynot conserved by SPAM. A second difficulty with
the usual formulations is thattensile stress states often exhibit an exponentially fast high-frequency short-
wavelength instability, ‘‘tensile instability.’’ We discuss these twin defects of SPAM and illustrate them for a
rotating elastic body. We formulate ways to conserve angular momentum while at the same time delaying the
symptoms of tensile instability for many sound-traversal times. These ideas should prove useful in more
general situations.
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I. INTRODUCTION

Isolated systems of particles which interact with ‘‘centra
forces, such as the forces derived from pair potentials, c
serve the total angular momentum of the systemL. Keeping
in mind that the fundamental forces in nature are pairwi
additive Coulomb forces, it is not surprising that this sa
conservation principle is obeyed by macroscopic sample
‘‘real materials’’ too. To demonstrate conservation of angu
momentum for the simplest sufficiently general model s
tem case, consider a two-dimensional system composedN
mutually interacting similar particles of massm. Assume that
the potential energy is a sum of pair termsf(r ) depending
only the distance of separation,r. The total ~counterclock-
wise! angular momentum of such a system is given by a s
of all the particle contributions:

L[(
i

m@~xvy! i2~yvx! i #5(
i

m~r 2u̇ ! i5(
i

m~rvu! i .

Herex andy andr 25x21y2 are all measured from the cen
ter of mass of the system.

Let us define the coordinate separationsxi j 5xi2xj and
yi j 5yi2yj for all thosepairs of particles which are close
enough to interact through the pair potentialf(r ). Then,
differentiation of the angular momentum with respect to tim
gives

L̇5(
i

(
j

@xi~yF/r ! i j 2yi~xF/r ! i j #

5(
i , j

@xi j ~yF/r ! i j 2yi j ~xF/r ! i j #[0,
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confirming the familiar result~subject to the central-force
assumption! that angular momentum is conserved. HereF is
the scalar magnitude of the force,F52df/dr.

In continuum mechanics angular momentum in a medi
subject to internal stresses evolves in a similar way. Chan
in overall angular momentum only occur through torqu
exerted by external forces. The total angular momentum
continuum becomes an integral over the volume~area in the
two-dimensional cases we emphasize here!,

L5E dxE dyr~xvy2yvx!,

where the mass densityr as well as the velocityv
5(vx ,vy) depend continuously upon the spatial (x,y) coor-
dinates. The velocities respond to the stress tensors ~as-
sumed to be symmetric, in order to avoid infinite angu
acceleration rates for small elements of the continuu!
through the equation of motion

r v̇5“•s.

In the present work we consider two-dimensional solids w
an elastic stress tensor

s[l~“•u!I 1h@“u1“ut#.

where the two Lame´ elastic constantsl andh are equal. For
small stresses this continuum model corresponds exactly
macroscopic (N→`) description of an elastically isotropi
microscopic system of point masses interacting with cen
forces. In the continuum stress tensorI is the unit tensor and
u is the vector displacement from the stress-free configu
tion. “ut is the transpose of“u. We choose the two-
©2004 The American Physical Society02-1
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dimensional situation throughout this work in order to si
plify the description. All of the ideas which we explore a
equally valid and useful for more general constitutive re
tions and in three space dimensions.

In the discussion that follows we focus on aparticle
method for solving thecontinuum equations of motion,
smooth-particle applied mechanics~SPAM!. This classic
method was developed, simultaneously and independe
by Lucy and by Monaghan, in 1977@1,2#. We begin by
sketching the structure of the method in Sec. II. Though
typical formulations of SPAMdo conserve mass,~linear!
momentum, and energy, theydo not conserveangular mo-
mentum@3,4#. In Sec. III we analyze momentum conserv
tion in continuum mechanics and show how the lack of c
servation using SPAM can be expressed as a sum of s
ranged particle pair terms. The simplest formulation
SPAM is subject to a fast-growing ‘‘tensile instability’’@5,6#.
In Sec. IV we show that this instability can be avoided,
relatively long times, by simple algorithms based on t
physical concepts of velocity averaging@7,8# and von Neu-
mann’s artificial viscosity@9#. To assess the usefulness
these approaches, we analyze the time development of p
waves, in Sec. V, as well as the steady rotation of an ela
body, in Sec. VI. The difficulties in solving the latter proble
suggest a variety of ways to conserve angular momen
exactly while avoiding tensile instability. We develop an
apply three methods to this problem in Secs. VII and V
pointing out in our conclusion~Sec. IX! that some of these
methods can be successfully generalized to more com
cated applications of SPAM.

