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Abstract

We explore a simple example of a chaotic thermostated harmonic-oscillator system which exhibits

qualitatively different local Lyapunov exponents for simple scale-model constant-volume transfor-

mations of its coordinate q and momentum p : { q, p } → { (Q/s), (sP ) } . The time-dependent

thermostat variable ζ(t) is unchanged by such scaling. The original (qpζ) motion and the scale-

model (QPζ) version of the motion are physically identical. But both the local Gram-Schmidt

Lyapunov exponents and the related local “covariant” exponents change with the change of scale.

Thus this model furnishes a clearcut chaotic time-reversible example showing how and why both

the local Lyapunov exponents and covariant exponents vary with the scale factor s.
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I. LOCAL/GLOBAL GRAM-SCHMIDT/COVARIANT VECTORS/EXPONENTS

The popularity of the time-dependent (or “instantaneous”, or “local”) covariant Lya-

punov vectors and their associated exponents as descriptions of chaotic motion seems to us

to be linked to a (false) impression extracted from the literature. Some of the literature

implies that these descriptors have a special significance independent of such details as the

coordinate system used to describe them. A selected literature, some of it quite clear, can

be found in References 1-7. If the chosen coordinate system were really insignificant it would

be hard to understand a simple, but nonchaotic, counterexample : the one-dimensional har-

monic oscillator, which exhibits a strong dependence of its largest local Lyapunov exponent

λ1(t) on the chosen Cartesian coordinate system1,8,9.

We remind the reader that this local instantaneous Lyapunov exponent λ1(t) (the largest

of them when time averaged) measures the local rate of divergence of two nearby trajecto-

ries. Think of them as a reference trajectory and a satellite trajectory, with the satellite

constrained to remain near the reference. It is unnecessary to consider exponents beyond

the first to understand why it is that the local Lyapunov exponents, covariant or not, are in

fact not scale-independent and do indeed depend upon the chosen coordinate system or set

of measurement units. The oft-repeated statement that the local covariant exponents are

“norm-independent” should not be misunderstood (as we did) to mean that the exponents

are independent of a scale factor, as in a change of units from cgs to MKS.

Here we focus on a simple chaotic continuous-flow example10, the thermostated three-

dimensional flow of a harmonic oscillator with coordinate q , momentum p , and friction

coefficient ζ(t) in the unscaled (q, p, ζ) phase space :

q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − T (q) ; T (q) = 1 + ǫ tanh(q) .

The variation of temperature with coordinate T (q) makes possible dissipation, and phase-

volume shrinkage, ⊗̇ < 0 , onto a torus, or a strange attractor with fractional dimensionality,

or a one-dimensional limit cycle. For the evolution of this model see References 11-14.

For simplicity’s sake the oscillator mass and force constant, as well as Boltzmann’s

constant, are all chosen equal to unity here. For ǫ = 0.20 and with initial values

( q = 0, p = 5, ζ = 0 ) the motion generates a chaotic strange attractor, with two time-

averaged nonzero Lyapunov exponents λ1 ≃ +0.01 ; λ3 ≃ −0.01 and with a time-averaged
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FIG. 1: Chaotic attractor ζ(q) projection for ǫ = 0.20 with fourth-order Runge-Kutta timestep

dt = 0.001 using 200, 000 equally-spaced points from the last half of a 40, 000, 000 timestep simu-

lation. The abscissa and ordinate scales range from −4.0 to +4.0 .

rate of phase-volume contraction imposed by the friction coefficient ζ ,

〈 ⊗̇/⊗ 〉 = 〈 (∂q̇/∂q) + (∂ṗ/∂p) + (∂ζ̇/∂ζ) 〉 = 0− 〈 ζ 〉+ 0 = λ1 + λ2 + λ3 ≃ −0.0003 .

Regular, limit-cycle, and chaotic solutions can all be found by following the related work

carried out in Reference 10. These solutions’ details depend upon the initial conditions as

well as the value of the maximum temperature gradient ǫ ≡ (dT/dq)q=0 .

Figures 1 and 2 show both a typical chaotic strange attractor ( positive λ1 , generated

with ǫ = 0.20 ) and an unusually elaborate limit cycle ( zero λ1, generated with ǫ = 0.37 ).

The time required for the appearance of such limit cycles can be hundreds of millions, or even

billions, of timesteps. Although fourth-order Runge-Kutta timesteps ranging from 0.0005

to 0.05 produce such a cycle a careful look at Figure 2 reveals a disconcerting dependence

of cycle topology on the time step (!).

The “local” time-dependent value of the largest Lyapunov exponent λ1(t) describes the

rate at which two nearby (q, p, ζ) trajectories tend to separate :

λ1(t) ≡ (d ln r/dt) ; r ≡
√

δq2 + δp2 + δζ2 ≃ e+λ1t .

In the simple Gram-Schmidt picture ( and unlike the covariant picture with its nonorthog-

onal, but still normalized vectors ) adding in the second Lyapunov exponent λ2 gives the
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dt = 0.05 dt = 0.0005

FIG. 2: Limit cycles’ ζ(q) projections for ǫ = 0.37 using timesteps of 0.05 and 0.0005 . The

abscissa and ordinate range from −4.0 to +4.0 .

rate of divergence of the area defined by three nearby trajectories ( the reference and two

satellites ), ∝ exp [ +λ1t + λ2t ] . The third Gram-Schmidt exponent is needed to describe

the divergence ( or shrinkage ) rate associated with the volume associated with four nearby

trajectories , ∝ exp [ +λ1t+ λ2t+ λ3t ] . In these three Gram-Schmidt definitions the time

t is understood to be sufficiently long for convergence of the exponents.

