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Abstract

Nosé’s pioneering 1984 work inspired a variety of time-reversible deterministic thermostats.

Though several groups have developed sucessful doubly-thermostated models, single-thermostat

models have failed to generate Gibbs’ canonical distribution for the one-dimensional harmonic

oscillator. A 2001 doubly-thermostated model, claimed to be ergodic, has a singly-thermostated

version. Though neither of these models is ergodic this work has suggested a successful route

toward singly-thermostated ergodicity. We illustrate both ergodicity and its lack for these models

using phase-space cross sections and Lyapunov instability as diagnostic tools.
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I. SINGLE-VARIABLE THERMOSTATS AND GAUSSIAN ERGODICITY

In 1984 Hoover explored the application of the Nosé-Hoover version1 of Nosé’s canonical

motion equations2,3 to a harmonic oscillator at thermal equilibrium with coordinate q ,

momentum p , temperature T , and thermostat variable ζ :

{ q̇ = p ; ṗ = −q − ζp ; ζ̇ = [ p2 − T ]/τ 2 } [ NH ] .

Posch, Hoover, and Vesely found that this model partitions the (q, p, ζ) phase space into

many separate toroidal regions embedded in a chaotic sea4. The complexity and the stiffness

of the solutions increase rapidly as the thermostat response time τ is reduced. In addition to

equilibrium applications analogous motion equations can be used to thermostat irreversible

nonequilibrium simulations such as steady shear and heat flows. The harmonic oscillator

can generate steady-state heat flow problems if the temperature varies in space5,6 :

1− ǫ < T = T (q) = 1 + ǫ tanh(q) < 1 + ǫ .

Here ǫ is the maximum value of the temperature gradient, (dT/dq), to which the oscillator

is exposed. It can be viewed as the strength of nonlinearity, and depending on its value, one

can move from the equilibrium regime (where ǫ = 0) to the nonequilibrium regime (where

ǫ > 0).

Somewhat paradoxically, the Nosé-Hoover motion equations as well as all the others we

consider here are time-reversible, even away from equilibrium. That is, any time-ordered

sequence of (q, p, ζ) points can be reversed either by [ 1 ] changing the sign of dt in the

integrator, or [ 2 ] by changing the signs of the (p, ζ) variables. The harmonic oscillator

equations also have mirror symmetry. Changing the signs (+q,+p) ←→ (−q,−p) gives an

additional pairing of solutions.

Apart from being time-reversible, a good thermostat must result in ergodic dynamics.

Ergodicity of the dynamics connects dynamical averages with corresponding Boltzmann-

Gibbs phase averages. In describing the results of the present work, we have used Ehrenfests’

idea of “quasiergodicity”, where the dynamics eventually comes arbitrarily close to each

feasible point, interchangeably with “ergodicity”.

For the equilibrium Nosé-Hoover harmonic oscillator, the Gaussian distribution is the

stationary solution of the Liouville’s phase-space continuity equation:

v = ṙ = (q̇, ṗ, ζ̇) −→ (∂f/∂t) = −∇r · (fv) ≡ 0 −→
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f(q, p, ζ) ∝ e−q2/2T e−p2/2T e−ζ2τ2/2T ,

On the other hand, numerical work gives two kinds of solutions, either quasi-periodic tori,

with all Lyapunov exponents being zero or a single chaotic, Lyapunov-unstable sea. The

global dynamics, therefore, either remains confined within the tori, or occupies the chaotic

sea separated from the tori, depending upon the initial conditions, the temperature T ,

and the response time τ . In other words the presence of two sets of global maximal Lya-

punov exponent - one positive and another zero, indicates that a trajectory starting from

an arbitrary initial condition is unable to explore the neighbourhood of the entire feasible

phase-space. As a result, the phase-space gets partitioned into at least two noncommunicat-

ing regions, violating the metric indecomposibility of the phase space – the necessary and

sufficient condition for ergodic dynamics according to Birkhoff’s theorem. Thus the singly-

thermostated oscillator equations are not “ergodic”, so that Gibbs’ statistical mechanics is

unable to describe the oscillator’s properties. For the next 15 years, which included many

failed attempts, no singly-thermostated oscillator models were found to be ergodic.