We are well aware that many more-complicated parti
methods have been, and are being, developed@10,11#. For
the most part these more elaborate schemes rely on a sp
interpolation grid in addition to the grid defined by the pa
ticle positions themselves. Though some of these more c
plicated approaches can also cure the decays and instab
we have studied here, we believe that the relative simpli
and efficiency of the simpler SPAM methods is better sui
to large-scale numerical implementations.

II. SMOOTH-PARTICLE APPLIED MECHANICS

The smooth-particle method@1–16# for solving con-
tinuum problems isnot consistent with the fundamental con
servation principal for angular momentum. This is beca
the approach~unlike fundamental continuum mechanics! is
nonlocaland the forces are not central. SPAM usesextended
particles which typically exert torques on one anoth
through shear stress. In fluids the shear stress is a co
quence of Newtonian viscosity. In elastic solids the sh
stress results from deformation. Just as in three dimensio
rotationally invariant shear stress magnitude can be defi
in two dimensions as

sshear
2 [sxy

2 1
1

4
~sxx

2 2syy
2 !.

In any case smooth particles move according to mot
equations withnoncentraltensor forces involving the pres
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sure tensorsP ~or stress tensorss[2P) for eachi j pair of
particles close enough to interact:

H r̈ i5 v̇ i52m(
j

@~P/r2! i1~P/r2! j #•“ iwi j J .

Although the ‘‘self’’ term, with i 5 j , is included in the sum
it makes no contribution because the weight-function gra
ent vanishes forr i j 50. Because the combination of antisym
metric terms,“ iwi j 1“ jwi j , vanishes foriÞ j , it is evident
that the summed-up linear momentum changes vanish
that the overall linear momentum is conserved too. Likewi
the total smooth-particle energy(m(e1v2/2) is conserved.
The time rates of change of the individual particles’ intern
energies$ė% follow from the smooth-particle ‘‘energy equa
tion’’

H ėi[2(
j

~m/2!@~P/r2! i1~P/r2! j #:~v j2v i !“ iwi j

2(
j

m@~Q/r2! i1~Q/r2! j #•“ iwi j J .

The heat-fluxQ contributions cancel in pairs while the wor
done by the pressure tensors$P% exactly compensates th
corresponding change in the kinetic energyK̇5(mv• v̇. In
all the smooth-particle equationswi j is a normalized weight
function with at least two continuous spatial derivatives a
a finite rangeh. Lucy’s quartic weight function is the sim
plest polynomial satisfying all these conditions:

w~r ,h!5
5

ph2 S 12
r

hD 3S 113
r

hD→E
0

h

2prdrw~r ![1.

The range ofw is usually chosen such that each partic
interacts with 20 or 30 others. Density can be computed
either one of the two ways:~i! summing up weight functions

r i5r~r i !5m(
j

w~r i2r j ![m( wi j ,

or ~ii ! integrating the sum’s time derivative, so as to solve
smooth-particle analog of the continuity equation

ṙ i5m(
j

~v i2v j !•¹iwi j .

In the summed-up form the maximum contribution to t
density comes from the self-termmwii (r ii 50). The two
methods are identical, provided that the initial densities
the continuity equation used in~ii ! are chosen to match th
summed-up values used in~i!. The continuity formulation is
more useful for systems which maintain well-defined s
faces.

Because the elastic displacements$u% and their corre-
sponding strains have no unambiguous meaning in par
simulations it is necessary to relate the stresses back t
initial condition. The time development of the stresses c
2-2
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then be evaluated by solving the corresponding differen
equations involving the velocity gradients“v5(d/dt)“u:

ṡ[l~“•v !I 1h@“v1“v t#,

supplemented by the additional changes resulting from c
dinate rotations

ṡxx→ṡxx22vsxy , ṡyy→ṡyy12vsxy ,

ṡxy→ṡxy1v~sxx2syy!,

where the local counterclockwise angular velocityv is given
by

v[
1

2 S ]vy

]x
2

]vx

]y D .

The coordinate-rotation corrections follow naturally from t
rigid-body rotation, at the angular frequencyv
5 1

2 @(]vy /]x)2(]vx /]y)#:

sxy51cos~2vt !, sxx52sin~2vt !, syy51sin~2vt !.

These differential equations, for$ṡxx ,ṡxy ,ṡyy%, along with
those for $ṙ,ẋ,ẏ,v̇x ,v̇y ,ė% can all be solved convenientl
and accurately with fourth-order Runge-Kutta integration
accuracy is not so important as speed, a lower-order inte
tor can be used.

III. TIME RATE OF CHANGE FOR ANGULAR
MOMENTUM

A. L̇ using SPAM

Substitution of the smooth-particle equations of moti
for $v̇5 v̇(s,r,w)% into the particle representation ofL̇
gives a~spurious! time rate of change for the angular m
mentum:

L̇5
d

dt
m( ~xẏ2yẋ!

