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Liouville’s best-known theorem, f( { q , p } , t )  = 0, describes the incompressible flow of phase-space 
probability density, f ({ q , p } , r ) .  This incompressible-flow theorem follows directly from Hamilton’s 
equations of motion. It applies to simulations of isolated systems composed of interacting particles, 
whether or not the particles are confined by a box potential. Provided that the particle-particle and 
particle-box collisions are sufficiently mixing, the long-time-averaged value (f) approaches, in a 
‘ ‘coarse-grained” sense, Gibbs’ equilibrium microcanonical probability density, fes , from which all 
equilibrium properties follow, according to Gibbs’ statistical mechanics. All these ideas can be 
extended to many-body simulations of deterministic open systems with nonequilibrium boundary 
conditions incorporating heat transfer. Then Liouville’s compressible phase-space-flow theorem- 
in the original f# 0 form-applies. I illustrate and contrast Liouville’s two theorems for two simple 
nonequilibrium systems, in each case considering both stationary and time-dependent cases. Gibbs’ 
distributions for incompressible (equilibrium) flows are typically smooth. Surprisingly, the 
long-time-averaged phase-space distributions of nonequilibrium compressible-flow systems are 
instead singular and “multifractal.” The nonequilibrium analog of Gibbs’ entropy, S= -k(ln f), 
diverges, to -00, in such a case. Gibbs’ classic remedy for such entropy errors was to 
“coarse-grain” the probability density-by averaging over finite cells of dimensions rI A q  A p .  
Such a coarse graining is effective for isolated systems approaching equilibrium, and leads to a 
unique entropy. Coarse graining is not as useful for deterministic open systems, constrained so as to 
describe stationary nonequilibrium states. Such systems have a Gibbs’ entropy which depends, 
logarithmically, upon the grain size. The two Liouville’s theorems, their applications to Gibbs’ 
entropy, and to the grain-size dependence of that entropy, are clearly illustrated here with simple 
example problems. 0 1998 American Institute of Physics. [SO021 -9606(98)51235-41 

1. INTRODUCTION 

Computer simulation is by now a familiar generator of 
equilibrium and nonequilibrium properties of classical many- 
body systems.’-3 By linking microscopic mechanics to mac- 
roscopic thermodynamics, simulation has also facilitated the- 
oretical analyses of systems far from equilibrium, and 
suggested new approaches to the foundational problems of 
statistical mechanics. Adopting the terminology used by 
Sklar, in a thorough and lively recent review: the accepted 
“orthodox” approach to reconciling time-reversible me- 
chanics with the approach to equilibrium and irreversible 
thermodynamics relies on the differential equations of 
Hamiltonian mechanics and stresses the importance of suit- 
ably chosen initial conditions. This conservative approach is 
subject to the well-known recurrence and reversibility criti- 
cisms of Poincari and Zermilo. 

By contrast, it is an article of faith, shared by simulators 
and experimentalists, that the initial conditions are irrelevant, 
and that it is instead the boundary conditions which shape 
and determine flows5 Simulators and experimentalists tend 
to analyze stationary nonequilibrium flows, rather than the 
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transients involved in equilibration. Curiously, even the im- 
position of boundary conditions, although certainly required 
for any nonequilibrium steady state, is not explicitly dis- 
cussed by the orthodox school. In the equilibrium case such 
boundary conditions are regarded as ‘interventionist’ ’.4 

The orthodox Hamiltonian approach entails solving two 
first-order differential equations of motion for each degree of 
freedom in the system: 

where the generalized coordinates { q }  are paired with their 
conjugate momenta {p=dL({q ,q} ldq ,  which are given in 
terms of the underlying Lagrangian, L( { q,  q }  K - a. In the 
usual case, where forces are nonlinear and the dynamics is 
chaotic so that analytic work is impractical, an approximate 
numerical solution of Hamilton’s equations, giving 
{ q ( t ) , p ( t ) } ,  is generated at a series of discrete time steps 
{ n A t } ,  starting with initial values of the coordinates and mo- 
menta at time 0. In the absence of special boundary forces or 
nonequilibrium constraints, or dnving fields, a typical suffi- 
ciently mixing system soon fluctuates about equilibrium. For 
stationary boundary conditions, the time series describing 
such a solution provides an approximation to Gibbs’ ideal- 
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ized probability density f e q ( { q , p } ) ,  with the approximation 
to the long-time average, (f), becoming exact in the long- 
time limit. 