This letter announces our recent achievements toward the longstanding goal of ergodic

singly-thermostated oscillator models. We have carried out a comprehensive exploration of

a previous model claimed to be ergodic, and found that it is not. As a result of those inves-

tigations we have found a path leading to a singly-thermostated and physically motivated

ergodic model for the harmonic oscillator. We lay out the details of these discoveries in what

follows and encourage the reader to help explore the new areas opened up by our work.

II. ERGODICITY IS TYPICALLY ABSENT IN THE SF MODEL

In 2001 Sergi and Ferrario [ SF ] announced that they had found an ergodic thermostated

oscillator model7. In addition to the oscillator coordinate, momentum, and thermostat

variable (q, p, ζ) their model includes a parameter ν which can be either positive or negative:

q̇ = p(1 + ζν) ; ṗ = −q − ζp ; ζ̇ = [ p2 − T − qpν ]/τ 2 ; η̇ = ζ .

Here, and in what follows, we will ignore the fact that SF actually solve the above four

equations, not just the three shown below:

{ q̇ = p(1 + ζν) ; ṗ = −q − ζp ; ζ̇ = p2 − T − qpν } [ SF ] ,
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This is because their work was based on a Hamiltonian with two degrees of freedom. Consider

a particular initial condition (q, p, ζ) that evolves in some time t to a unique (q′, p′, ζ ′).

The latter variables do not depend on the initial value of η, which could be given or not,

arbitrarily. The fourth equation, for the evolution of a variable which is the time integral

of ζ , plays no role at all in the dynamics of (qpζ) and can so be ignored, which we do

throughout. This extraneous variable obscured the fact that SF implicitly claimed ergodicity

for a singly-thermostated oscillator. As a result, this desirable feature of their relatively

widely-cited paper has been previously ignored. However, as a consequence of removing η̇,

the symplecticity of the dynamics disappears.

Like the NH model the SF oscillator has mirror symmetry (+q,+p) ←→ (−q,−p) . In

addition the time reversibility of the Sergi-Ferrario equations requires that the functions

p and ζ , as well as the parameter ν , all change sign in the reversed motion with the

coordinate values unchanged. For clarity we have replaced Sergi and Ferrario’s parameter

“τ” by ν throughout the present work. This change emphasizes that an increase in | ν |

reduces the response time of the thermostat terms.

For the remainder of this study, we choose to keep τ = 1. Usually τ , which represents the

relaxation time of the dynamics, is chosen according to the relation12: τ 2 = kT/ω2, where

ω is the angular frequency of the system. In our present case, since the system comprises

a single harmonic oscillator with unit mass and spring constant, ω = 1. Additionally, most

of the work ascertaining the ergodicity of thermostatted dynamics has taken the relaxation

time to be unity. We wish to highlight the fact that if the relaxation time is chosen too large,

it will have no effect on the system dynamics, while if τ is chosen too small, the equations

become too stiff.

Sergi and Ferrario claimed that their four [ but actually only three, for the reason just

cited ] oscillator equations7 were ergodic ( filling out the entire three-dimensional Gaussian

distribution ) for ν > 0.5 . That surprising claim sparked the present work. To begin

our exploration of their model we carried out a simulation of the SF equations with the

temperature T and parameter ν both equal to unity and with the initial conditions (q, p, ζ) =

(1, 1, 1) . Figure 1 shows the resulting torus, colored according to the local flow instability.

Evidently this special case of the SF model is definitely not ergodic.