5m( ~xÿ2yẍ!

5( L̇ i j

5m(
i j

~xi j yi j !F S Pxx

r2 D
i

1S Pxx

r2 D
j

2S Pyy

r2 D
i

2S Pyy

r2 D
j
G

3~w8/r ! i j 2m(
i j

~xi j
2 2yi j

2 !F S Pxy

r2 D
i

1S Pxy

r2 D
j
G

3~w8/r ! i j .

Generally there is no reason to expect this sum to van
Numerical evaluation confirms thatL̇ is typically nonzero.
01670
l
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Notice the close resemblance to the expression of
polar-coordinate shear stresss ru in terms of the Cartesian
coordinate stress tensor:

s ru52~sxx2syy!sin~2u!1sxycos~2u!

5
2xy

r 2
~sxx2syy!1

x22y2

r 2
sxy .

Consider a small element of ‘‘surface’’~actually a length in
two dimensions!, rdu. The corresponding applied torqu
dT5rs rurdu differs from the shear stresss ru on the surface
element by the factorr 2du.

Numerical investigation of isolated~torque-free! rotating
bodies shows that the pairwise-additive smooth-particle c
tributions to the internal torque sum

T5( Ti j 5( L̇ i j [L̇

can be either positive or negative, with roughly equal nu
bers of each. There is an overall tendency, in the sim
problems we studied, toward decay, withL̇/L negative, in
the short term. At long times the angular momentum co
puted with SPAM fluctuates about zero. Evidently it is ve
desirable to improve SPAM so as to avoid this spurious
havior. Before implementing this improvement it is useful
compare theL̇ expression from SPAM withL̇ from conven-
tional continuum mechanics.

B. L̇ from continuum mechanics

A straightforward approach to calculatingL̇ in continuum
mechanics can be based on the spatially averaged rat
change of the angular momentum, in a smalld3d region
with the sides of the region parallel to thex andy axes. To do
so it is convenient to expand the stress divergence“•s as a
Taylor’s series about the center~of mass! of the region. The
value at the region’s center makes no net contribution. W
the nonvanishing linear terms are accumulated the exp
sion for L̇d3d becomes

L̇d3d5rd2^dxd ÿ2dyd ẍ&

5d2K FdxS ]2sxy

]x2 D dx2dyS ]2sxy

]y2 D dyG L
5

d4

12F ]2sxy

]x2
2

]2sxy

]y2 G .

Here 2d/2,dx, dy,1d/2 are coordinates relative to th
d3d square’s center. From the physical standpoint this
pression should be equivalent to a sum of the net torq
exerted by surrounding material on the four faces (6d/2,
6d/2). It is possible to confirm this correspondence in d
tail, by carrying out Taylor’s series expansion ofsxy includ-
ing quadratic terms~the constant and linear terms all cance!,
though we do not reproduce the details here. If the orien
2-3
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tion of the smalld3d region were rotated through an ang
p/4, an alternative expression would result:

L̇d3d5
d4

12F]2~sxx2syy!

]x]y G .
The smooth-particle expression forL̇ of Sec. III A is es-

sentially the rotationally invariant combination of the tw
results forL̇d3d . In SPAM we expect that the lengthd would
approximate the rangeh of the smooth-particle weight func
tion so that the stress derivatives could just as well be
proximated by an appropriate sum:

L̇ i5m(
j

~w/r 2! i j @~xy! i j ~sxx
S 2syy

S !2~x22y2! i j sxy
S #,

where we use the notationsS to indicatesumsof the i and j
components.sxx

S indicates the sum ofxx stress component
for particlesi and j, for instance. Another way to express th
angular momentum as a sum of single-particle torque con
butions Ti5L̇ i is to defineL̇5(L̇ i , where L̇ i[

1
2 ( j Þ i L̇ i j ,

using the SPAM$L̇ i j 5Ti j % discussed in Sec. III A.

IV. TENSILE INSTABILITY FOR SPAM

Swegle, Hicks, and Attaway@5# displayed clear example
of a smooth-particle ‘‘tensile instability.’’ Ever since, tha
instability has been used to criticize the method. Swe
Hicks, and Attaway found that neighboring smooth partic
tend to clump together, exponentially fast at first, when
local stress is tensile rather than compressive. It is easy to
how this arises: if the stress and density are both slo
varying in space, then the smooth-particle equation of m
tion resembles a particle motion equation from ordina
Newtonian mechanics,

v̇ i[m(
j

@~s/r2! i1~s/r2! j #•“ iwi j }(
j

2“ iwi j .