Gibbs’ statistical mechanics applies to such equilibrium 
systems, provided only that the microscopic dynamics can 
reach all the { q , p }  states consistent with the fixed macro- 
scopic variables characterizing the corresponding Gibbs’ en- 
semble. In such equilibrium cases Gibbs replaces the detailed 
time averages of mechanical variables, such as the kinetic 
and potential energies, ( K )  and ((a), by time-independent 
phase averages, using the weighting function (f)=f,, in 
preference to a detailed trajectory time series 
{ q ( n A t ) , p ( n A t ) } .  Gibbs also showed that the equilibrium 
(f) itself, while not a dynamical variable like the energies, 
can be used to calculate the thermodynamic entropy, 
S---k(lnfi, where k is Boltzmann’s constant. Because the 
instantaneous f is “invariant” to canonical transformations, 
the resulting entropy, from u), does not depend upon the 
particular choice of generalized coordinates { q}.6 The prob- 
ability, f H d q  d p ,  of occupying a particular region @ in 
phase space, @ = H d q  d p ,  is independent of the chosen co- 
ordinate system, and is (apart from a multiplicative constant 
of order K D N  in D dimensions) @e-s‘k for Gibbs’ micro- 
canonical ensemble and @e+(A-H)’kT for his canonical en- 
semble. Here S, A,  and H are, respectively, the entropy, the 
Helmholtz free energy, and the Hamiltonian. In addition to 
the independence off and (f) to coordinate choice, the vari- 
ous projections off onto subspaces with fewer than the total 
number of degrees of freedom, give additional “Poincari 
invariants.” These are likewise independent of the chosen 
phase-space coordinate ~ y s t e m . ~  

There is a famous difficulty with this picture for 
e n t r ~ p y : ~ ”  Consider the expansion of an ideal gas, con- 
strained initially by a piston to occupy exactly half of a large 
box of volume 2 V .  The piston then moves, with a prescribed 
time history, so that the gas fills the entire volume 2 V  at a 
later time t .  What then is the situation for times much greater 
than t ,  long after the piston has come to rest, so that the gas 
has equilibrated? If the expansion takes place so rapidly that 
the gas cannot keep up with the piston, and hence cannot do 
external work, a doubling of the volume should eventually 
leave the gas with an entropy increase of k In 2 per particle. 
On the other hand, if the expansion takes place so slowly that 
the gas remains near equilibrium throughout, the expansion 
is thermodynamically reversible, with no change in the en- 
tropy. For intermediate expansion programs, some portion of 
the maximum entropy gain, Nk In 2 ,  occurs. The Gibbsian 
ensemble picture of these volume-doubling problems is dif- 
ferent. Consider an equilibrium ensemble initially containing 
representatives of all phase-space states with energy E ,  oc- 
cupying the volume V ,  and following the prescribed expan- 
sion program. Provided only that the motion of each en- 
semble member, following the doubling, obeys the same 
time-dependent Hamiltonian mechanics with the same piston 
motion, the ensemble phase-space volume and the corre- 
sponding Gibbs entropy of the ensemble must both be un- 
changed according to Liouville’s incompressible-flow theo- 
rem. Similar considerations hold for gaseous effusion, in 
which a small hole is bored in a motionless piston at time 0. 

