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Abstract

Childhood and graduate school at Ann Arbor Michigan prepared Bill for an interesting and

rewarding career in physics. Along the way came Carol and many joint discoveries with our many

colleagues to whom we both owe this good life. This summary of Bill’s early work prior to their

marriage and sabbatical in Japan is Part I, prepared for Bill’s 80th Birthday celebration at the

University of Sheffield in July 2016.
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I. BILL’S EARLY HISTORY IN CHEMISTRY AND PHYSICS, 1936-1990

A. Ann Arbor Michigan to Washington D C to Oberlin Ohio and Back

My research career got off to an early start in Ann Arbor. My earliest memories go

back there to the late 1930s. My Father taught econometrics and location theory at the

University. The building always smelled of cigars. In his lecture room he had a giant wall-

mounted sliderule and a desktop framework he had constructed with a few hundred vertical

wires holding just as many gold-colored cubes. Each cube could slide up or down its (x, y)

support wire to represent an (x, y, z) point on a surface in three-dimensional space. Our

Family moved to Washington D C during the war years for government work on rationing

and price controls. My Father, though assigned to the Navy, spent the last year of the war

in Germany in a Jeep, estimating the cost of rebuilding.

Back at home I was fascinated by mathematics, particularly the identity :

N∑

1

n3 =
N∑

1

n×
N∑

1

n −→ 13 + 23 + 33 + . . . = (1 + 2 + 3 + . . .)2 .

At Woodrow Wilson High School Louise “Quiz” Stull taught a rigorous and stimulating

chemistry class. I was inspired by her example and that of my chemist uncle John Red-

field Hoover, a plastics enthusiast and fan of Dixieland Jazz. After graduation I set off to

Oberlin Ohio with a Procter and Gamble scholarship, planning to learn more chemistry. I

particularly enjoyed Luke Steiner’s chemistry and thermodynamics courses there. Like Mrs.

Stull Professor Steiner used surprise quizzes to keep his class alert. In his thermodynamics

course we integrated heat capacity data by counting squares on large-size graph paper.

In my third year at Oberlin I had an automobile accident and missed a semester of

school. As a fringe benefit I chose to take Stuart Rice’s course in statistical mechanics at

Harvard that summer, while earning a little money in my spare time helping measure cats’

brain waves at M I T. After graduating from Oberlin I returned to Michigan in 1958 for a

PhD in chemical physics with Andy De Rocco, a gifted and fun-loving teacher of statistical

mechanics, with his course based on Joaquin Luttinger’s lecture notes. I also took Frank

Harary’s graph-theory course in the mathematics department. Graph theory came in handy

years later in Livermore in working with Francis Ree on the Mayers’ virial series. We related

the graphs for pressure with those for the pair distribution function, and to the many-fewer
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FIG. 1: Trajectories for 32 hard spheres in the solid ( left ) and fluid ( right ) phases.

but more-sophisticated graphs that have by now been successfully pursued through the tenth

virial coefficient for hard disks and hard spheres1.

There was a FORTRAN course about three hours long, given all in one evening, enabling

me to transition to an IBM 704 from Andy’s Olivetti calculator with its paper tape and

the Chemistry Department’s hand-cranked Marchant calculators. Programming was in the

“MAD” language. Michigan’s Algorithmic Decoder language honored the magazine fixture

Alfred E. Neuman. I also had the good luck to hear George Uhlenbeck’s physics lectures on

kinetic theory, transcribed to the board from a musty notebook he held at arm’s length.

Chemistry students at Michigan typically prepared seminars based on recent Scientific

American articles. I was fortunate to read Berni Alder and Tom Wainwright’s “Molecular

Motions” article ( see Figure 1 ) in the October 1959 Scientific American2. That article

piqued my interest in Livermore with the goal of doing molecular dynamics. But first came

some useful additional study, a post-doctoral year with Jacques Poirier in Durham North

Carolina where I learned to evaluate cluster integrals by Monte Carlo integration.
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FIG. 2: The diamond-shaped free volumes in the correlated cell model are larger than the usual

hexagonal free volume from the ordinary cell model, shown hatched at the center of the cell. When

the second-neighbor separation exceeds two diameters the white disks can escape their cells. The

pressure for the correlated model exhibits the van der Waals’-like loop shown in Figure 3.

