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Nosé-Hoover Nonequilibrium Dynamics

and Statistical Mechanics

Wm. G. Hoover

Highway Contract 60, Box 565

Ruby Valley, Nevada 89833
(Dated: October 8, 2006)

At equilibrium Nosé’s 1984 revolutionary thermostat idea linked Newton’s mechanics with Gibbs’
statistical mechanics. His work expanded the scope of isothermal and isobaric simulations. Nosé-
Hoover dynamics has subsequently facilitated the simulation and detailed understanding of nonequi-

librium problems. The fractal phase-space distributions, and their close link to the Lyapunov spec-
trum, provide a novel explanation of irreversibility and a rich field for exploration.

PACS numbers: 05.70.Ln, 05.45.-a, 05.45.Df, 02.70.Ns

Keywords: Thermostats, Molecular Dynamics, Fractals, Irreversibility

I. INTRODUCTION TO NOSÉ’S MECHANICS

In the simple-fluid molecular dynamics of the 1960s
and 1970s the usual Hamiltonian was the sum of the ki-
netic and pair-potential energies K and Φ:

HUsual = K + Φ ;

K =
∑

[

p2

2m

]

; Φ =
∑

pairs

φ(r) −→

{mr̈ = ṗ = F (r) = −∇Φ} .

By the early 1970s nonequilibrium simulations were
emerging, and temperature control (as measured by ki-
netic energy) of dynamical simulations was being imple-
mented by ad hoc velocity scaling[1, 2].

In the 1980s temperature control underwent a qual-
itative change. Shuichi Nosé was responsible for it[3,
4]. He discovered a most unusual, even revolutionary,
temperature-dependent Hamiltonian for thermostating
# degrees of freedom:

HNosé =

[

p2
s

2M

]

+
∑

[

p2

2ms2

]

+ Φ(q) + #kT ln s .

His new Hamiltonian included the extra pair of con-
jugate control variables (s, ps) as well as a thermostat
mass M setting the control-variable timescale. Nosé pre-
ferred to interpret s as a “time-scaling” (as opposed to
“mass-scaling”) variable. The new variable controlled
the kinetic energy through feedback. Nosé’s augmented
(“extended-system”) Hamiltonian led directly to his new
(in 1984) equations of motion:

{

q̇ =
p

ms2
; ṗ = F (q)

}

;

ṡ =
ps

M
; ṗs =

∑

[

p2

ms3
− kT

s

]

.

His related “time-scaled” equations of motion contain the
extra factor s:

{ q̇, ṗ, ṡ, ṗs } −→ { sq̇, sṗ, sṡ, sṗs } .

These new “time-scaled” equations are as follows:
{

q̇ =
p

ms
; ṗ = sF (q)

}

;

ṡ =
sps

M
; ṗs =

∑

[

p2

ms2
− kT

]

.

Nosé proved that either set of equations, original or time-
scaled, generates the canonical distribution (assuming er-
godicity) for the (q, p′) ≡ (q, p/s) variables provided that
the time averages are properly weighted. See his two
1984 papers[3, 4] and his 1991 review[5] for the details.

Nosé stated that his work was strongly influenced by
Hans Andersen’s 1980 work[6] in which the pressure fluc-
tuations characterising an isobaric ensemble were imple-
mented by a deterministic feedback force controlling vol-
ume. Andersen’s idea of using an extended Hamilto-
nian to regulate the pressure had independently been
applied to the simulation of nonequilibrium bulk and
shear viscosities[7]. Nosé’s breakthrough was the impo-
sition of canonical temperature fluctuations implemented
by an extended-system feedback force controlling kinetic
energy.

II. NOSÉ AND NOSÉ-HOOVER MECHANICS

As Nosé pointed out in his 1984 papers his scaled equa-
tions of motion can be usefully rewritten by replacing
the scaled momentum with a new “real” momentum:
[(p/s) → p]. Here I indicate this new momentum by
p in the rewritten equations:

{

ṙ =
p

m
; ṗ = F ({r})− ps

M
p

}

;

ṡ =
sps

M
; ṗs =

∑

[

p2

m
− kT

]

.
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After meeting Nosé in Paris in 1984 I wrote a paper[8]
emphasizing both the importance of the scaled equations
of motion and the complete irrelevance of the scaling vari-
able s. The scaling variable can be completely ignored
by writing the remaining motion equations as follows:

{ mr̈ = ṗ = F ({r})− ζmṙ = F (r) − ζp } ;

ζ̇ =

[

K

K0

− 1

]

/τ2 ; ζ =
ps

#kT τ2
=

ps

M
,

where τ is a phenomenological relaxation time. The fric-
tion coefficient ζ ∝ ps, which can be either positive or
negative, obeys a feedback equation which controls the
kinetic energy K to make its time average equal to K0.
Applications of the three simpler equations proliferated
and, on the strength of my 1985 paper, these equations
were called the “Nosé-Hoover” thermostat equations.
The earlier ad hoc thermostating equations of Woodcock
and Ashurst corresponded to the special “Gaussian Isoki-
netic” case of Nosé’s equations:

( M ∝ τ2 → 0 ) −→
(

ζ → ζGauss =

∑

ṙ · F
∑

(p2/m)

)

.

III. DETTMANN’S HAMILTONIAN FOR

NOSÉ-HOOVER DYNAMICS

About a dozen years after meeting Nosé-san in Paris,
prior to a CECAM meeting, I met Carl Dettmann in
Lyon, also at a CECAM gathering (July, 1996), another
happy coincidence. Carl’s background in transformations
for astrophysical applications made it possible for him
to answer my question: “Is there a Hamiltonian giving
Nosé’s scaled equations without the need for time scal-
ing?”. Carl had the answer early the very next day[9, 10]:

HDettmann ≡ sHNosé =

s

[

p2
s

2M

]

+ s
∑

[

p2

2ms2

]

+ sΦ + s#kT ln s ≡ 0 (!)

−→

{ mr̈ = F ({r})− ζmṙ } ;

ζ̇ =

[(

K

K0

)

− 1

]

/τ2 ;

K0 =
#

2
kT ; ζ =

ps

#kT τ2
; M = #kT τ2 .

In retrospect it seems surprising that it took so long
(a dozen years) for the Hamiltonian generating the Nosé-
Hoover equations to be discovered. Nosé had written the

equivalent Lagrangian in his second 1984 paper[4] but
not the Hamiltonian, with its essential value, zero.

Along with many others inspired by Nosé’s work I
had pursued this problem for years. Nosé’s Hamiltonian,
with the usual kinetic energy divided by s2 and the loga-
rithmic temperature-dependent potential for s, #kT ln s,
certainly suggests whole families of modified Hamilto-
nians for investigation[11]. For instance, Winkler[12]
studied the consequences of dividing the momenta by
s2 rather than s. Had he tried

√
s instead, he would

have discovered Dettmann’s result. Kusnezov, Bulgac,
and Bauer[13] generalized the scaling approach by includ-
ing arbitrary functions of {q, p} rather than just powers
of s. It is very interesting that the much simpler idea,
dividing/multiplying the kinetic/potential energy by s,
was undiscovered until July of 1996[9]. Once known it
was promptly rediscovered, about a year later, in connec-
tion with the development of symplectic “Nosé-Poincaré”
integrators[14].

The most mysterious feature of Nosé’s Hamiltonian
(and Dettmann’s) is the “time-scaling” (or mass-scaling)
variable “s”. The significance of s is not apparent. Evi-
dently it is dimensionless, like an angle, and its conjugate
(angular) momentum ps is proportional to the friction co-
efficient ζ. The mystery of s’ identity need not be solved,
as “s” soon disappears. In the final “Nosé-Hoover” form
of the motion equations, although they can be traced
back to Dettmann’s Hamiltonian, “s” does not appear
at all.

A less mysterious direct route (suggested by Brad Ho-
lian) to the same destination, the Nosé-Hoover equations,
begins with the somewhat ad hoc control equation—
which can be related to Gauss’ Principle of Least
Constraint[15] and to Hamilton’s Principle of Least
Action[16]:

mr̈ = F ({r})− ζmṙ ,

together with the question: “What must the control vari-
able ζ be in order to produce Gibbs’ canonical constant-
temperature phase-space distribution?” The answer is
the Nosé-Hoover recipe for ζ:

ζ̇ =

[

K

K0

− 1

]

/τ2 .