According to the equilibrium version of Liouville’s in- 
compressible theorem, f= 0, as discussed in Sec. 11, the fine- 
grained f cannot change with time. Thus Gibbs’ entropy 
-k(lnf) can neither increase nor decrease. Thus Gibbs’ 
‘ ‘fine-grained’’ ensemble entropy cannot possibly reproduce 
the inexorable entropy increase described by the second law 
of thermodynamics. That law requires an increasing entropy 
for any system subject to noticeably time-dependent forces. 
A way to avoid the Gibbs’ entropy difficulty, at least for 
some situations, is to use “coarse graining”?‘ a division of 
the phase space into small cells { H A q  A p } .  The resulting 
coarse-grained entropy approximates the proper equilibrium 
value, just as a trapezoidal-rule summation approximates an 
integral. It is tempting to use this same picture not only at 
equilibrium, but also away from equilibrium. But a decade of 
research has established a severe difficulty with such a 
coarse-graining remedy: nonequilibrium distribution func- 
tions are typically “multifractal” distributions, singular ev- 
erywhere, with “multifractal” signifying a density which 
varies locally as a fractional power of the small cell size, 
never giving a convergent entropy, even in the small-cell 
limit. Thus these multifractal nonequilibrium systems have 
divergent Gibbs’ 

In Sec. 11, I develop Liouville’s theorems with both f 
= 0 and f# 0. Although these theorems are generally attrib- 
uted to Liouville’s 1838 exposition,” a simpler, older, path 
to them is the many-dimensional version of Euler’s continu- 
ity equation, d In pldt=-V.u,  where the density p of a con- 
served quantity (mass or probability) flows through the ap- 
propriate space (either three-dimensional or many- 
dimensional) with velocity u .  Liouville’s theorems can be 
applied both at, and away from, equilibrium. In considering 
the compressible case, away from equilibrium, the three ar- 
ticles by Andrey make interesting reading. ‘*-14 He begins by 
focusing on the f#O theorem as a possible explanation of 
the Second law. Four years later his thoughts are clearer and 
more c ~ n c i s e . ’ ~  Finally, in an admirably clear article14 he 
gives LiouvilIe credit for both the theorems: ”a reading of 
great old masters is very beneficial.” See also the related 
articles in Refs. 15-17. In Sec. 11, I also discuss the impli- 
cations of applying the compressible f# 0 theorem to a time- 
reversible nonequilibrium flow, where such a flow is inevi- 
tably characterized by a chaotic repellor-attractor pair in the 
phase space. I relate the overall time-averaged contraction of 
such a phase-space flow to the corresponding Lyapunov 
spectrum, which is in turn directly related to the time-rate- 
of-change of Gibbs’ entropy, and to its dependence on the 
“grain size” of a coarse-grained approach. In Sec. 111, I 
briefly consider the dependence of Gibbs’ equilibrium en- 
tropy on the physical units, the grain size, and the boundary 
conditions, setting the stage for detailed nonequilibrium cal- 
culations. In Sec. IV, I describe general relationships be- 
tween isomorphic pairs of solutions to the motion equations, 
one solution thermostatted and the other not. In Sec. V, I 
illustrate compressible phase-space flow for the simplest rel- 
evant example, a harmonic oscillator, either damped, or sub- 
ject to an equivalent time-dependent force. In Sec. VI, I re- 
call the properties of the “Galton Board” problem, a particle 
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scattered by a regular lattice, in the presence of an acceler- 
ating field. For this problem, I display the grain-size depen- 
dence of Gibbs’ entropy. In Sec. VII, I summarize our 
present understanding of Liouville’s theorems, and entropy, 
for nonequilibrium states. 

II. TIME-REVERSIBLE HEAT FLOW IN PHASE SPACE 

Hamilton’s motion equations can describe isolated sys- 
tems as well as systems confined by time-dependent, but 
velocity-independent, potentials. Although they can be 
implemented in any set of generalized coordinates { q , p } ,  it 
is usually convenient to choose Cartesian coordinates, with 
the Hamiltonian a separable sum of potential and kinetic 
parts, 

The choice of coordinates can affect no physical properties 
of such a system. 

To describe thermally “open” systems, interacting with 
sources or sinks of heat, additional velocity-dependent accel- 
erations are necessary. Accordingly, those particles interact- 
ing with external heat sources or sinks are affected by cor- 
responding “thermostat forces.” The simplest such forces 
are deterministic and time reversible. When the additional 
velocity-dependent thermostat forces are obtained from me- 
chanical variational principles, such as Gauss’ principle of 
least constraint or Hamilton’s principle of least action, they 
typically involve a Lagrange multiplier, f ,  are linear in the 
momenta, and retain the property of time reversibility, with 
the equations of motion having the f ~ r m : ~ , ~ , ’ ~  

These time-reversible “thermostatted” motion equations do 
not follow from a Hamiltonian. With them, it is still usual, 
but not necessary, to choose Cartesian coordinates and mo- 
menta for the { q , p } .  The additional Lagrange multiplier, or 
“friction coefficient,” f ,  imposes a thermal constraint on the 
selected degrees of freedom in such a way as to preserve the 
overall time reversibility of the system of equations with 
both f and the { p }  changing sign along a time-reversed tra- 
jectory segment. 