B. From Durham North Carolina to Livermore California

By the time I left Michigan for a postdoc at Duke I was hooked on computer simulation.

During the spring of 1962 I interviewed at Livermore, with Berni and Tom, and at Los

Alamos, with Bill Wood. Livermore won out. Besides the better money for me it was

much more interesting to see motion governed by differential equations rather than watching

uncorrelated Monte Carlo moves, no matter how clever the underlying algorithm. Berni

made it easy for me to learn and to work with him and some of his many colleagues,

Brad Holian, Francis Ree, Tom Wainwright, and David Young. We worked on a variety

of projects in kinetic theory and statistical mechanics, mostly directed toward equation of

state properties for hard particles.

Our first project3 ( see Figures 2 and 3 ) provided a great example of advancing

theory by the observation and description of computer experiments. Movies of hard-disk

dynamics as well as Bill Wood’s reports of his Monte Carlo studies at Los Alamos, revealed

extensive cooperative motions of disks, both linear and circular in nature. These correlated

motions suggested modifying the cell model for dense fluids. That model approximates the

Nth root of the partition function by a single-particle free-volume integral. This good idea

is exact for a very light particle which moves so rapidly that its neighbors appear to be
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FIG. 3: Hard-disk models. Pressure Volume plot for the correlated cell model is shown in red.

V0 is the close-packed volume. The estimated freezing pressures from references 6 (AW) and 7

(Hoover-Ree) are based on molecular dynamics and a Padé approximant respectively. The high-

density equation of state ( AHY ) is described in reference 8. The most recent estimated pressure,

in blue, is taken from reference 4. “Virial” is the ten-term expansion using Clisby and McCoy’s

virial coefficients from reference 1.

stationary. A “correlated” cell model based on the idea of correlated motion was my first

Livermore publication. The resulting van der Waals’-like loop closely matched the large-

system transition from fluid to solid as it was estimated in the 1960s. A more precise idea

of what happens at the melting and freezing densities was intensively investigated 50 years

later4. Although the details involve a “hexatic” phase5 ( see Figure 5 ) on the solid side

of the transition, from the visual standpoint the transition appears to be first-order. The

current estimate for the transition pressure is just 3 percent higher than Berni and Tom’s

1962 estimate6 and 1.6 percent lower than our best guesses with Francis Ree and Dave Young

in 19687,8 as shown in Figure 3.
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FIG. 4: In the hexatic phase the particle motions from Zangi and Rice’s 2004 simulation5 parallel

the three triangular lattice directions. Compare to the similar particle trajectories which can be

found in the multiphase trajectory taken from Alder and Wainwright’s 1962 study6.

C. Gordon Conferences in New Hampshire and CECAM workshops in France

With the equilibrium equation-of-state problem solved by a van-der-Waals’-like perturba-

tion theory9 it was time to move on. By 1971 Berni had helped me into a teaching position

at Teller Tech, where my first PhD student, Bill Ashurst, from just across the street at

the Sandia Laboratory, shared my interest in nonequilibrium molecular dynamics. We de-

veloped numerical methods for measuring transport coefficients by modifying Hamiltonian

mechanics to include velocity and temperature gradients. That work led to participating in

Gordon Conferences in New Hampshire, meeting scientists from all over the world, and to

travel abroad. I participated in Carl Moser’s CECAM workshops, originally in Orsay and

later at Lyon, getting acquainted with many of the men interested in molecular dynamics

and visiting their laboratories: Giovanni Ciccotti, Gianni Iacucci, Dimitri Kusnezov, Michel

Mareschal, Shuichi Nosé, Loup Verlet, Bob Watts, Kris Wojciechowski, and Les Woodcock.