Of course the complete canonical distribution cannot
be obtained numerically. In fact, unless the dynamics
is sufficiently “mixing” the phase-space distribution de-
pends on the initial conditions as well as the thermostat
timescale set by M or τ . Particularly poor timescale
choices can lead to the Toda-potential oscillations de-
scribed in detail in pages 27-35 of Reference [17].

IV. DYNAMICS AWAY FROM EQUILIBRIUM,

LEETE’S HAMILTONIAN

Generating canonical distributions directly from dy-
namics was a boon to the simulation activities that fol-
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lowed Alder and Wainwright’s, and Fermi’s, and Vine-
yard’s lead in the 1950s and 1960s. All that was required
was to add the control force involving the friction coeffi-
cient ζ to the ordinary equations of motion derived from
HUsual.

Away from equilibrium Nosé’s Hamiltonian route to
the control equations hit a roadblock. There is no con-
sistent way (known to me) to introduce a second tem-
perature into the Hamiltonian. Finding a solution to
this problem remains a major challenge. By contrast,
the Nosé-Hoover dynamic approach can deal with any
number of temperatures. For any degree of freedom qi,
thermostated to its own individual temperature Ti, the
equation of motion is as follows:

miq̈i = Fi({q})−miζiq̇i ; ζ̇i =

[(

mq̇2
i

kTi

)

− 1

]

/τ2
i ,

where τi describes the rate at which qi interacts with its
thermostat at the temperature Ti.

It is possible that Tom Leete’s equilibrium thermostat
idea[18],

HLeete =
√

4KK0 + Φ ;

K =
∑

p2/2m ; K0 =
∑

mq̇2/2 ,

which keeps the kinetic energy K0 constant, while K
varies, could somehow be modified so as to be made suit-
able for nonequilibrium simulations. Unlike Dettmann’s
Hamiltonian, Leete’s requires no special initial value.
Unfortunately the initial conditions can easily spoil the
requirement that K ≃ K0.

When Carol and I visited Japan in 1989-1990, we
were quick to take advantage of Nosé’s thermostat ideas.
Working with Tony De Groot, back at Livermore, and
with several other colleagues, some in Japan, we simu-
lated the plastic indentation of silicon, pressing an inden-
tor into a thermostated specimen, represented by more
than a million Stillinger-Weber silicon atoms[19, 20]. See
Figure 1. In order to clarify the new ideas associated
with Nosé’s thermostat, let us detail three further exam-
ples: (i) a particle in a constant external field, (ii) a har-
monic oscillator, with and without temperature gradient,
and (iii) a two-dimensional heat-conducting crystal. For
simplicity in what follows I choose the various parame-
ters (masses, field strengh, force constants, ...) equal to
unity, corresponding to expressing the problems in “re-
duced units”.

V. FIELD-DRIVEN DISSIPATIVE MOTION

Perhaps the simplest pedagogical example[21] of Nosé
and Nosé-Hoover dynamics is the steady motion of a ther-
mostated particle in a gravitational field, φ = −q. In the

absence of a thermostat the particle accelerates continu-
ously:

HUsual =
p2

2
− q −→ { q̈ = 1→ q̇ = t→ q =

t2

2
} .

By adding friction we would expect a stationary nonequi-
librium state. Nosé’s Hamiltonian for this problem adds
the new variables (s, ps) = (s, ζ). The resulting motion
remains Hamiltonian, and the kinetic energy p2/2 in-
creases quadratically in time while q̇2/2 approaches zero:

HNosé =
p2

2s2
− q + ln s +

ζ2

2
−→

q̇ =
p

s2
; ṗ = 1 ; ṡ = ζ ; ζ̇ =

p2

s3
− 1

s
−→

(q, p, s, ζ) = (ln t, t, t, 1) .

“Scaling the time”, multiplies the four rate equations
by s and results in a different solution, in which the ki-
netic energy p2/2 diverges exponentially with time while
q̇2/2 is constant:

q̇ =
p

s
; ṗ = s ; ṡ = sζ ; ζ̇ =

p2

s2
− 1 −→

(q, p, s, ζ) = (t, et, et, 1) .

These same equations of motion, with the same solution,
follow from Dettmann’s Hamiltonian (a nonequilibrium
Hamiltonian in this case):

HDettmann =
p2

2s
− qs + s ln s +

sζ2

2
= 0 .

