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Abstract

We apply Maxwell and Cattaneo’s relaxation approaches to the analysis of strong shockwaves

in a two-dimensional viscous heat-conducting fluid. Good agreement results for reasonable values

of Maxwell’s relaxation times. Instability results if the viscous relaxation time is too large. These

relaxation terms have negligible effects on slower-paced subsonic problems, as is shown here for

two-roll and four-roll Rayleigh-Bénard flow.
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I. INTRODUCTION

In 1867 James Clerk Maxwell1 noted that an initial shear stress in a dilute gas, (like

air) when unsupported by an underlying shear motion, will decay with a relaxation time

τ = (η/P ) (about 200 picoseconds for air), where η is the shear viscosity and P the pressure.

His governing relaxation equation for the shear stress modifies Newton’s σ = ηǫ̇ to read

σ + τ σ̇ = ηǫ̇ .

Here σ is the stress, η the viscosity, and ǫ̇ the strain rate. The superior dots represent

comoving time derivatives.

Nearly a century later Carlo Cattaneo2 argued that Fourier’s law for heat conduction

should be similarly modified, in order to avoid the supersonic heat flow implied by a parabolic

(diffusion equation) transport law. One could equally well argue that a heat flux, when

unsupported by a temperature gradient, would decay with a microscopic relaxation time τ

like Maxwell’s. Cattaneo’s approach can be written in a form like Maxwell’s, but with a

partial (fixed in space) rather than a comoving time derivative:

Q+ τ(∂Q/∂t) = −κ∇T .

Cattaneo’s rationale for using a partial time derivative rather than one fixed in the material

is unclear. Here Q is the heat flux, T the temperature, and κ the heat conductivity. With

Cattaneo’s relaxation assumption, “heat waves” can propagate at about the speed of sound3.

On physical grounds Maxwell’s approach, with the comoving time derivative, seems more

“realistic” than Cattaneo’s. Cattaneo’s form for the relaxation time makes no contribution

at all in stationary steady-state problems such as the structure of a steady fluid shockwave.

Oddly enough, modern treatments of time delay3,4 often use Cattaneo’s partial-derivative

formulation rather than Maxwell’s comoving time derivative. The purpose of the present

work is to elucidate the usefulness of the relaxation concept and to explore its limits in

applications of fluid mechanics. In the following Sections we consider the relatively fast-

paced steady shockwave problem as well as the slower-paced steady convective Rayleigh-

Bénard flow. A final Section summarizes our findings. For simplicity we use units in which

the Boltzmann constant and atomic mass are both equal to one.
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II. STRONG DENSE-FLUID SHOCKWAVES

The structure of strong shockwaves has long served as a testing ground for continuum

models like the Navier-Stokes-Fourier equations (here given for a two-dimensional fluid with

vanishing bulk viscosity, ηV = 0):

ρ̇ = −ρ∇ · v ; ρv̇ = −∇ · P ; ρė = −∇v : P −∇ ·Q ;

P = I[Peq + η∇ · v]− η[∇v +∇vt] ; Q = −κ∇T .

The time derivatives, here as before indicated by the superior dot, are all comoving deriva-

tives, like Maxwell’s, time rates of change in a coordinate frame moving with the fluid

velocity v. Solving the three differential equations for the density ρ, velocity v, and energy e

requires a knowledge of the pressure tensor P and heat flux vector Q. The simplest models

are shown here, with two transport coefficients, the Newtonian shear viscosity η and the

Fourier heat conductivity κ defined in the usual way. I is the unit tensor, with Ixx = Iyy = 1

and Ixy = Iyx = 0.

Landau and Lifshitz’ analytic solution of the shockwave structure for a gas with con-

stant transport coefficients and a shockwidth λ provides a useful initial condition for both

macroscopic continuum and microscopic molecular dynamics simulations5:

ρ(x) =
ρCe

−x/λ + ρHe
+x/λ

e−x/λ + e+x/λ
−→ { v(x), Pxx(x), Qx(x) } .