A compressivestress, withs negative, corresponds to ord
nary molecular dynamics, withw(r ) playing the role of a
smooth repulsive potential. Atensilestress, withs positive,
corresponds to a purely attractive potential, and is an
stable situation.

Figure 1 shows the development of the tensile instabi
for a moving particle at the center of an otherwise motionl
hexagonal sample. The velocity increases, exponentially
for five orders of magnitude. This unphysical instabili
needs to be tamed in order for SPAM to be applied to pr
lems with tensile stresses. Any mechanism which preve
particles from approaching one another, or which subs
tially slows their approach, will do. For example, addition
repulsive forces@6#, an analog of von Neumann’s artificia
viscosity @1,9#, a velocity-dependent central force, or velo
ity averaging@7,8#, all of which can cause approaching pa
ticles to slow, are possibilities for taming the instability. W
found that elastically reflecting the radial component of v
locity for approaching pairs of particles,v r[v i j r i j /ur i j u, at a
fixed closest-approach distance, works quite nicely for t
01670
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purpose and requires nothing more than a simple test. Ve
ity averaging appeals to us because it has also the effec
producing smoother flow fields than does standard SPA
The short-time exponential tensile instability disappe
completely if the smooth-particle equation relating the co
dinates to the velocities,ṙ i[v i , is replaced by a velocity
equation using theaveragedvelocity at locationr i :

ṙ i[^v&; ^v&[(
j

v jwi j Y (
j

wi j 5
m

r i
(

j
v jwi j .

Note that the term withi 5 j is typically the largest one in the
sum. An alternative slightly more-complicated form is Mo
aghan’s velocity-averaging equation

ṙ i[^v&Monaghan, ^v&Monaghan[v i1( @v j2v i #
wi j

r i j
,

r i j [
1

2
~r i1r j ! or Ar ir j .

Figure 1 shows clearly that the unstable exponential gro
of kinetic energy associated with tension in standard SP
disappears when Monaghan’s velocity averaging is used.
will see that the extra complexity of Monaghan’s approach
compensated by improved stability in problems involvi
tension. Either of the two averaging forms has the effect
decreasingthe relative velocities of approaching~or reced-
ing! particles while exactly conserving linear momentu
The tensile instability is not a problem for long-waveleng
disturbances. The short-ranged nature of the instability
be studied by analyzing the oscillation of plane waves, as
describe in the following section.

FIG. 1. Time development of the total kinetic energy in a man
body system in which a single particle is given a small initial v
locity, 10210. Initially the remaining particles make up a motionle
triangular lattice under uniform tension. The kinetic energy us
the ‘‘usual’’ SPAM algorithm, which incorporates no velocity ave
aging and no artificial viscosity, with initial hydrostatic stress
(sxx1syy)/2 of 0.01 and 0.02, shows the stress-dependent ex
nential growth characteristic of tensile instability. Velocity avera

ing, with ṙ 5^v&Monaghanand an initial stress of 0.02 shows no su
instability for the time interval shown. The lattice ‘‘collision time
is of order unity.
2-4
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V. ELASTIC PLANE-WAVE TEST PROBLEMS

One might imagine studying the oscillation of angu
momentum in a deformed square, as is shown in Fig. 2,
a little reflection shows that the square undergoes purely
brational oscillations, without any angular momentum. O
of the horizontal boundaries of the square could be explic
constrained in order to exert a torque, but a simpler impl
boundary-free problem results if instead we consider a sta
ing plane shear wave, with wave vector (kx ,ky)[(0,2p/l)
parallel to they direction. In such a wave the local angul
momentum density varies periodically in space and time.
the amplitude of oscillation beAx with the initial condition
such that the kinetic energy vanishes. Thex displacement in
this motion has the following form:

ux~y,t !5Axsin~ky!cos~vt !.

The corresponding elastic strainexy5]ux /]y1]uy /]x
gives the only nonvanishing stress componentsxy[hexy .
This stress component must satisfy the continuum equa
of motion, r v̇[“•s. The solution consistent with our as
sumed initial condition~specified in terms of the local stres!
is

exy5kAxcos~ky!cos~vt !→sxy5hkAxcos~ky!cos~vt !,

ẋ52vAxsin~ky!sin~vt !→ ẍ52v2Axsin~ky!cos~vt !.

The stress and acceleration satisfy the usual continuum
tion equation

r ẍ5
]sxy

]y
52hk2Axsin~ky!cos~vt !