The equivalent “Nosé-Hoover” equations—just three
first-order equations, rather than four, as s is finally
absent—have a simpler finite and stationary solution, in
accord with our physical expectations:

q̈ = 1− ζq̇ ; ζ̇ = q̇2 − 1 −→

(q, q̇, ζ) = (t, 1, 1) ,

The velocity reaches a stable stationary state, in which
gravitational energy is steadily converted to heat by the
Nosé-Hoover thermostat. We consider next a harmonic
oscillator, which illustrates the complexity which can be
associated with realistic nonequilibrium states.

VI. HARMONIC OSCILLATOR, AT AND AWAY

FROM EQUILIBRIUM

After first meeting Shuichi in Paris in 1984, I learned
more about his mechanics by studying the thermostated
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harmonic oscillator problem, first in Lausanne[8] and
then in Vienna, with Harald Posch and Franz Veseley[22].
In terms of the oscillator mass m, force constant κ, ther-
mal energy mkT , and thermostat relaxation time τ the
problem is a set of three coupled ordinary differential
equations:

q̇ = p/m ; ṗ = −κq − ζp ; ζ̇ = [
p2

mkT
− 1]/τ2 ,

When expressed in terms of dimensionless “reduced”
variables, the equations depend upon a single dimension-
less parameter, the ratio of the oscillator period to the
relaxation time τ . In their simplest form, the reduced
thermostated oscillator equations for q and p are

q̇ = p ; ṗ = −q − ζp ;

where the reduced friction coefficient ζ is obtained from
any of three equivalent choices for the third differential
equation:

ζ̇ =
p2

T
− 1 or ζ̇ = [p2 − 1]/τ2 or ζ̇ = p2 − T .

These relatively simple equations for (q̇, ṗ, ζ̇) surprised
us with their relatively complicated solutions with many
interesting special cases. Depending upon the initial con-
ditions, the trajectories made up not only an infinite
number of regular “tubes”, each surrounding a quasiperi-
odic family of stable periodic orbits—but also an unstable
chaotic sea, containing all the tubes, and filling up the
rest of the phase space. The union of all these compli-
cated distributions can be expressed as a simple three-
dimensional Gaussian distribution, the simple stationary
solution of Liouville’s probability density flow equation
∂f/∂t ≡ 0 in the phase space:

∂f/∂t ≡ 0 −→ f ∝ exp

[−q2 − p2

2kT

]

exp

[−ζ2

2

]

=

e−HUsual/kT e−ζ2/2 .

The probability density of the friction coefficient ζ here is
Gaussian too, just as is the distribution of the coordinate
q and the momentum p.

The thermostated harmonic oscillator problem offers
striking evidence for the inefficiencies of time scaling.
Consider, as a typical example, the simple periodic or-
bit detailed in Figure I.21 of Reference [17] and Figure 7
of Reference [22]. Good energy conservation for this or-
bit with the fourth-order Runge-Kutta method requires
dt = 0.0000001 for Nosé’s original equations of motion
and dt = 0.01 for the Nosé-Hoover equations. A detailed
investigation shows that the time-scaling factor s is the
culprit, leading to phase-space speeds,

vPhase =
√

(q̇)2 + (ṗ)2 + (ṡ)2 + (ṗs)2 ,

exceeding Nosé-Hoover and Dettmann speeds by more
than four orders of magnitude! But even with the time-
scaling difficulty removed, the Nosé-Hoover oscillator still

lacks ergodicity.
By adding a second control variable ξ, controlling ei-

ther the fourth moment[17, 23] 〈p4〉 or ζ itself[24], the
(q, p, ζ, ξ) phase-space distribution can be made ergodic
for the oscillator, without the contained complexity of
the infinite family of regular tube solutions. The “chain
of thermostats” approach[24], controlling ζ with ξ,

q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − T − ξζ ; ξ̇ = ζ2 − T ,

describes a nonequilibrium problem if T is made to de-
pend upon the coordinate q:

Tq = 1 + ǫ tanh(q) −→ [ T−∞ = 1− ǫ ; T+∞ = 1 + ǫ ] .

Control of the fourth moment[17, 23, 25] provides an
alternative set of equations:

q̇ = p ; ṗ = −q − ζp− ξp3 ;

ζ̇ = p2 − Tq ; ξ̇ = p4 − 3p2Tq .