It is sometimes desirable-steady heat flow is one 
example-to use two or more friction coefficients to impose 
separate kinetic temperatures on separate sets of degrees of 
freedom. In the absence of sources or sinks of probability, 
whether or not such thermal constraints are present, it is 
evident that the local comoving phase-space probability, 
f({q(t),p(t)})@ [where @ is an infinitesimal comoving and 
corotating volume element, IIdq d p ,  centered on a trajec- 
tory] must be conserved by the flow. It follows that the 
change in a differentiable probability density, f ,  at any fixed 
phase-space location { q , p } ,  is given by the divergence of the 
local flux: 

+ ~ c P f ( { q # l ) / J P l .  
This form of Liouville’s theorem, which applies to both 
cases, compressible and incompressible, is simply the 
“Eulerian” (laboratory-frame) form of Euler’s continuity 
equation, which has to be obeyed by any differentiable den- 
sity of a conserved quantity (usually these are the mass, mo- 
mentum, and energy densities). It is more usual to consider 
the “Lagrangian” (comoving-frame) form of the time de- 
pendence o f f ,  d f / d t = f .  This is the time dependence fol- 
lowing the flow: 

f= d f /at  + C [ q ( d f / d q )  + p ( df/dp)] 

- + d  In f l d t =  -d  In @ldl  

= - [ ( d i / d q )  f (djldp)]. 

This form too applies to both cases, compressible and incom- 
pressible. With Hamilton’s equations of motion each of the 
terms ( d q / d q )  f ( d p / d p )  vanishes, giving the more familiar 
incompressible Liouville’s theorem: f= 0; otherwise we 
have the more general result: i# 0. In the presence of deter- 
ministic thermostatting forces - f p ,  f changes with time in a 
definite way: 

The last approximate equality follows because the depen- 
dence of f on { p }  is typically weak, of order 1/N for an 
N-body system.2i3 

Evidently positive dissipative friction leads to diver- 
gence of (In f ) -+ t  and the consequent vanishing of the co- 
moving phase volume ln@ - - t. Negative friction would 
cause f to vanish, and @ to diverge, with (Inj)---t. It is 
clear that only the former possibility, increasing f:Cf‘)>O 
and decreasing @ : ( @ ) < O ,  is consistent with a bounded 
phase-space volume. This observation is the mechanical ana- 
log of the Second law of  thermodynamic^.'*'^ Time averages 
are required by the presence of microscopic fluctuations. 

We see that a superficially small change in the dynamics, 
just adding time-reversible friction, actually induces a quali- 
tative change in the resulting phase-space distribution as well 
as a (time-averaged) one-way “arrow of time,” with (In f )  
+w.9910 The qualitative difference between incompressible 
and compressible phase-space flows was clearly emphasized 
by Ramshaw,” who built on Andrey’s work,13 but did not 
discuss the crucial property of time reversibility. Necessarily, 
something dramatic happens in the case, typical for nonequi- 
librium steady states, that (In f )  diverges. This is the forma- 
tion of a fractal phase-space object, a “strange attractor.” In 
the nonequilibrium steady state, (f) becomes a multifractal 
attractor, with a density which is everywhere singular, and 
with a dynamics which is both “chaotic” (long-time expo- 
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nential separation of nearby trajectories) and ‘ ‘attractive,’ ’ 
converging onto an object with information dimension 
strictly less than that of the equilibrium dis t r ibu t i~n .~”~ In a 
variety of example problems, one of which” is worked out 
in detail in Sec. V, the fractal structure can be verified by 
computing the cell-size dependence of the local cell mea- 
sures {p} ,  giving the coarse-grained entropy, 

on the phase-space cell size, IIAq A P . ~ ’  If, as is usual and 
also useful, the equations of motion are time reversible, the 
time-reversed forward trajectory must correspond to a topo- 
logically similar mirror-image ({ + p } +  { - p } )  ‘ ‘repellor’ ’ 
structure corresponding to the past: 

The attractor, rather than the repellor, is actually observed in 
any numerical solution because the flow in its vicinity is 
more stable than that near the repellor. 