52rv2Axsin~ky!cos~vt !,

which gives the familiar dispersion relation for the transve
sound speedcT5v/k5Ah/r. An exactly similar argument
but for a displacement in they direction, leads to a solution
of the corresponding motion equation and gives the co
sponding dispersion relation for longitudinal waves:

uy~y,t !5Aysin~ky!cos~vt !→cL5v/k5Al12h

r
.

FIG. 2. Deformation of the unit square with the simple she
ux5y/4. If the deformed configuration~a! is taken as a constraint
free initial condition the resulting motion oscillates symmetrica
~b! and without any rotation about the center of mass.
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For Hooke’s law harmonic forces, with force constantk in a
two-dimensional triangular lattice~with six nearest-neighbo
interactions for each particle!, the Lame´ constantsl and h
are equal~to A3/16k) so that the longitudinal wave spee
exceeds the transverse wave speed byA3.

The angular momentum in the transverse wave, avera
over all space, is zero, but thelocal angular momentum den
sity

l 52ryẋ51vrAxy sin~ky!sin~vt !

oscillates in space and time. Just as in Sec. III B, we cons
the angular momentum contained within a smalld3d region
which moves with the flow velocity. In a (dx,dy) system of
coordinates, fixed on the center of mass of the region
comoving with it, the corresponding velocity (dvx ,dvy) var-
ies linearly. The first-order term~in dy) then follows from
the Taylor’s series forvx :

dvx5dy
]vx

]y
5kdyvx ,

so that the angular momentum of thed3d region is propor-
tional to the mean value ofdy2 throughout the region. Its
time derivative varies as cos(ky)cos(vt):

L̇d3d5 l̇ d25rd2^2dyẍ&5rd2v2k
d2

12
Axcos~ky!cos~vt !.

The time-rate-of-change can alternatively be calculated
rectly from the equation of motion for the smalld3d square:

rd2
d

dt
^2dyd ẋ&5rd2^2dyd ẍ&

5rd2K 2dy2
]d ẍ

]y L
5rd2K 2

dy2

r

]2sxy

]y2 L
5

d4hk3

12
Axcos~ky!cos~vt !.

That the two expressions forL̇ must agree again implies th
exact dispersion relationcT5v/k5Ah/r.

Both the angular momentum and its rate of change van
as thesquareof the volume element’s size. This problem
an excellent test for smooth-particle methods. Using a p
odic crystal, 24 in width and 24A3/4 in height, described by
576 particles at a mass density ofA4/3, leads to a near
perfect periodic motion, with period 35. See Fig. 3 for tw
example problems, both with maximum displacements~in
either thex or the y direction! equal to 0.25. For the trans
verse wave, withx displacements, the correspondingv/k
ratio closely approximates the transverse sound velocitycT

5A3/8:

v/k5~2p/35!/~2p/24A3/4!50.59.0.615cT .

r

2-5
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The time dependence of the local angular momentum ob
the analysis given above.

A similar simulation, withAy50.25 rather thanAx , like-
wise reproduces the expected motion forlongitudinalwaves,
with cL5A9/8. See again Fig. 3. Evidently there is no pro
lem with either tensile instability or with angular momentu
conservation for these two simple test problems. We a
confirmed that these solutions are stable to small rand
perturbations of the initial conditions. Let us turn next to
more challenging example.

VI. ROTATING TENSILE TEST PROBLEM

The stationary state of a rotating compressibledisk is a
standard problem in elasticity theory. In a rotating disk
radiusR, densityr, and with equal elastic constantsl5h
the ~radial! displacement and nonvanishing stress-ten
components are

ur5
rrv2

6 S R22
2r 2

3 D , s rr 5
5rv2

12
~R22r 2!,

suu5
5rv2

12 S R22
3r 2

5 D .

Discrete particles suggest using a hexagonal sample sh
Detailed stress and displacement comparisons with mol
lar dynamics show only small deviations between the cir
lar and hexagonal sample shapes.

With SPAM, the stability of arotating compressible solid
is quite different to molecular dynamics and to the plan

FIG. 3. Evolution of plane waves in a 24324 sample of periodic
linear elastic solid. The time variations of the kinetic~dashed! and
internal ~full curve! energies are shown. The initial condition is
sinusoidally deformed lattice, motionless, and with a sinusoidal
tribution of the initial stresses. Both the transverse~a! and longitu-
dinal ~b! energies are shown. The oscillation frequencies agree
macroscopic linear elastic theory within about 1%.
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wave motions of the preceding section. Figure 4 shows sn
shots of the motion of three 217-particle elastic solids w
equal Lame´ constants. At the top we see a standard mole
lar dynamics simulation, using fourth-order Runge-Kutta
tegration with a nearest-neighbor pair potentialf5 1