For small ǫ nothing out of the ordinary occurs with ei-
ther approach. The phase-space distribution is close to
Gaussian in each of the four variables. But larger ǫ
values, corresponding to larger temperature gradients,
dT/dx ≤ ǫ, provide interesting phase-space projections.
Figure 2 shows five time exposures of an ergodic four-
dimensional trajectory[25] with ǫ = 1, projected into
the two-dimensional (ζ, ξ) plane. The transformation
of a one-dimensional (q, p, ζ, ξ) trajectory into a 1.77
fractional-dimensional “fractal” projected (ζ, ξ) distribu-
tion [ the “Skiing Goose” rather than a two-dimensional
Gaussian ] is clearly visible in Figure 2. The underly-
ing distribution in four dimensions is a 2.56-dimensional
“strange attractor”.

This type of transformation, to a fractal distribu-
tion, is in fact typical of nonequilibrium systems treated
with Nosé-Hoover mechanics. Let us consider next a
many-body example[26], before turning to the more gen-
eral situation[27, 28], together with the implications for
nonequilibrium statistical mechanics.

VII. HEAT CONDUCTING CRYSTAL

“φ4” crystals[29, 30] are probably the simplest model
systems with ordinary Fourier conductivity in one, two,
or three dimensions. The φ4 particles interact with
nearest-neighbor Hooke’s-Law springs and are addition-
ally tethered to their lattice sites with a quartic poten-
tial. Figure 3 shows individual particle trajectories[26]
for a crystal with a single “hot” particle (upper right)
and a single “cold” one (lower left). The phase space,
with 32 coordinates, 32 momenta, and two friction co-
efficients (ζHOT, ζCOLD) is 66-dimensional, impossible to
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visualize directly. But the distribution is nevertheless
fractal. This can be shown by following the rate of ex-
pansion, in phase space, of a small element of volume,
⊗ = Π(dqdp) × dζHOTdζCOLD:

d ln⊗/dt = −ζHOT − ζCOLD =
∑

i

λi(t) .

The 66 instantaneous Lyapunov exponents
{λ1(t), λ2(t), . . . , λ66(t)} give the rates of expan-
sion or contraction of particular infinitesimal
1−, 2−, . . . , 66−dimensional volumes in the 66-
dimensional phase space. The largest exponent
(when time-averaged), λ1 ≡ 〈λ1(t)〉, gives the average
rate at which two nearby trajectories separate. The
sum of the largest two exponents, λ1 + λ2, corresponds
to the rate at which an area defined by three nearby
trajectories, increases. For this example the first 53
exponents, whose sum describes the growth rate of a
53-dimensional phase-space volume, have a positive sum,
while adding on half the 54th exponent changes the sign
from positive to negative. See Figure 4 for the exponent
values. In geometric terms this vanishing exponent
sum means that the steady-state dimensionality of the
phase-space distribution is between 53 and 54 (actually
53.5 according to Kaplan and Yorke’s conjectured[25]
linear interpolation between the last positive and first
negative sums). The reduction in dimensionality of
∆D = 66 − 53.5 = 12.5 describes the extreme rarity of
nonequilibrium states relative to equilibrium ones for
this system.

VIII. THE GENERAL SITUATION

Generally Nosé-Hoover mechanics makes it possible
to connect the time-rates-of-change of phase volume ⊗,
probability density f , and external entropy S to the fric-
tion coefficients {ζi(Ti)} and to the time-averaged Lya-
punov spectrum {λi ≡ 〈λi(t)〉}, where the angular brack-
ets indicate a longtime average:

−〈d ln⊗/dt〉 ≡ +〈d ln f/dt〉 ≡
∑

i

〈ζi〉 ≡

〈Ṡ/k〉 ≡ −
∑

i

〈λi(t)〉 = −
∑

i

λi ≥ 0 .

The final inequality is the Second Law of Thermody-
namics. The chain of inequalities relates the loss of mi-
croscopic phase-space dimensionality to the macroscopic
rate of entropy production.