In those days it was exciting and interesting to establish the agreement between the Monte
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FIG. 5: Nonequilibrium pair distribution function gxy which contributes to the potential shear

stress ( from Ashurst’s Thesis11 ). Measurement with molecular dynamics is the solid line. The

dashed line corresponds to the rigid shear of the equilibrium distribution function for a best-fit

choice of Maxwell’s relaxation time. The actual and approximated contributions differ by about

four percent.

Carlo and molecular dynamics methods for systems as small as four particles10. Molecu-

lar dynamics had the advantages of simulating actual motions while solving nonequilibrium

problems and generating nonequilibrium distribution functions11. See Ashurst’s Figure 5.

D. Sabbatical in Canberra Australia, 1977-1978

Bill Ashurst had finished his thesis work, simulating nonequilibrium shear and heat flows

with pair potentials, in 1974. I arranged a Fulbright leave to extend the pair-potential

calculations to water with Bob Watts at Canberra. Once I had arrived two setbacks disabled

the plan: [ 1 ] Bob was appointed head of the Computer Centre within a week of my arrival

and [ 2 ] his potential for water turned out to be unstable. As a result I mainly worked with
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FIG. 6: The fluid configurations at the top illustrate extensive ( left ) and intensive ( right ) free

volumes for hard disks with half the diameter of the exclusion disks shown in the figure. The

“percolation transition” separating the two regimes is at a density one fourth of the close-packed

density. The fluid and solid configurations at the bottom show that the fluid-phase free volume is

considerably smaller than the solid-phase free volume at the same density.

my son Nathan, evaluating hard-disk free volumes in the solid and fluid phases and locating

the percolation transition where the free volume changes from intensive to extensive12. Two

ways of illustrating the free volumes ( disks of radius σ above and diameter σ below ) appear

in Figure 6.

Our office was just across the hall from a door with a hand-lettered sign identifying

the occupant, a recent PhD and enthusiastic bush-walker, “BigFoot Evans”. Along with

the Watts’, we spent a lot of time together socially and in the mountains, despite Bob’s

immersion, if not quite drowning, in administrative work. Almost every weekend found

us exploring the Australian bush or rock climbing at Booroomba Rocks, just half an hour
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FIG. 7: Relative density, pressure in kilobars, and temperature in kelvins for shock compressions

of liquid argon to 12 and to 27 kilobars. My Navier-Stokes estimates ( filled circles ) from reference

15 are compared to Klimenko and Dremin’s simulation data ( lines ) from reference 14.

outside Canberra.

In 1967 I set out to model the propagation of strong shockwaves in solids, strong enough

to cause melting. Although a preliminary account was published13 the project was never

completed due to the unreliability of the magnetic tapes on which the particle coordinates

and velocities were stored. Large-scale shockwave simulations were put on hold until around

1980. By that time Klimenko and Dremin had published shockwave profiles14 for two differ-

ent shock strengths. Their results are the solid lines in Figure 7. In 1979 I compared their

molecular dynamics simulations of shockwaves to the predictions of Navier-Stokes contin-

uum mechanics15. The good agreement at 12 and 27 kilobars set the stage for a large-scale

higher-pressure effort at nearly 400 kilobars. The work involved seven of us confronting com-
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puter simulations of transport coefficients with the high-pressure shockwave data16,17. The

agreement was semiquantitative. The observed viscosity at 400 kilobars was about thirty

percent higher than the low-strainrate Newtonian viscosity. Steady shear experiments pre-

dict a decrease rather than an increase. Thus there is still some interesting work to be done

in order to understand this difference in the rate dependence.