The difficulty in isolating a small embedded torus by looking at the global dynamics13

prompted us to investigate the Poincaré section at ζ = 0. In fact, any other typical Poincaré
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Figure 1: The torus shown here results from the intial conditions (q, p, ζ) = (1, 1, 1) using Sergi

and Ferrario’s original equations with ν = +1 . The local values of the largest Lyapunov exponent

on the torus are indicated by color : −1.06 (blue) < λ1(t) < 1.89 (red) . Its time-averaged mean

value, λ1 = 〈 λ1(t) 〉 is zero. The temperature is unity.

section would have served our purpose. Recall that Gibbs’ probability density is Gaussian

in both q and p. Accordingly sections in q and p (as well as in ζ) that are far from origin

are atypical, and may not give any useful results. So long as the section chosen is a typical

one, the dynamics within it can be studied to understand ergodicity.

Rather than abandoning the SF approach we also looked for modifications that might

be ergodic. Changing the parameter ν from 1 to 2 or 3 or 4 or 5 or 6 and applying due

diligence led in each case to the discovery of nested tori. Typically the tori penetrate the
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plane ζ = 0 in four widely-separated distinct places. Figure 2 illustrates these “period-

four” equilibrium points for the SF equations. Just as in the other Figures the online version

is colored according to the local value of the largest of the three Lyapunov exponents, λ1(t).

We denote the long-time average value of this exponent by λ1 ≡ 〈 λ1(t) 〉 .

Holes in the chaotic sea are most easily found visually. Then, zooming in on such a hole

the central point corresponding to a periodic orbit can be found. By first looking at cross

sections decorated by a million penetration points and then zooming in on the holes we can

obtain precise six-figure estimates for the (q, p, 0) points that lie at the center of each hole,

on the central periodic orbit. Viewed in the (q, p, 0) plane, diligent searches showed that the

six choices of ν shown in Figure 2 , all include simple tori centered on a periodic orbit and

embedded in a chaotic sea. Looking at the Figure, the relatively small but clearly visible

holes can be seen for ν = 2, 4, 5, and 6 . The large irregular holes for ν = 1 form a cross

section of the torus shown in Figure 1. The four tiny holes corresponding to ν = 3 are too

small to see without zooming in. Some of the details of these investigations are described in

what follows, along with a concluding Summary, Discovery, and Advice section.

III. LYAPUNOV INSTABILITY AND GAUSSIAN MOMENTS

The largest time-averaged Lyapunov exponent λ1 measures the exponential tendency for

two nearby chaotic trajectories to separate, δ(t) ≃ δ(0)e+λt . The local value λ1(t) exhibits

fluctuations, even in the regular toroidal regions where the long-time average, λ1 , is zero. λ1

is positive in the chaotic sea. It is a measure of the chaos there. For online viewing we have

included the local values with color, ranging from blue to red as the exponent increases. For

the model of Figure 1 the long-time-averaged exponent is equal to zero, as expected for a

two-dimensional torus in a three-dimensional space. Simulations with ν = 2, 3, 4, 5, 6 looked

much more promising, as they all generated “fuzzy balls” in (q, p, ζ) space. We picture the

three-dimensional Gaussian distribution, proportional to e−q2/2−p2/2−ζ2/2, as a fuzzy ball. It

is evident that the density falls off exponentially in all directions as one moves away from

the “center” of the pictured ball.

We next investigated the ergodicity of these fuzzy balls by measuring the time-averaged

moments { 〈 q2, q4, q6, p2, p4, p6 〉 } . For every value of ν , using a spacing of 0.05 with

0 < ν ≤ 6 , we found that the deviations from the even Gaussian moments are small
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Figure 2: Cross sections at ζ = 0, for different values of ν, with the local values of the largest