Their solution smoothly interpolates the density between cold fluid, with density ρC , and

hot fluid, with ρH .

Molecular dynamics shockwave simulations6-15 have been carried out in the two different

ways shown in Figure 1: (1) by following the two moving waves generated by the inelastic

collision of two blocks of material; (2) by studying the single stationary wave formed with

two boundary “treadmills” – on the left boundary cold fluid is introduced at the “shock

speed” vs while at the right boundary hot fluid is extracted at the slower speed vs − vp,

where vp is the “particle speed”. In either case, in a coordinate frame centered on the

shockwave the mass, momentum, and energy fluxes are all constant:

{ρv, Pxx + ρv2, ρv[e+ (Pxx/ρ) + (v2/2)] +Qx} constant for all x .

For “weak” shocks the Navier-Stokes-Fourier description is “good”16. For “stronger” shocks
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(twofold compression) several contradictions to this simple description arise8-15. To illustrate

these points typical mechanical and thermal shockwave profiles are shown in Figure 2.

First, the local longitudinal and transverse temperatures differ, often by more than a fac-

tor of two (see Figure 2). Second, as is also shown in Figure 2, the shear stress (Pyy−Pxx)/2

and the heat flux Qx both lag behind the velocity gradient (dvx/dx) and the tempera-

ture gradients (dTxx/dx) and (dTyy/dx), suggesting the presence of Maxwell-type relaxation

times12-15. Third, the fact that temperature is so very anisotropic makes it necessary to

consider separate xx and yy contributions to the heat flux8-15:

Qx = −κxx∇xTxx − κyy∇xTyy .

Fourth, the same anisotropicity also suggests including asymmetric divisions of the work

and heat contributions (indicated by ⊃) to the thermal energy change:

(ρCV /2) Ṫxx ⊃ [−α∇v : PThermal − β∇ ·Q] ;

(ρCV /2) Ṫyy ⊃ [−(1− α)∇v : PThermal − (1− β)∇ ·Q] .

Here CV is the heat capacity per unit mass. Fifth, a mechanism for the decay of temperature

anisotropy must also be included:

[Ṫxx − Ṫyy] ⊃ 2[Tyy − Txx]/τ .

Last, the molecular dynamics results imply that a bulk viscosity ηV , approximately equal

to the shear viscosity, must be included12. Though a continuum model incorporating all of

these ideas is necessarily relatively complex, a successful implementation of all six of these

additions to the Navier-Stokes-Fourier model is described in References11,13, and14.

In those works all of the continuum field variables were derived from molecular dynamics

simulations using a short-ranged repulsive pair potential,

φ(r < 1) = (10/π)(1− r)3 .

The prefactor (10/π) was chosen to give a potential energy integral of unity for a random

particle distribution at unit density:

∫ 1

0
2πrφ(r) ≡ 1 .
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The initial zero-pressure zero-temperature state was compressed twofold to obtain a hot

dense fluid state. Lucy’s normalized weighting function17,18 was used to compute spatial

averages of the various field variables:

w(r < h) = (5/πh2)[1− (r/h)]3[1 + 3(r/h)] →
∫ h

0
2πrw(r) ≡ 1 .

The smooth-particle average of the particle quantity fj is given by a weighted sum,

〈ρ(r)f(r)〉 =
∑
j

mjfjw(r − rj) ; ρ(r) ≡
∑
j

mjw(r − rj) .

This smooth-particle definition has two advantages: (1) all of the field variables defined in

this way have two continuous space derivatives; (2) the continuity equation (with fj equal

to the particle velocity vj) is satisfied exactly:

{ ρ =
∑
j

mjw(r − rj) ; ρv =
∑
j

mjvjw(r − rj) } −→ ρ̇ ≡ −ρ∇ · v .