E. 1984: Shuichi Nosé’s Canadian Ideas Appear in France

After his thesis work in Kyoto Shuichi Nosé moved to faroff Northern Canada to a post-

doctoral position with Mike Klein. Nosé published two amazing papers in 1984 showing how

to do constant temperature molecular dynamics in the canonical ensemble18,19. He used a

logarithmic potential to store the excess energy from fluctuations around the mean. Their

importance was clear. He was invited to a CECAM workshop at Orsay, just outside Paris,

to discuss his work. After reading his papers I arranged to attend that CECAM workshop.

On the way there I came across Nosé on an Orly-to-Paris train platform, a few days before

the workshop was to begin. This was very good luck ! Back in Livermore I had prepared

a list of a dozen discussion questions for him concerning his papers. Most of them had to

do with “time-scaling”, an important step in his work and one that was entirely foreign to

me. The timescaling variable s varies with time between zero and unity. s appears in the

denominator of the kinetic energy in Nosé’s Hamiltonian so that the equation of motion for

the friction coefficient ζ̇ ≡ ṗs = −(∂H/∂s), for the motion of the momentum conjugate to

s, with s3 in the denominator, is quite stiff :

HNosé = (K/s2) + Φ + (ζ2/2) +NkT ln(s) ; K =
∑

(p2/2m) ; Φ =
∑

pairs

φ .

Nosé and I went over the new concepts carefully on a bench in front of the Notre Dame

cathedral. That informative meeting, together with the stimulation from the workshop that

followed led me to spend the next two weeks after the workshop at Philippe Choquard’s

laboratory in Lausanne. One of his students helped me to make Tektronix plots of harmonic

oscillator canonical trajectories, shown in Figure 8. In the student’s words “we make a

graphique” ! It was amazing to me that the { q, p, s, ζ } trajectories generated by two

entirely different sets of differential equations, one stiff and the other not, were identical.

The original stiff equations were relatively useless. The “scaled” equations with all of the
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FIG. 8: Tektronix plots of thermostated harmonic oscillator trajectories from reference 21. (a) is

the ordinary isoenergetic harmonic oscillator. (b) and (d) are thermostated oscillator trajectories

while in (c) and (e) the thermostat response ζ̇ has been increased by a factor of ten relative to the

equations in the text.

rates multiplied by s , were well-behaved and quite useful in equilibrium canonical-ensemble

simulations.

To illustrate, Nosé’s original and “scaled” equations of motion for a harmonic oscillator

are as follows :

{ q̇ = (p/s2) ; ṗ = −q ; ṡ = ζ ; ζ̇ = (p2/s3)− (T/s) } [ Nosé ] ;

{ q̇ = (p/s) ; ṗ = −qs ; ṡ = ζs ; ζ̇ = (p2/s2)− T } [ scaled ] .

Nosé’s four scaled first-order equations can then be simplified, eliminating both p and s

to give a second-order coordinate-space “thermostated” equation of motion along with a

first-order “feedback” equation for the friction coefficient ζ :

{ q̈ = −q − ζq̇ ; ζ̇ = q̇2 − T } [ Nosé− Hoover ] .

ζ , originally the momentum associated with s, now plays the role of a “friction coefficient”,

or “thermostat variable”. The missing equation, ṡ = sζ , is best ignored, as s plays no role

11



in the time-development of the oscillator trajectory. In the simpler “Nosé-Hoover” approach

the time derivative of ζ is derived directly from Liouville’s flow equation rather than from

Nosé’s “ad hoc” Hamiltonian.

It wasn’t until twelve years later, 1996, that Dettmann and Morriss published a method20

that avoids the explicit time-scaling step by the equivalent two-part process of [ 1 ] multi-

plying the Hamiltonian by s and [ 2 ] setting the value of the Hamiltonian equal to zero.

Though unconventional it turns out that this same idea actually works in general if one

wishes to multiply the rates by an arbitrary function provided that the Hamiltonians are

also set equal to zero :

HDM ≡ sHNosé −→ {q̇, ṗ, ζ̇ }DM = s{q̇, ṗ, ζ̇ }Nosé ; ζ̇DM = −HNosé + sζ̇Nosé = sζ̇Nosé .