Lyapunov exponent λ1(t) colored from ≃ −1.0 (blue) to ≃ +1.0 (red). The top, middle and

bottom figures on the left correspond to ν = 1, 3 and 5, respectively. Likewise, the figures on the

right correspond to nu = 2, 4 and 6, respectively. The white curves correspond to intersections

with the nullcline surface. There the phase-point velocity is parallel to the (q, p, 0) plane with

q = (p2−1)/(νp) . The tori for ν = 2, 4, 5 and 6 penetrate the plane within four roughly-triangular

holes in those cross sections. The tori for ν = +3 are much smaller, as is detailed in Figure 3. The

four penetrations occur as two pairs of mirror-image points : (q, p, 0) = (±1.04031,±0.39432, 0)

and (±1.18488,∓0.94527, 0) . The temperature is unity throughout.
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and masked by fluctuations whenever the tori diameters are small. These deviations led us

to a topological investigation of the distributions f(q, p, ζ) at different cross sections, that

constitutes a much more sensitive indicator of nonergodicity than either the moments or

the one-dmensional probabilities associated with them. We carried out visual inspections

of zero-ζ cross sections like those shown in Figure 2. For values of ν both smaller and

larger than the borderline value ν = 0.5 put forward by Sergi and Ferrario, the sections

all revealed well-defined “holes”. The “holes” that can be seen in the Figure correspond to

toroidal solutions which penetrate the surrounding chaotic sea.

Figures 3 and 4, corresponding to ν = +3 and ν = +2.9 respectively, reveal triangular

regions enclosing nested tori. These tori are a clear proof of nonergodicity. The reversibility

of the motion equations suggests that changing the signs of (ν, p, ζ) in the initial condi-

tions will simply reverse the trajectories. Numerical work, using fourth-order, fifth-order,

and adaptive Runge-Kutta integrators bears that expectation out. The rotation of the tri-

angle seen in the closeups ( with linear zooms of factors of ten and one hundred ) from

longest-side-“up” to longest-side-“down” suggests a singular region in between, which fur-

ther investigation locates near ν = +2.903521 .

It appears that the tori shrink to a single periodic orbit at this value of ν before enlarging

again as ν increases further. The periodic orbit is shown in Figure 5. A zoom into this

region by a factor of ten million places an upper limit of 3×10−8 on the size of the thin torus

that presumably surrounds the periodic orbit. The limiting torus has a winding number of

(1/3), which means that the orbit rotates through an angle (2π/3) the short way around

the torus for each time around the long way. Since the periodic orbit is a neutrally stable

fixed point in the Poincaré section, it is surrounded by a region that very slowly fills in by

orbits approaching from the chaotic sea that spend a long time in its vicinity, an example

of which is evident in Figure 4. Thus it appears that at this singular value of ν the system

may be ergodic but only after an infinite time.

It seems likely that the mathematical [ as opposed to physical ] form of the oscillator

equations, where p differs from q̇ and where the friction coefficient depends on qp , was

offputting for later investigators so that these 2001 contradictions with the literature of the

1990s passed either unnoticed or at least undeclared until now.

The systematic explorations carried out by Bauer, Bulgac, Ju, and Kusnezov, for simple

systems including the harmonic oscillator, suggested that quartic thermostating terms like
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Figure 3: An enlarged version of the ν = +3 case shown in Figure 2 shows four barely-visible

“holes” in the ζ = 0 cross section. Magnification of the lower-left hole, tenfold in both the q and

the p directions, reveals a sharp triangular boundary between nested tori on the inside and chaos

on the outside. Because the location of the toroidal region is a smooth function of ν successive

approximations track its center to ν = +2.9 , shown in Figure 4, and finally to ν = +2.903521 ,

where the sidelength of the triangle is less than 3 × 10−8 . Color indicates the local value of the

Lyapunov exponent λ1(t) , with red positive and blue negative.

−ζp3 or −ζ3p best promote chaos8–10. Accordingly, we modified the Sergi and Ferrario

equations to include a cubic ( rather than linear ) dependence on the friction coefficient :

{ q̇ = p(1 + ζ3ν) ; ṗ = −q − ζ3p ; ζ̇ = p2 − T − qpν } [ SF′ ] .
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Figure 4: A hundred-fold linear zoom in q and p reveals the toroidal solutions within a triangular

reqion of width of order 0.001 . The white lines indicate (q, p) tracks of points moving parallel to

the plane. Red and blue represent positive and negative local Lyapunov exponents λ1(t) . The

cross section displays the mirror ( or inversion ) symmetry (+q,+p) ←→ (−q,−p) . ν is +2.90

here.