Flow stability can be quantified through the Lyapunov 
exponents, {A}, which describe the rates of increase (or de- 
crease) of trajectory separations parallel to the principal axes 
of a corotating hypersphere centered on a system trajectory. 
Worked-out examples show that the individual instantaneous 
exponents depend upon the choice of generalized 
coordinates,21 while the instantaneous sum, ZA=d In @ldt 
=-dlnf/dt, which is directly related to probability, and 
hence to a Poincari invariant, does not. 

An alternative method for imposing boundary condi- 
tions, so as to simulate nonequilibrium systems, is 
s t o c h a s t i ~ . ~ ~ ~ ~ - ~ ~  Then, velocities for particles reaching a sto- 
chastic boundary are chosen from the corresponding one- 
sided Maxwell-Boltzmann distribution. This choice intro- 
duces discontinuities into the particle trajectories, making a 
Lyapunov analysis difficult, and making use of Liouville’s 
theorem at the least difficult, and perhaps impossible. Be- 
cause physical phenomena ought not to depend upon the 
boundary details for large systems, this situation seems para- 
doxical. It is likely a case of nonuniform convergence, with 
the fractal distributions characteristic of deterministic ther- 
mostats emerging as large-system limits when stochastic 
boundaries are 

111. GIBBS’ ENTROPY FROM THE DISTRIBUTION 
FUNCTION 

It is important to emphasize that the catastrophic diver- 
gence of Gibbs’ entropy, associated with nonequilibrium 
steady states, occurs completely independently of the mild 
inconvenience associated with the necessary choice of either 
an absolute or a relative entropy scale. The entropy com- 
puted from the probability density (f) corresponds, at equi- 
librium, to the thermodynamic entropy, according to Gibbs. 
Because f is independent of the particular choice of coordi- 
nates { q } ,  this equilibrium entropy can only depend, loga- 
rithmically, upon the units of action. It is usual to appeal to 

Bohr’s correspondence principle, making f dimensionless by 
dividing by Planck’s constant, h ,  for each degree of freedom. 
Otherwise, a change from centimeter-gram-second (cgs) to 
meter-kilogram-second ( m k s )  units, for instance, would 
change the energy scale, and the probability density, by a 
factor of lo7, causing a decrease in S of 7 k  In 10 per degree 
of freedom. A wholly classical alternative is to measure en- 
tropy relative to that of a corresponding ideal gas: 

In a mixing system it is expected that the probability 
density will eventually approach all allowed points of the 
phase space arbitrarily closely. Thus a time averaging, or an 
instantaneous average over fixed phase-space cells, can give 
the equilibrium distribution. The expanding-gas example, 
discussed in Sec. I, illustrates this possibility. On the other 
hand, the very definition of a fractal, a distribution in which 
the density varies as a power law in the vicinity of each 
point, suggests that the corresponding Gibbs’ entropy would 
depend upon cell size. An example confirming this expecta- 
tion is worked out in Sec. VI. 

IV. ISOMORPHISMS LINKING THERMOSTAlTED AND 
ADIABATIC SYSTEMS 

Although the difference between conservative Hamil- 
tonian mechanics and reversibly thermostatted nonequilib- 
rium mechanics is qualitative, it is possible to find particular 
many-body trajectories which can be described by either me- 
chanics. Thus, these pairs of special trajectories are iso- 
morphs, the same with or without thermostats. In the ther- 
mostatted case the occupied phase space neither shrinks nor 
grows as time goes on. The process is steady, with all seg- 
ments of the trajectory equally likely. On the other hand, the 
phase space of a system driven strongly from equilibrium 
can grow without limit, by virtue of an ever-increasing en- 
ergy. 