In Lausanne after the Orsay meeting, and with a good understanding of Nosé’s work,

I wrote a short paper describing my own interpretation of his work along with a simpler

derivation of his results. My Liouville equation approach avoided Nosé’s time-scaling. I

included applications to the harmonic oscillator and the isobaric ensemble. Those three

pages21, with the Lausanne Tektronix plots, describing what is now called “Nosé-Hoover”

mechanics have generated many extensions in directions well beyond my understanding.

Oddly enough I haven’t since used this scaling trick with any other problem, but it looks

like a good one to remember nonetheless.

The microcanonical oscillator is the simplest of problems. It gives a circular phase-

plane orbit. Figure 9 illustrates examples of the complexity of the Nosé-Hoover oscillator

dynamics in the canonical ensemble. Six percent of the stationary distribution function for

the oscillator’s phase space ,

fstationary = (2π)−3/2e−q2/2e−p2/2e−ζ2/2 ,

is occupied by a connected chaotic sea made up of solutions which separate exponentially fast

from one another22. The remaining 94% of the distribution is made up of tori surrounding

stable periodic orbits. So this oscillator model is far from ergodic.

Several ways of solving the harmonic oscillator problem with an ergodic dynamics were

developed over the next thirty years, all of them requiring at least two thermostat variables

so as to produce chaos everywhere in the oscillator phase space. An example from 199623 is

{ q̇ = p ; ṗ = −q − ζp− ξp3 ; ζ̇ = p2 − 1 ; ξ̇ = p4 − 3p2 } .

12



FIG. 9: Flux through the ζ = 0 cross section for the Nosé-Hoover oscillator showing p(q) at each

crossing. The white “nullclines” show that the flux vanishes for p = ±1 . All these points are

located in the chaotic sea, which makes up approximately six percent of the oscillator’s stationary-

state measure in (q, p, ζ) phase space. Red/blue indicate the most positive/negative λ1(t) .

The two friction coefficients ζ and ξ control the two moments 〈 p2 〉 and 〈 p4 〉, respectively.

The four differential equations have a stationary and ergodic phase-space distribution, Gaus-

sian in all four variables :

fstationary = (2π)−2e−q2/2e−p2/2e−ζ2/2e−ξ2/2 ,

Thirty years after the original oscillator work, in the summer of 2015, I was spending a

day watering trees at our home in Ruby Valley. I had the idea of applying “weak control”

to the harmonic oscillator, using a single thermostat variable for the simultaneous control

of two oscillator moments rather than just one. Successful examples soon followed. One of

them, shown in Figure 10 is the “0532 Model” :

{ q̇ = p ; ṗ = −q − ζ(0.05p+ 0.32p3) ; ζ̇ = 0.05(p2 − 1) + 0.32(p4 − 3p2) } .

Because this model is ergodic24 its cross sections have no holes and are simple Gaussian

functions. But they take on some interest when colored according to the local values of

the Lyapunov exponent. Despite the time reversibility of the equations of motion the time-

reversed trajectory’s local ( instantaneous ) values of the largest Lyapunov exponent are

13



FIG. 10: Flux through the ζ = 0 cross-section for the 0532 oscillator reflects the ergodic nature

of the model. The largest-to-smallest local exponents λ1(t) are colored from red-to-blue. The local

Lyapunov exponents give the instantaneous rate of separation, (δ̇/δ) , for two nearby trajectories.

Notice λ(q, p) 6= −λ(q,−p) while λ(q, p) = λ(−q,−p) , showing a surprising symmetry breaking !

unrelated to the largest local exponent going forward in time. This symmetry breaking

is a conservative relative of the dissipative symmetry breaking which generates “strange

attractors” ( and not “strange repellors” ) in nonequilibrium simulations. With the successful

application of weak control the original 1984 problem of finding an ergodic thermostat for

the harmonic oscillator finally produced several single-thermostat solutions.