Here ρ and ρv are defined everywhere in this way, not just at the particle locations. The

range h of the “weighting function” w(r < h) is typically chosen so that about 20 particles

contribute to field-point averages. With this approach the microscopic pressure tensor and

heat flux vector at any point in space are expressed in terms of nearby individual particle

contributions to these nonequilibrium fluxes19,20.

To appreciate the effect of the various modifications of the Navier-Stokes-Fourier model we

next study the stability of solutions using a continuum model which is a rough representative

of the molecular dynamics results10–12.

III. STABILITY STUDIES WITH AN IDEALIZED GRÜNEISEN MODEL

For stability studies we choose an equilibrium equation of state based on Grüneisen’s

separation of the energy and pressure into cold and thermal parts:

Peq = ρe = (ρ2/2) + 2ρT ; e = (ρ/2) + 2T .

A shockwave satisfying all the conservation laws results when a cold fluid is compressed

to twice its initial density by a shockwave moving toward that fluid at twice the particle

velocity (vs = 2vp = 2). In this case the constant mass, momentum, and energy fluxes are

respectively

{ ρv = 2 ; Pxx + ρv2 = (9/2) ; ρv[e+ (Pxx/ρ) + (v2/2)] +Qx = 6 } .
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The various hydrodynamic variables then cover the following ranges within the shockwave:

[ 2 > v(x) > 1 ] ; [ 1 < ρ(x) < 2 ] ; [ (1/2) < e(x) < (5/4) ] ;

[ (1/2) < Peq < (5/2) ] ; [ 0 < Teq < (1/8) ] .

(Note that Txx can exceed the “hot” value of (1/8) within the shockwave.) The details

of the shockwave structure depend upon the nonequilibrium constitutive relations for the

shear stress and the heat flux. Next, we summarize two separate situations, (1) vanishing

conductivity with a scalar temperature; (2) tensor conductivity, with separate longitudinal

and transverse temperatures, with different contributions from work and heat. Both these

models lead to the conclusion that the mechanical relaxation time cannot be too large. By

contrast, the thermal relaxation time can be either “small” or “large”.

A. Relaxation Without Heat Conduction

The simplest case results when both heat conductivity and thermal anisotropy are omit-

ted. Then the density and energy can both be eliminated from the three flux equations,

ρv = 2 ; (ρe)− σ + 2v = (9/2) ; 2[e+ e− (v/2)σ + (v2/2)] = 6 ,

giving the shear stress,

σ = (Pyy − Pxx)/2 = ρe− Pxx ,

as a function of velocity:

σ = (3/v)(v − 1)(v − 2) < 0 .

Evidently the viscous stress is everywhere negative (compressive). If we introduce Maxwell’s

idea of comoving stress relaxation,

σ + τ σ̇ = σ + τv(dσ/dx) = σ + τv(dσ/dv)(dv/dx) = η(dv/dx) ,

we find that the velocity gradient (dv/dx) diverges unless the ratio (τ/η) is sufficiently small:

τσ < (η/3) .

It is physically reasonable that too long a memory can lead to instability in fast-paced

complex flows like shockwaves. On the other hand the relaxation equation by itself, with a
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smooth strain increment localized near zero time (t = 0),

σ + τ σ̇ =
1

[e−t + e+t]
,

provides smooth solutions even for large τ 13,14. The present analytic shockwave limit on

τσ < (η/3) is in full accord with two kinds of numerical simulations. First, the stationary

flux equations can be solved for the temperature and stress fields, just as was indicated

above for the case of vanishing conductivity. Second, it is possible to solve the dynamical

equations for

{ (∂ρ/∂t), (∂v/∂t), (∂e/∂t) } or { (∂ρ/∂x), (∂v/∂x), (∂e/∂x) }

starting with the Landau-Lifshitz profile. The two methods agree. They show that the

stress relaxation time in shockwaves must be sufficiently small, τσ < (η/3) for stability.

We next extend the thermal constitutive model to include tensor temperature with

anisotropic heat conduction. We also include separate relaxation times for the longitu-

dinal and transverse heat fluxes, and the separation of work and heat into longitudinal and

transverse parts11,13.