2 (1
2r )2 and a particle mass of unity has a stress-free densit
A4/3 and two equal elastic constantsh5l5A3/16. In all
cases, the initial velocities are chosen to correspond to ri
body rotation, with a maximum speed~at the vertices of the
hexagon! equal to 0.1. This maximum speed is a bit less th
10% of the longitudinal sound speed. This relatively slo
motion guarantees sufficiently small strains~of order 0.12

50.01) for the applicability of linear elasticity.
In the center of Fig. 4 we see the corresponding SPA

simulation, using Lucy’s weight function with a range equ
to three times the initial nearest-neighbor separation. H
we use the simple summation approach to density,r
[m(w. Below we integrate the continuity equation fro
the specified initial densityr5A4/3. There are quite definite
quantitative differences in the last two approaches, with
hexagonal lattice persisting better when the continuity eq
tion is used. The summation approach has the advantage

-

th

FIG. 4. Configurations of 217 particles after a nominal rotati
of 2p/3 using standard molecular dynamics~a!, standard smooth-
particle mechanics~b! with summed-up densities, and smoot
particle mechanics with densities based on the continuity equa
~c! with initial valuesr(t50)[A4/3.
2-6
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the total system mass obtained by integrating the mass
sity r is equal toNm, whereN is the number of particles an
all the particle masses are the same,m. Nevertheless, in the
remaining simulations we have used the continuity-equa
approach, which generated ‘‘better’’ solutions from t
shape-conserving standpoint.

The molecular dynamics algorithm provides stable so
tions which conserve both energy and angular momentum
accurately as desired~up to the precision carried by the com
puter!. The standard SPAM algorithm, with the same num
of particles, the same elastic equation of state, and the s
stress-free density, behaves qualitatively differently. It res
in a loss of 1%~5%! percent of the angular momentum aft
a rotation of 60° (120°) degrees. Figure 5~above! shows the
improved motion which results when the particle velocit
are replaced by the local averages described in Sec. IV.
the left we use the ordinary SPAM velocity average:

$ ṙ i5v i%→H ṙ i5^v&[
m

r i
(

j
v jwi j J , r i5m( wi j .

FIG. 5. Configurations of 217 particles after nominal rotatio

of 2p/3 ~top row! and 2p ~second row! using SPAM withṙ[^v&
~a,b! and SPAM with Monaghan’s averageṙ[^v&Monaghan~e,f!. The
two types of average velocity are described in Sec. VI. Densitie
these four simulations are all computed from the usual SPAM c
tinuity equation with the initial valuer(t50)[A4/3. Densities be-
low, ~c,d! and ~g,h!, for the same nominal rotations of 2p/3 ~third
row! and 2p ~fourth row! are computed using the chain-rule ge
eralization of the continuity equation described at the end of S
VI. These examples clearly demonstrate the enhanced stabilit
Monaghan’s velocity-averaging algorithm.
01670
n-
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Monaghan’s slightly more complicated suggestion~which
has the advantage of exactly conserving linear moment!
provides similar results~shown at the right of Fig. 5!. Mon-
aghan’s form for the average is different:

H ṙ i5v i1(
j

~v j2v i !wi j /r i j J ,

where the mean densityr i j can be either arithmetic or geo
metric:

r i j 5
r i1r j

2
or r i j 5Ar ir j .

It should be pointed out~but has not been, so far as w
know! that thevelocity-averagedforms for ṙ are inconsistent
with the usual smooth-particle continuity and energy eq
tions. We do not wish to carry out a full investigation here.
thorough investigation is certainly warranted. Here we ha
chosen to solve a few selected problems using contin
equations properly modified for velocity averaging:

ṙ i[m(
j

^v i2v j&•“ iwi j

or ṙ i[m(
j

^v i2v j&Monaghan•“ iwi j .

Results from both these approaches appear in the lower
of Fig. 5. The usual SPAM velocity average is used on
left and Monaghan’s velocity average on the right.

Notice that it is possible to simulate the rotation fair
well for a complete rotation, a time of order 30 sound tr
versal times, when velocity averaging is used. Though
two velocity averaging ideas illustrated here, as well as s
eral others, can be used to avoid the tensile instability, all
SPAM simulations, modified or not, suffer from a relative
rapid loss of angular momentum. We cure this loss in
following section.

VII. ANGULAR MOMENTUM CONSERVATION IN SPAM
USING GAUSS’S PRINCIPLE

An overall correction could be constructed by adding
torque counteracting the change associated with eachi j pair:

Ti j }L̇ i j 5m~xi j yi j !F S Pxx

r2 D
i

1S Pxx

r2 D
j

2S Pyy

r2 D
i

2S Pyy

r2 D
j
G

3~w8/r ! i j 2m~xi j
2 2yi j

2 !F S Pxy

r2 D
i

1S Pxy

r2 D
j
G ~w8/r ! i j .