Continued exploration of the oscillator phase space is ongoing. The most recent work I

have seen is a collection of knots, tied in phase space by one or two Nosé-Hoover oscillator

trajectories25. Piotr Pieranski’s internet descriptions and depictions of knots are an enriching

experience. Knot theory was and is a well-developed field of study going back to Kelvin and

Maxwell. For an introductory look at knots see the interesting work on the prototypical

overhand ( or trefoil ) knot26. See Figure 11.

14



F. 1985: Sabbatical Leave at Boltzmanngasse in Wien

The CECAM meetings enriched my life, leading to a sabbatical with Harald Posch and

Karl Kratky in Vienna and another four years later with Shuichi Nosé in Yokohama. Work

at Harald’s Boltzmanngasse laboratory was intense and productive. Apart from the floor

and the high ceiling Harald and Franz Vesely and I covered all of the horizontal surfaces of

Harald’s large laser lab with pictures and projections of tori and cross-sections of chaotic

seas27. The cross-section calculations were time-consuming, taking all night to run, showing

up on the screen in the morning in what I recall was a beautiful shade of green. To assess the

improvement in computation I recalculated a cross-section problem on a Mac laptop, gen-

erating two billion timesteps solving the three differential equations describing the simplest

Nosé-Hoover thermostated oscillator :

{ q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − 1 } .

It took exactly two minutes to run, generating about half a billion points for each of the

three cross sections : { q = 0, p = 0, ζ = 0 }. Comparing the 2016 and 1985 computation

times gave a speedup of 500 ≃ 29 or so in 30 years, somewhat slower than Moore’s Law’s

prediction, but a very pleasant outcome of the computer revolution.

By 1987 Bill and another excellent PhD student Bill Moran, had analyzed the isokinetic

motion of a point mass falling through a triangular lattice of scatterers. This is the Galton

Board28, named for the statistician who built one over 100 years ago, to demonstrate the

binomial and Gaussian distributions caused by scattering. In between collisions the Galton-

Board equations of motion are ;

ẋ = px ; ẏ = py ; ṗx = −ζpx ; ṗy = −E − ζpy .

The friction coefficient ζ = −Epy maintains the squared velocity equal to unity, p2x + p2y ≡

1 , as the reader can easily verify. The dissipation induced by the friction coefficient ζ

allows the moving particle to descend, converting field energy to heat which is extracted

by the reservoir. A look at the phase-space cross sections in Figure 12 shows that the

dimensionality of the fractal attractor decreases as the field strength is increased from one,

to two, to three, to four. In this last case the phase space is separated into tori, describing

the stable bouncing of the moving particle between two scatterers in the same horizontal

15



FIG. 11: Simple examples of Piotr Pieranski’s software for tightening and rendering knots. The

trefoil ( or overhand ) knot below can be found among the many Nosé-Hoover oscillator orbits

explored in reference 25.

row, as well as the chaotic sea which describes the dissipation associated with the Second

Law of Thermodynamics. This problem with its motion on a three-dimensional energy

surface in the four-dimensional phase space, was one of the earliest to show the multifractal

phase-space distributions characterizing time-reversible deterministic dissipative systems.

G. Moral

I am very grateful to all my colleagues for support, wisdom, collaborations, friendship,

and love over the years. I am particularly grateful to Berni Alder for his extending a helping
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FIG. 12: A unit cell of the triangular lattice Galton Board28 is shown to the left with the definitions

of the two angles α and β defining a scatterer collision. At the right phase-space cross sections are

shown for field strengths of 1, 2, 3, and 4. In the last case there are concentric tori occupying the

near-circular hole in the section. At the lower field strengths the dynamics is ergodic so that all

(α, β) states are a part of the chaotic sea.

hand in so many ways that proved crucial to the good life I have enjoyed. His generosity

in presenting an inspiring talk at the Sheffield Conference was a very welcome eightieth

Birthday gift. I urge those of you who are younger to reflect upon your good fortune in

being a part of our progress in understanding the world around us.
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