Typically, these time-averaged exponents don’t depend on the coordinate system used to

describe the system because the divergence is exponential, and so depends only on the units

of time, not those of space or momentum. Two identical chaotic systems, one described

with MKS units and the other with cgs units exhibit the same ( time-averaged ) rates of

divergence even though the mass and length scales differ. It is also possible, usual, and

useful to define “local” or “instantaneous” Lyapunov exponents by following two or more

constrained trajectories and measuring their tendencies to separate or approach each other

as a function of the time of measurement1–9,15. The MKS and cgs values of these local

exponents differ. The Gram-Schmidt Lyapunov exponents are simply the time averages of

these instantaneous values :

λ1 = 〈 λ1(t) 〉 ; λ2 = 〈 λ2(t) 〉 ; λ3 = 〈 λ3(t) 〉 . . . .

In typical situations, time-reversible and phase-volume-conserving Hamiltonian systems

4



have “paired” Gram-Schmidt exponents, with the instantaneous identities :

λ1(t) + λN(t) = λ2(t) + λN−1(t) = . . . ≡ 0 .

But in exceptional cases ( like the collision of two many-body chunks of solid )15 this pair-

ing can be violated. Because the pairing reflects the time-reversibility of the Hamiltonian

equations of motion this lost symmetry is simply a symptom that the “past” can be suffi-

ciently different to the future. But because the time-averaged Hamiltonian exponents often

exist in ±λ(t) pairs, the largest exponent in either time direction is typically equal to (the

negative of) the smallest exponent in the opposite time direction. We rëıterate that this

symmetry can be violated, for short times, in response to inhomogeneities or to “external

perturbations”.15

By now many groups1–6 have illustrated the algebraic steps necessary to map the “co-

variant” exponents from one coordinate system to another. A careless reader of some of this

work might well conclude (as we did) that “covariant” vectors and exponents are somehow

coordinate-frame independent. A careful reader will instead note that because reference

trajectories and nearby satellite trajectories in one coordinate system can always be related

to those in another, that the offset vectors linking pairs of trajectories are likewise simply

related so that the (different) exponents in both frames can be computed.

It is not always emphasized that the exponents ( even the largest, which is “covariant” )

themselves vary from frame to frame. For instance, in a useful and clarifying work, Posch2,9

selected a spring-pendulum for his demonstration. His two chosen frames were Cartesian

and polar coordinates. The constant-energy spring-pendulum dynamics can be described in

either one of the three-dimensional subspaces of the four-dimensional spaces in which the

motion is described, (x, y, px, py) or (r, θ, pr, pθ) . Expressions linking the covariant exponents

in these two frames (which are different) are given in his paper.

Here we consider again the (q, p, ζ) oscillator, a one-dimensional rather than a two-

dimensional system, and described in a three-dimensional phase space. The description

can be carried out with { q, p, ζ, q̇, ṗ, ζ̇ } or with “scaled variables” { Q,P, ζ, Q̇, Ṗ , ζ̇ }, where

the two sets of variables are related by the scaling Q = 2q, P = (p/2) :

q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − T (q) ; T (q) = 1 + ǫ tanh(q) .

Q̇ = 4P ; Ṗ = −(Q/4)− ζP ; ζ̇ = 4P 2 − T (Q) ; T (Q) = 1 + ǫ tanh(Q/2) .
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FIG. 3: Local values of the largest Lyapunov exponents (right) for the limit cycle with ǫ = 0.50

(left). The time-averaged exponents are equal to 0.0 .

Because the temperature depends upon the coordinate [ so that T varies from ( 1 − ǫ ) to

( 1 + ǫ ) ] , this model10 is a generalized version of the Nosé-Hoover oscillator described

in Reference 12 . The two sets of equations generate trajectories which are identical if the

coordinate and momentum axes are scaled because [ Q = sq ] and [ P = (p/s) ] . Here we

compare s = 1 and s = 2 . The friction coefficient ζ , which directs the squared momentum

toward the local kinetic temperature T (q) , is exactly the same function of time in both the

original unscaled and the scaled coordinate systems. Thus the basic trajectories in (qpζ)

space and (QPζ) space are identical scale models of each other apart from factors of two

in the directions associated with the length and momentum. Figure 3 shows the variation

of the largest Lyapunov exponent with time along the relatively-simple limit cycle obtained

when ǫ = 0.50 . Notice that the local Lyapunov exponents λ1(t, q, p, ζ, s) and λ1(t, Q, P, ζ, s)

are indeed sensitive to the scale factor s .

This computation shows that the local exponents are quite different. Why is that? Here it

is because the stretch rates depend on the scale factor s. The rates of stretching of pairs of (

infinitesimal ) tangent-space “unit vectors” parallel to q = (s−1Q) or parallel to p = (s+1P )

are different :

δ̇q = s−1δ̇Q ; δ̇p = s+1δP ,

so that the corresponding local Lyapunov exponents in these two hypothetical cases would

also vary with s. We exhibit this example here to emphasize the point that even the local
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values of the Lyapunov exponents depend on the chosen coordinate system. The global

exponents for Hamiltonian systems don’t show this dependence. In an email of 18 September

2013 Harald Posch showed that the global exponents for a doubly-thermostated oscillator

do depend on the scale factor s but not on the norm. Posch compared the exponents using

both the usual n = 2 norm and the unusual n = 3 one :

rn = |dq|n + |dp|n + |dζ |n + |dξ|n .

II. CONCLUSION

Enthusiastic fans of the MKS system of units cannot agree with the ardent fans of the

cgs system when it comes to the local exponents, either covariant or Gram-Schmidt. Dis-

interested observers will note that one set of results can be converted to the other, with

the whole spectrum as well as its fluctuations dependent on the chosen coordinate system.

The impression that “covariant” exponents are somehow uniquely special still seems to us

specious despite their norm-independence.
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