These connections between dynamics, thermodynam-
ics, and chaos theory appear to be quite general, but
are most easily established with Nosé-Hoover mechanics.
In an important independent development Jarzynski[31]
used the exact connection between phase volume and the
Nosé-Hoover friction coefficient ζ to establish his free en-
ergy identity for nonequilibrium systems. This identity

relates the nonequilibrium finite-time work W (averaged
over an initial canonical ensemble) to the equilibrium
reversible-work Helmholtz free energy change :

〈eW/kT 〉 ≡ e−∆A/kT .

Although the practical utility of the identity is
limited[32], its pedagogical importance in linking equi-
librium and nonequilibrium processes[33] is a profound
and stimulating benefit of Nosé’s work.

The fractal nature of the nonequilibrium distribu-
tions, together with the time reversibility of the mo-
tion equations, also provides a physical interpretation of
irreversibility[34, 35]. Motion in the forward direction is
invariably less unstable than motion in the reverse direc-
tion;

λforward ≡ −λbackward −→

[
∑

forward

λi ≤ 0 ; ⊗ → 0]←→ [
∑

backward

λi ≥ 0 ; ⊗ →∞] .

Thus any uncertainty or perturbation to a trajectory, no
matter how small, will, when reversed, cause the trajec-
tory to choose the direction of increasing entropy with
overwhelming probability.

Nosé’s work not only made it possible to simulate sys-
tems at equilibrium. It also contributed, in an unex-
pected way, to a detailed understanding of systems far
from equilibrium. There remains much more to do. In
particular, the optimization of thermostats and the anal-

yses of reduced phase-space dimensionalities are fertile
research fields for the future. There is also considerable
activity in thermostated integration algorithms, both at,
and away from, equilibrium[36–38].

IX. HISTORICAL REMARKS

Shuichi Nosé’s thermostat ideas were so novel in 1984
that it took me months to understand them. We first
met on a train platform at the Orly airport, in Paris. It
was fortunate for me that his suitcase bore a large la-
bel: “NOSE”. We talked on the train and arranged for a
long technical conversation on a bench in front of Notre
Dame. I had a list of twelve questions which had puzzled
me about his ideas [ mainly having to do with the signif-
icance of “s” ], and we went through them thoroughly.
That conversation changed the direction of my research
career. I had been working on nonequilibrium simula-
tions, but without the analytic tools provided by Nosé’s
fresh approach.

Nosé-san kindly invited me for a sabbatical year at
Keio University 1989-1990. A fringe benefit of this in-
vitation was my marriage to Carol, in preparation for
living together in Japan. My son Nathan’s family was
already established in Tokyo, where my first grandson,
Beau Chiyofuji Hoover, was born during a February bliz-
zard in 1992. Carol’s sister Sandi, her Mother Mabel, my
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daughter Frannie’s family, and my own parents Edgar
and Mary also visited Japan and got acquainted with
Shuichi, his son Atsushi, and his wife Ibuki. We made
many other friends in Japan and are forever grateful to
Shuichi for his kindness and inspiration and to his family
and colleagues for the memories which he has left with
us.
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[9] Wm. G. Hoover, “Mécanique de Nonéquilibre à la Cali-
fornienne”, Physica A 240, 1-11 (1997).

[10] C. P. Dettmann and G. P. Morriss, “Hamiltonian Refor-
mulation and Pairing of Lyapunov Exponents for Nosé-
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Figure 1: Indentation of a thermostated Stillinger-Weber
silicon sample using a rigid indentor. See References [19]
and [20] for details.

Figure 2: The Skiing Goose: development of
a multifractal phase-space distribution from a one-
dimensional trajectory. The intervals between the plot-
ted trajectory points in this (ζ, ξ) projection are
{dt, 10dt, 102dt, 103dt, 104dt}, where dt is the fourth-
order Runge-Kutta timestep, 0.001. See Reference [25]
for details.

Figure 3: Trajectories in a 4×4-particle conducting solid
described with Nosé-Hoover thermostated dynamics. The
upper right and lower left particles are respectively “hot”
and “cold”. See Reference [26] for details.

Figure 4: Equilibrium (dashes) and Nonequilibrium (plus
signs) Lyapunov Spectra for the 16-particle solid of Fig-
ure 3. The underlying information dimension of the mul-
tifractal nonequilibrium distribution function is 53.5. At
equilibrium the dimensionality is 66. See Reference [26]
for details.
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