B. Lack of Relaxation Without Viscosity

Viscosity, as opposed to heat conduction, is essential to the shock process. To appreciate

this need, consider the conservation equations for our simple model without viscosity and

with the heat conductivity equal to unity:

e = (ρ/2) + 2T ; ρv = 2 ; ρe+ ρv2 = (9/2) ; ρv[2e+ (v2/2)]− (dT/dx) = 6 .

According to the first three equations the temperature has its maximum value of (Tmax =

0.238 > Thot = 0.125) within the shock:

{ρ, v, T} = {1.4436, 1.38545, 0.23800} for T = Tmax .

But the fourth (energy-flux) equation gives (dT/dx) = 0.7106 for that thermodynamic state,

contradicting the presence of a maximum. Thus this model, lacking viscosity, cannot sustain

a stationary shockwave.
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Exactly this same conclusion follows also for the inviscid ideal gas, with twofold compres-

sion from unit density, pressure, and temperature, with vs =
√
8 and the wholly thermal

pressure P = ρe = ρT . Because heat conductivity in the absence of viscosity is not enough to

provide a shockwave, the relaxation effects are quite different for conductivity and viscosity,

as we show next.

C. Relaxation with Tensor Temperature, Apportioned Work and Heat

The analysis becomes more complicated when heat flow is included, along with relax-

ation and separated contributions of the heat and work to the longitudinal and transverse

temperatures. Here the heat flux evolves following the tensor relaxation equation:

Qx + τQQ̇x = −κxx(dTxx/dx)− κyy(dTyy/dx) .

The divergence of the heat flux provides net heating and is apportioned between the longi-

tudinal and transverse temperatures:

ρṪxx ⊃ −β(dQx/dx) ; ρṪyy ⊃ (1− β)(dQx/dx) .

The contributions of the heat flux divergence ∇·Q to heating are indicated by the inclusion

symbol, “⊃”. We include also an analogous separation of the thermodynamic work into

longitudinal and transverse parts:

ρṪxx ⊃ −αPThermal : ∇v ; ρṪyy ⊃ (1− α)PThermal : ∇v .

Finally, the two temperatures necessarily relax toward one another:

Ṫxx ⊃ (Tyy − Txx)/τQ ; Ṫyy ⊃ (Txx − Tyy)/τQ .

For simplicity we choose the two thermal relaxation times [ for the heat flux Q and the tem-

perature anisotropicity (Txx − Tyy) ] to have a common value, τQ. For illustrative purposes

we emphasize the difference between the two temperatures by choosing the apportionment

parameters α and β both equal to unity, so that both the work and the heat provide longi-

tudinal heating, with the transverse temperature lagging behind.

Then straightforward (at least for a computer) algebra provides solutions of the shockwave

problem and reveals not one, but two restrictions on τQ. For stable solutions to exist we
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found in this way that the thermal relaxation time must be either sufficiently small or

sufficiently large. Setting the distance scale of the shockwave with the constant transport

coefficients

η = 2κxx = 2κyy = 1 ,

computer algebra gives the following restrictions on the relaxation times:

0 < τη < (1/3) ; τQ < (1/8) or τQ > (1/4) .

Figures 3 and 4 show typical continuum profiles using these constitutive relations. The

continuum profiles were generated in two quite different ways: (1) solving the time-dependent

equations for {ρ, v, e, σ, Q} starting with the Landau-Lifshitz approximation; (2) solving the

stationary flow equations for the mass, momentum, and energy fluxes using a computer

algebra program (we used “Maple”). The latter approach provides page-long formulæ for

(du/dx), (dTxx/dx), and (dTyy/dx) as well as numerical solutions. The stationary equations

for the shockwave profile have no solution if the relaxation time for the shear stress τσ is

greater than (η/3) or if the relaxation time for the heat flux lies between (κ/8) and (κ/4).