We also followed References 8-10 by considering a quadratic version with ζ3 → ζ |ζ | . The

reader can check to confirm that these equations for the flow velocity still satisfy the sta-

tionary phase-space flow equation , (∂f/∂t) = 0 = −∇ · (fv) . Here v = (q̇, ṗ, ζ̇) is the

three-dimensional flow velocity in (qpζ) space. The probability densities for the quadratic

and cubic generalized friction coefficients ζ vary as e−| ζ |3/3 and e−ζ4/4 .
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Figure 5: The stable periodic orbit near ν = 2.903521 and its projections into the (q, p), (q, ζ),

and (p, ζ) planes. This orbit has a period of 12.2945528 and crosses the ζ = 0 plane near (q, p) =

(+1.04099057,−0.395775939) .

IV. TWO-THERMOSTAT HARMONIC OSCILLATOR MODELS

Beginning about 1990 two-thermostat models were developed, mostly based on controlling

pairs of moments8–12. Applications established the mathematical consistency of such models

with Gibbs’ canonical distributions, with barrier-crossing problems, and with Brownian

motion problems. The Ju-Bulgac, Martyna-Klein-Tuckerman, and Hoover-Holian models

all generated the canonical distribution. The controversial ergodicity of the MKT oscillator

was investigated, and confirmed with particular care, as the 2014 Snook Prize problem13,14.
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Rather than formulating two controls over the potential or kinetic energy this MKT “chain”

model used a second thermostat variable ξ to thermalize the fluctuations of the first, ζ2 :

{ q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − T − ξζ ; ξ̇ = ζ2 − T } [ MKT ]

In 2014 Patra and Bhattacharya discovered that the doubly-thermostated oscillator equa-

tions ,

{ q̇ = p− ξq ; ṗ = −q − ζp ; ζ̇ = p2 − T ; ξ̇ = q2 − T } [ PB = SE ] ,

were not ergodic15. By coincidence Sergi and Ezra had already found this same result in

201016. We discovered this by noticing that their Figure 2 looked identical to Patra and

Bhattacharya’s Figures 2c and 2d in Reference 15. The key to understanding ergodicity and

its lack in these simple oscillator systems lies in distinguishing two qualitatively different

types of “holes” in the cross sections of the flow. We turn to that next.

V. HOLES IN THE SINGLY-THERMOSTATED CROSS SECTIONS

The holes found here in the cross sections are reminiscent of those found recently by Patra

and Bhattacharya13. They investigated the two unstable fixed points generated by the four-

dimensional MKT oscillator equations. Evidently the centers of the largest holes found in

the present work typically include fixed cycles of four repeating points of the mapping from

one penetration of the plane at ζ = 0 to the next ( three intermediate penetrations separate

pairs of point repetitions ) . The holes are especially clear for the case ν = 2 in Figure 2.

Figure 4 illustrates a relatively sensitive case, ν = +2.90 , using the original Sergi-

Ferrario equations with linear friction. Apart from four tiny similar holes in the section, the

chaotic sea outside them has a Gaussian distribution. This is consistent with the largest of

the long-time-averaged Lyapunov exponents ( as well as with the complete spectrum of four

exponents ) vanishing for all those trajectories which pass through the holes.

We took the precaution of solving this problem with three different integrators ( fourth-

order, fifth-order, and adaptive Runge-Kutta ) and a variety of fixed and variable timesteps,

all in a diligent effort to avoid numerical errors. For a purely-Hamiltonian harmonic oscillator

it is well-known that the fourth-order method gradually loses energy while the fifth-order

method gains. The good agreement of all three integrators with one another shows that the
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Figure 6: Symmetry breaking at ν = ±2.9 . The time-reversible (q,±p,±ζ,±ν) trajectories

trace out identical coordinate sequences, but in the opposite time direction. Even so, differences

in the recent past histories of the forward and reversed trajectories lead to the totally different

local values of the largest Lyapunov exponent λ1(t) shown here. The global forward and backward

time averages of the local exponents λ1 match. The section for ν = −2.9 has been reflected about

the coordinate axis (p = 0) to show that the trajectory penetrations as well as the white nullcline

intersections parallel to the (q, p, 0) plane are identical in the forward and reversed trajectories.