This correction violates conservation of energy to the ext
that the rotational kinetic energies are changed; and it is
at all clear that sufficient radial kinetic energy is available
correct for this violation. Furthermore, more complicat
situations cannot be simply treated in this way. A good e
ample is a system composed oftwo specimens, identical ex

in
-

c.
of
2-7
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HOOVER, HOOVER, AND MERRITT PHYSICAL REVIEW E69, 016702 ~2004!
cept for the direction of rotation, clockwise for one an
counterclockwise for the other. Evidently the equations
motion conserve angular momentum exactly for such a s
tem despite the exactly compensating losses in the two sp
mens.

Except in certain special cases SPAM does not cons
angular momentum. In smooth-particle mechanics it is de
able to conserve the angular momentumwithout disturbing
energy conservation. Consider imposing the energy and
gular momentum constraints simultaneously,

Ė505( m~ ė1v• v̇ !, L̇505( m~xÿ2yẍ!

by using the generalized equations of motion

$mv̇5FSPAM1F%.

Here the constraint forceF keeps both the energy and th
angular momentum fixed. Out of all the possible constra
forces Gauss’ principle@15,16# ~of least constraint! can be
used to pick the smallest~in an rms sense!. The result iden-
tifies two multipliersa, which constrains the energyE, and
b, which constrains the angular momentumL. The equations
of motion which result are

Fx52a ẋ2by, Fy52a ẏ1bx;

a52bL/~2K !, b5L̇/@mR22~mL2/2K !#.

Here R25(r 2 is the moment of inertia about the center
mass. The denominator@R22(L2/2K)# vanishes for a pure
rigid-body motion, for which the constraints are unnecess
Unfortunately the same denominator vanishes periodicall
the more general case, so that this constraint method is
generally useful. The physical significance of the multiplie
is clear: the Lagrange multipliera controls the kinetic en-
ergy through a generalized frictional force~which can either
add or subtract energy!; the Lagrange multiplierb controls
the angular momentum by exerting torques on every parti
The singular divergence of the multipliers occurs when th
is insufficient radial kinetic energy to compensate for t
work of keeping the angular momentum constant. In the
lowing section we describe an alternative approach wh
does not suffer from the singular behavior of the two Gau
principle multipliers.

VIII. ANGULAR MOMENTUM CONSERVATION IN SPAM
USING TORQUE SCALING

We carried out a wide range of simulations to test
various ideas for stabilizing a rotating body. Here we rep
some sample results for hexagonal specimens with a m
mum rotational velocity of 0.1~where the nearest-neighbo
triangular-lattice spacing is unity and the transverse and
gitudinal sound velocities are, respectively,A3/8 andA9/8).
We reduced the variety of possible algorithms by choosing
omit von Neumann’s artificial viscosity and to use Lucy
weight function, with a range three times the neare
neighbor spacingh[3. Regular hexagons, with a maximu
01670
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center-to-perimeter distancen in the stress-free state, andN
57,19,37,61, . . . 5113n13n2 particles with initial tan-
gential particle velocitiesr u̇50.1r /n were followed for the
time 20np, which would correspond to a complete rotatio
~and several sound-traversal times!. For illustrative purposes
we use the casen58→N5217 in the figures.

Standard SPAM, due to the tensile instability, is unable
retain the hexagonal sample shape for long. Whether the
tial density is chosen everywhere equal to the ideal stre
free triangular-lattice densityr5A4/351.1547~and updated
by integrating theṙ continuity equation! or is instead evalu-
ated by approximate smooth-particle summingr i[( jwi j ,
where 1.1551 is the approximate perfect-lattice density,
resulting simulation is still poor. Either of these approach
satisfies the smooth-particle continuity equation

ṙ52r“•v↔ ṙ i[m(
j

~v i2v j !•“ iw~r i j !.

Though the hexagonal sample shape survives fairly well
a complete revolution, the angular momentum is decrea
to about half its initial value. See Fig. 6. In the absence
constraint forces angular momentum decays relativ
promptly. Velocity averaging cures the tensile instability,
least for a few sound-traversal times, but does not help w
angular momentum conservation. In curing the angular m
mentum loss, as described below, we retain velocity ave
ing in order to stave off tensile instability too.