To summarize, our findings for shockwaves establish that momentum-flux relaxation has

to be “fast” for stability. Thermal relaxation can either be likewise fast or quite slow, with

a window of instability separating these two regimes. Where the thermal relaxation is slow

the shockwave structure is dominated by viscosity rather than conductivity.

It is natural to speculate on the effect of relaxation in ordinary hydrodynamic situations.

In order to see what consequences arise from these effects in subsonic fluid mechanics we

next introduce delay into the hydrodynamic equations describing a compressible, conducting,

viscous flow, the Rayleigh-Bénard problem.

IV. RAYLEIGH-BÉNARD FLOW

To investigate the stability of moderate flows to the presence of viscous and thermal

relaxation we revisit some finite-difference Rayleigh-Bénard simulations of two-roll, four-

roll, and six-roll flows21,22. The simulations picture a viscous conducting fluid, heated from

below in the presence of a vertical gravitational field. Sufficiently strong heating causes a

transition from static heat conduction to one of a number of nonequilibrium steady states
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with stationary convection rolls. Stationary and transient sample flows are shown in Figures

5 and 6.

For the Rayleigh-Bénard model we study here (equal kinematic viscosity and thermal

diffusivity) the transition from static Fourier conduction to two-roll convection occurs near

a Rayleigh number R of 1750:

R = g(∂ lnV/∂T )PH
3∆T/(νDT ) = H2/(νDT ) .

The fluid is confined to a rectangular box, periodic on the sides, with the gravitational con-

stant g = (1/H) chosen to give constant density in the nonconvecting case. H is the height

of the cell, equal here to half the width. ∆T is the difference between the hot temperature

at the base (TH = 1.5) and the cold temperature at the top of the cell (TC = 0.5). ν

and DT (chosen equal, for convenience) are the kinematic viscosity and thermal diffusivity

(both with units of [length2/time]). For simplicity we choose all values of the relaxation

times equal and do not distinguish between the longitudinal and transverse temperatures,

Txx = Tyy. Our model continuum fluid obeys the ideal gas equation of state:

Peq = ρT = ρe ; ηV = 0 ; η = 2κxx = 2κyy = 1 .

Numerical results for this model are given as a function of Rayleigh number in

References21 and22. Simulations with the various relaxation times all equal to 0.1 repro-

duced this earlier work perfectly. As an example, the two-roll problem of References21 and22,

with a Rayleigh number of 40,000 gives per-cell kinetic energies of (Kx/N) + (Ky/N) =

0.00373 + 0.00357. We carried out many special cases with a Rayleigh Number of 40,000,

which produces stationary steady states. Whether two-roll or four-roll solutions are obtained

is sensitive to the initial conditions22. We began with a very weak two-roll velocity field as

the initial condition in an H ×W box with the coordinate origin at its center:

vx ∝ sin(2πx/W ) sin(2πy/H) ; vy ∝ cos(2πx/W ) cos(πy/H) .

We found solutions for τ = 5η = 5κ and τ = 10η = 10κ but instability when τ was doubled

again to 20η = 20κ. These additions of relaxation to the Navier-Stokes-Fourier equations

lowered the horizontal kinetic energy and raised the vertical, with both effects on the order

of parts per thousand. Thus relaxation in subsonic flows has only relatively small effects in

the regime of stable solutions.
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V. CONCLUSIONS

Molecular dynamics simulations have established the facts that delay times on the order

of a collision time, as envisioned by Maxwell, affect shockwave structure in a substantial way.

Cattaneo’s approach, with partial time derivatives, has no effect on shockwave structure.

Shockwaves are dominated by viscosity, so that stress relaxation must be relatively rapid.

Thermal relaxation, important for chemical relaxation, can be either fast or slow.