nonlinearities of the differential equations dominate the errors ( on the order of 10−17 or less

at each timestep ) from the finite precision of the simulations. By simply searching for holes

and evaluating the largest Lyapunov exponents within them, or by evaluating the largest

Lyapunov exponents for millions of randomly-chosen initial conditions it is relatively easy

to separate the chaotic and quasiperiodic regions.
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VI. SUMMARY, DISCOVERY, AND ADVICE

Three families of singly-thermostated oscillators, with linear, quadratic, and cubic fric-

tion, were formulated to obey Gibbs’ canonical distribution for an oscillator. All provided

chaos but none was ergodic. In the linear case it is possible that there is a ergodic solution

in the vicinity of ν = 2.903521 . We can place an upper limit, ≃ 10−16 , on the nonergodic

measure there. In every case we examined ( with independent calculations in India, Nevada,

and Wisconsin ) the cross sections revealed mixed solutions, holes containing nested tori

embedded in a chaotic Gaussian sea. Figure 5 shows such a stable torus.

This situation bears a qualitative resemblance to solutions of the original Nosé-Hoover

oscillator. Visualization and the local values of the largest Lyapunov exponent are the two

most valuable tools for distinguishing the two solution types. To evaluate the local exponent

λ1(t) requires both a “reference” trajectory and a nearby “satellite”. This increases the

computer time required by only a factor of two. It is convenient to rescale the separation

between the two similar trajectories ( by displacing the satellite toward the reference )17,18

at every timestep so as to determine λ1(t) .

These three-dimensional oscillator problems help illuminate features of ergodicity searches

for the four-dimensional flows obtained with two thermostat variables. Our work here has

shown that the Sergi-Ferrario oscillators are at best seldom ergodic ( assuming only that the

hundreds of cases we examined are typical ).

A particularly fascinating aspect of the fully time-reversible Sergi-Ferrario model is the

symmetry breaking illustrated in Figure 6. The forward structure of the flow’s Lyapunov

instability is much more complex than the totally different backward structure despite the

fact that any trajectory obeying the SF motion equations can be followed just as well

backward as forward. This “Arrow of Time” asymmetry of the largest Lyapunov exponent

λ1(t) for a simple fully time-reversible flow deserves further study.

We recommend the challenge of taking up the search for ergodic three-dimensional oscil-

lator models. In pursuing this elusive goal it seems to us highly desirable to maintain the

conventional relation between the coordinate and the velocity, q̇ = p . It is also desirable to

resist such physically-artificial accelerations as the qp contribution to the thermostat vari-

able ζ . At their best control variables should utilize transparent and meaningful origins. It

is certainly possible that with increasing computer power searches such as those carried out
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by Sprott19 could uncover a host of new variations of the Sergi-Ferrario or Sergi-Ezra-Patra-

Bhattacharya equations which are simultaneously robust, useful, physically meaningful, and,

above all, ergodic.

In closing, we have recently discovered a particularly promising direction embodying

“weak control” of the momentum through a choice of the parameters (α, β, γ) in the set of

three moment-based equations of motion :

{ q̇ = +p ; ṗ = −q − ζ [ αp+ β(p3/T ) + γ(p5/T 2) ] ;

ζ̇ = α[ (p2/T )− 1 ] + β[ (p4/T 2)− 3(p2/T ) ] + γ[ (p6/T 3)− 5(p4/T 2) ] } .

Computational searches in (α, β, γ) space suggest that there are regions where the singly-

thermostated oscillator samples the entire Gibbs’ distribution. One such combination which

appears to be ergodic is (α, β, γ) = (1.50, 0.00,−0.50) . We suspect there are many more.

Finding them will conclude a search set in motion by Shuichi Nosé some thirty years ago.
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