Gauss’ principle suggests that angular momentum be c
served by adding an additional force proportional to ea
particle’s distance from the center of mass. We reject t
idea in favor of local corrections which do not depend up
the global coordinates. To get a local formulation consid
the time rates of change$L̇ i j % of the angular momenta asso
ciated with all interacting pairs of particles:

L̇5
d

dt
m( ~xẏ2yẋ!5(

i j
L̇ i j ,

FIG. 6. Angular momentum as a function of time for the 2
particles shown in Fig. 5 using SPAM with velocity averaging, w

ṙ[^v& and with Monaghan’s velocity average,ṙ[^v&Monaghan. All
densities here are from the continuity equation, corresponding to
top two rows of Fig. 5.
2-8
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L̇ i j [~xi j yi j !F S Pxx

r2 D
i

1S Pxx

r2 D
j

2S Pyy

r2 D
i

2S Pyy

r2 D
j
G ~w8/r ! i j

2~xi j
2 2yi j

2 !F S Pxy

r2 D
i

1S Pxy

r2 D
j
G ~w8/r ! i j .

One can equally well define individual particle time rates
change in terms of sums of theL̇ i j :

L̇ i5
1

2 (
j

L̇ i j .

In a typical SPAM simulation several thousands ofL̇ i j are
negative. The rest are positive, and the sum is nearly z
The sum could be made to beexactlyzero by rescaling the
negative and positiveL̇ i j :

L̇ i j ,0→R11L̇ i j , L̇ i j .0→R21L̇ i j ,

whereR2 is the sum of all the positiveL̇ i j divided by minus
the sum of the negativeL̇ i j . In an exactly similar way$L̇ i%
can also be scaled so as to vanish exactly. These two i
provide definite improvements over the usual SPAM alg
rithm. Snapshots taken after a full revolution at fixed angu
momentum and with both kinds of velocity averaging a
shown in Fig. 7.

IX. SUMMARY AND CONCLUSIONS

An exhaustive exploration of smooth-particle algorithm
is a daunting task. The literature includesmanyversions of
the equations of motion and many definitions for smoo
particle gradients. We have consistently used what seem

FIG. 7. Configurations of 217 particles, with angular moment

held fixed, after nominal rotations of 2p. SPAM usingL̇ i j torque

scaling appears at the top and withL̇ i scaling at the bottom.ṙ

[^v& ~a,b! and SPAM with Monaghan’s average,ṙ[^v&Monaghan

~c,d! are shown. The two types of average velocity are describe
Sec. VI. Summed-up densitiesr i5m( jwi j perform much less well
than do the continuity-equation densities used in all these sim
tions.
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v̇ i[(
j

@~s/r2! i1~s/r2! j #•“ iw~r i j !,

~“v ! i[(
j

~v i j /r i j !“ iw~r i j !, v i j [v i2v j ,

r i j [~r i1r j !/2.

Nevertheless, many variations and combinations are p
sible: ~i! restricting the distance of closest approach, or n
~ii ! using von Neumann’s viscosity, or not;~iii ! computing
density as a sum or by integrating the continuity equati
~iv! advancing the coordinates with

ṙ 5v or ^v& or ^v&Monaghan;

~v! constraining the angular momentum with Gauss’ pr
ciple, with $Ti5L̇ i%, or with $Ti j 5L̇ i j %. Just these 232
323333572 combinations, most of which we have e
plored, could be expanded to include weight functionsw(r
,h) other than Lucy’s, and with ranges other thanh53, as
well as less accurate but more efficient time integrators.
even greater variety of algorithms can be generated by
lowing the consequences of velocity averaging, as we in
cated at the end of Sec. VI. We have made an effort
specify precisely here what we have done in order that oth
could reproduce our results without excessive difficulty.

We have seen that the combination of Monaghan’s vel
ity averaging with a conservative local constraint on the
gular momentum provides good solutions of a rotating bo
under tensile stress conditions and for many sound-trave
times. In a more general situation, such as the fragmenta
of a bar by a projectile,local conservation of angular mo
mentum is necessary. To see that the locality of the constr
is essential, consider a system composed of two mir
image counter rotating hexagons. One rotates clockw
while its twin rotates counterclockwise. No matter ho
poorly angular momentum is conserved locally, the glo
sum vanishes. Any general treatment requires dividing
system into parts, each of which must satisfy its own angu
momentum balance. With this separation into parts ther
no problem rescaling the positive and negative$L̇ i j % or $L̇ i%
for each part, resulting in both local and global conservati

Under compressive loads the various smooth-part
methods have no special drawbacks. In general, one ca
expect smooth particles to perform well using the pres
methods inquasistatictensile simulations. The present wor
demonstrates that velocity averaging~or viscosity, or a mini-
mum distance of closest approach! can provide accurate
simulations for times on the order of 20 sound-traver
times.
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