In ordinary subsonic fluid mechanics the effects of time delays are relatively small. As

a result, thermal anisotropicity is ordinarily ignored in continuum mechanics. It is a sub-

stantial effect in shocks, with repercussions for chemical reaction rates. In our continuum

simulations we have assumed relaxation equations with comoving time derivatives,

σ + τησ̇ = ηǫ̇ , Q+ τQQ̇ = −κ∇T ,

rather than partial derivatives. If σ̇ were replaced with (∂σ/∂t) there would be no relaxation

at all in a stationary problem like the shockwave and Rayleigh-Bénard problems studied here.

The Maxwellian relaxation times cause no trouble solving conventional moderate flow

problems like Rayleigh-Bénard convection. The problem areas suggested by this work in-

clude (1) formulating optimum choices for locally-averaged hydrodynamic variables with

the general goal of maximizing the accuracy of macroscopic descriptions of microscopic re-

sults and (2) developing theoretical models for the estimation of the relaxation parameters

measured in the dynamical simulations.

A logical approach to problem (1) above would use “entropy production” as a tool23.

In the Rayleigh-Bénard problem entropy production is proportional to the squares of the

nonequilibrium fluxes, σ2 and Q2. If these are computed locally, with a weight function

w(r < h) then h can be chosen such that the internal entropy production matches the

boundary sources and sinks of entropy. Evidently too small/large an h gives too large/small

an entropy production, so that h can be chosen to be “just right”. Problem (2) would have

to begin with some nonequilibrium simulations tailored to the direct measurement of delay

and relaxation.

Finally, the presence of delay has some pedagogical importance. Delay in the results

of time-reversible motion equations (molecular dynamics) breaks the time-symmetry which

would otherwise lead to a logical contradiction between time-reversible molecular dynamics

and conventional irreversible continuum mechanics12.

11



VI. ACKNOWLEDGMENTS

We thank David Sanders and Thomas Gilbert for organizing a 2011 Workshop, “Chaotic

and Transport Properties of Higher-Dimensional Dynamical Systems”, in Cuernavaca
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VII. FIGURE CAPTIONS

• Figure 1. Two colliding fluid blocks generate symmetric shockwaves (velocities ±vp)

as the blocks, moving at ±[vs − vp] collide and come to a stop (shown above). Two

treadmill boundaries, one fast (velocity vs) and one slow (velocity vs − vp), maintain

a single stationary shockwave in the center of the system (shown below).

• Figure 2. Density, pressure, internal energy, temperature tensor, and heat flux in a

strong shockwave simulation using molecular dynamics. In the cold unshocked material

the nearest-neighbor spacing is unity. The hot shocked fluid has a density exactly twice

that of the cold material. Figure based on data described in reference14.

• Figure 3. Solution of the continuum model for twofold compression with the Grüneisen

equation of state using τη = (1/10) and τQ = τR = 1. The mass, momentum, and en-

ergy fluxes are {2, (9/2), 6} Compare with Figure 4 noting particularly the differences

between Txx and Tyy.

• Figure 4. Solution of the continuum model for twofold compression with the Grüneisen

equation of state using τη = τQ = τR = (1/10). The mass, momentum, and energy

fluxes are {2, (9/2), 6} Compare with Figure 3.

• Figure 5. Transient flow field for the Rayleigh-Bénard problem at time = 1000. The

initial state was two weakly-rotating rolls. The viscous, heat-conducting, compressible

fluid is heated at the bottom and cooled at the top with a gravitational field directed

downward. The vertical boundaries at the sides are periodic. The number of compu-

tational cells shown here is 80× 40 = 3200. The transport coefficients, η = κ = (1/5)

were selected to give a Rayleigh number of 40,000. The relaxation times were set equal

to unity: τη = τQ ≡ 1.
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• Figure 6. A fully-converged four-roll structure evolved from the flow field shown in

Figure 5. Here the time is 10,000. The Rayleigh number is 40,000 and the viscosity

and heat conductivity, η = κ = (1/5), have equal relaxation times, τη = τQ ≡ 1.

The final kinetic energy is (Kx/N) + (Ky/N) = 0.001144+ 0.004133 = 0.005277. The

number of computational cells is N = 80× 40.
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