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Abstract

Nearly all the evolution equations of physics are time-reversible, in the sense that a movie of

the solution, played backwards, would obey exactly the same differential equations as the original

forward solution. By way of contrast, stochastic approaches are typically not time-reversible,

though they could be made so by the simple expedient of storing their underlying pseudorandom

numbers in an array. Here we illustrate the notion of time-reversible random number generators.

In Version 1 we offered a suitable reward for the first arXiv response furnishing a reversed version

of an only slightly-more-complicated pseudorandom number generator. Here we include Professor

Ricci-Tersenghi’s prize-winning reversed version as described in his arXiv:1305.1805 contribution:

“The Solution to the Challenge in ‘Time-Reversible Random Number Generators’ by Wm. G.

Hoover and Carol G. Hoover”.

PACS numbers: 05.40.-a, 05.20.-y, 83.10.Rs, 05.10.Gg
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I. TIME REVERSIBILITY

The Newtonian, Lagrangian, or Hamiltonian microscopic motion equations ,

{ F = mr̈ } ; { p = (∂L/∂q̇) ; ṗ = (∂L/∂q̇) } ; { q̇ = +(∂H/∂ṗ) ; ṗ = −(∂H/∂q̇) } ,

even when embellished with thermostats, ergostats, or barostats, are typically time-

reversible1. The Stφrmer-Verlet time-symmetric “Leapfrog Algorithm” :

{ q(t+ dt)− 2q(t) + q(t− dt) ≡ (F (t)/m)dt2 } ,

which can be iterated either forward or backward once the coordinates are given at two suc-

cessive times, is the most transparent example of time reversibility. Likewise the Schrödinger

equation and Maxwell’s electromagnetic field equations can be used to generate movies which

obey exactly the same equations whether projected in the “forward” or the “backward” direc-

tion of time. Mathematicians have considered more general definitions of time reversibility2,

but in some cases these generalizations would include the damped oscillator among the class

of reversible systems3, which we believe isn’t sensible.

The Langevin equation ,

{ mr̈ = F − (mṙ/τ) +R } ,

where both the drag coefficient (1/τ) and the random force R aren’t time-reversible, is often

used in molecular simulations4,5. In order to make it possible to extend stochastic solutions

both forward and backward in time, and to simplify the reproducibility of numerical results

by others we think it is desirable to incorporate time-reversible random number generators

in our otherwise deterministic algorithms. The following Section illustrates this idea with

a simple example algorithm, too simple for serious use in simulation. The final Section of

Version 1 challenged the reader to find a time-reversed version of a useful algorithm, with a

reward for being “first” with that specific algorithm. In this Version we include the successful

algorithm found by Federico Ricci-Tersenghi within a day of the challenge’s publication.

II. AN OVERSIMPLIFIED PSEUDORANDOM NUMBER GENERATOR AND

ITS TIME-REVERSED VERSION

The design of reversible random number algorithms can be illuminated by the study

of time-reversible maps. Kum and Hoover6 considered two-dimensional maps which are
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time-reversible in the physicist’s sense :

M(+q,+p) = (+q′,+p′) ; M(+q′,−p′) = (+q,−p) .

They pointed out that simple shears, with δq ∝ δp or δp ∝ δq , as well as certain phase-space

reflection operations, are time-reversible and can be combined with periodic boundary

conditions so that the points (q, p) remain within the unit square. In addition, if Q, P ,

and R are time-reversible maps then symmetric combinations of them, like QPRPQ , are

likewise time-reversible. The simple q and p shears very closely resemble typical algorithms

for pseudorandom numbers, such as the FORTRAN example function :

function rund(intx,inty)

i = 1029*intx + 1731

j = i + 1029*inty + 507*intx - 1731

intx = mod(i,2048)

j = j + (i - intx)/2048

inty = mod(j,2048)

rund = (intx + 2048*inty)/4194304.0

return

end

This generator returns a periodic sequence of 222 pseudorandom numbers, updating the

two seed variables intx and inty as it goes. The least significant 11 binary digits of rund’s

numerator can be generated by the simpler function :

function next(it)

next = mod(1029*it + 1731,2048)

return

end
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The Figure at the bottom of this page is a plot of the 2048 iterates of next , ordered

according to the index it . The first six entries are the pairs

next→ (1, 712), (2, 1741), (3, 722), (4, 1751), (5, 732), (6, 1761) .

The single-valued plot of these forward iterates gives the (misleading) impression of contin-

uous lines with a slope (from either the odd or the even entries) of (5/1) , while the actual

function is discontinuous between successive entries due to the jumpy nature of the mod

function. Reflecting the plot ,

( x, y )←→ ( y, x ) ,

illustrates the output of the time-reversed algorithm last . Because the equations are

linear it is relatively easy to find the analytic form of the reversed function :

function last(j)

last = mod(205*j + 1497,2048)

return

end

   0

1024

2048
 next(it) and last(it) 

Iterates from 0 to 2047
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The last function, likewise plotted in the Figure, is also single-valued. It appears to generate

ten separate lines. The values of last for 1 ≤ j ≤ 11 are just enough to indicate how this

function resembles ten continuous lines :

last→ (1, 1702), (2, 1907), (3, 64), (4, 269), (5, 474),

(6, 679), (7, 884), (8, 1089), (9, 1294), (10, 1499), (11, 1704) .

Comparing the first and last entries shows that the apparent slope of the less-steep “lines”

is (1704− 1702)/(11− 1) = (1/5) . The reversed arrays of points have an apparent slope of

(1/5) because increasing j by 10 is usually required in order to increase last by 2 . These

two functions next and last go forward and backward, taking in the result of the most

recent iteration, in the range [0, 2047] , as the abscissa and returning, as the ordinate, either

the next or the most recent integer.

III. OUR CHALLENGE [ RECENTLY MET! ]

We viewed a simple, explicit time-reversible pair of generators analogous to next and last

above as desirable for stochastic computer simulations. We have happily rewarded the first

successful FORTRAN algorithm generating the two-argument reversal of rund(intx,inty)

above with a cash prize of 500 United States dollars, awarded to Federico Ricci-Tersenghi.

As was required, his solution was demonstrated to work for the initial seeds intx = inty

= 0 . Here is a program based on his solution:

program federico

parameter (items = 4194304)

implicit integer(a-z)

dimension forwx(items),forwy(items),backx(items),backy(items)

intx = 0

inty = 0

do n = 1,items

i = 1029*intx + 1731

j = i + 1029*inty + 507*intx - 1731

intx = mod(i,2048)

j = j + (i - intx)/2048
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inty = mod(j,2048)

forwx(n) = intx

forwy(n) = inty

end do

intx = 0

inty = 0

do n = 1,items

oldx = mod(205*intx + 1497,2048)

inty = inty + items - 1536*oldx - (1029*oldx + 1731 - intx)/2048

inty = mod(205*inty,2048)

intx = oldx

backx(n) = intx

backy(n) = inty

enddo

stop

end

The seed variables forward and backward can be verified to satisfy the identities :

forwx(i) = backx(items − i) ; forwy(i) = backy(items − i) .
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V. ANOTHER CHALLENGE?

In 2014 we intend again to offer an Ian Snook Memorial Challenge Prize for solving an

interesting problem relevant to computational statistical mechanics. Suggestions welcome!
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