By using an external driving field and impulsive hard- 
particle forces, ensembles of pairs of isomorphic trajectories 
can be Not just any driving will do. Any fixed 
strength for the driving forces would eventually lead to a 
high-temperature equilibrium. On the other hand, a driving 
which increases sufficiently rapidly with time, or in space, 
can be chosen to maintain a fixed ratio of the driving and 
inertial forces, resulting in a stationary nonequilibrium state. 

An example of the isomorphic pairs of trajectories can 
be based on the Galton board problem, discussed in more 
detail for conventional equilibrium and thermostatted simu- 
lations in Sec. V. The conventional Galton board contains a 
particle accelerated, in the n direction, by a constant external 
field, E .  With impulsive hard-particle forces, the equations of 
motion between collisions, 

X =pxlrn;p,  = E ;  y = p y  l m ;  p, = 0, 

lead to curved trajectories, with 
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d2xldy2= (dldy)(p, lp , )  

= (m/p , ) (d /d t ) (p ,  l P y )  

= (m/P:)r ( P y P x )  - ( P x P , ) l =  mE/p,2. 

For simplicity, choose a constant-energy solution of these 
equations with a vanishing initial energy, K+ @ =p2/2m 
- EXSO.  Then, the curvature of the trajectory depends upon 
the ratio of the driving force, dx=  -d@ldx ,  to the kinetic 
energy, which is in turn the negative of the field energy, 
p2/2m= --@=Ex. Thus an exponential field leads to a 
steady-state trajectory y ( x )  with stationary curvature fluctua- 
tions. Exactly the same trajectory results if the dynamics is 
carried out, not at constant energy but with the kinetic energy 
constrained to its initial value, by a varying time-reversible 
friction force - { p :  

x=p,lm;y = p y l m ; p x =  F,+ E - { p ,  ; 

p = F , - { p ,  ; { ~ ( F . p + E p , ) l p  2 . 
Y 

Exactly similar isomorphic pairs of many-body trajectories 
can be constructed for (i) driven systems without thermo- 
stats, and (ii) nonequilibrium thermostatted systems with dis- 
sipative mass, momentum, or energy Thus, the dis- 
sipative fractal phase-space structures can apply with or 
without thermostatting forces. An example, based on the 
Galton board p r ~ b l e m , ' ~ ~ ~ ~ ' ~ ~  is described in Sec. VI. 

V. EXAMPLE: THE DAMPED HARMONIC OSCILLATOR 

Let us examine Liouville's f theorems in detail for a 
simple example. Consider a critically damped harmonic os- 
cillator with unit mass and force constant and initial coordi- 
nate qo and momentum po .  The equations of motion, 

q=p;p = -4 -  2 p ,  

have the solution q = [ q ~ + ( q ~ + p ~ ) t ] e - ~ .  In Fig. 1 I con- 
sider the special case in which the initial conditions are 
( 9 0  $01 ={ 1911: 

q = ( 2 t  + 1 ) e - ' ;p  = q = ( 1 - 2 t )  e-'; 

q= (2 t -3 )e - '=  - q - 2 q =  -4-  2p= -q+ ( 4 t - 2 ) e - ' .  

Liouville's compressible f# 0 theorem shows that the co- 
moving phase-space probability density diverges exponen- 
tially in time: f(q,p,t)/f( 1,1,0)=ei2'. The corresponding 
comoving phase volume vanishes: @ ( q , p , t ) l @ (  l , l , O )  
,e-2r , Remarkably, the same trajectory is also the solution 
of the undamped, but driven, oscillator motion equations: 

. .. 
q = p ; p  = q = -q + F ( t ) ; F ( t )  = ( 4 t -  2)e- ' ,  

where the external force F ( t )  has been chosen to reproduce 
the damped trajectory without using a velocity-dependent 
force. Now, Liouville's incompressible theorem applies. Fig- 
ure 1 confirms that the latter equations of motion show none 
of the dissipation of the former, although the two sets have a 
common solution. 

This example indicates the impossibility of directly de- 
termining Lyapunov exponents from a single trajectory, as 

1 .  

4 = P  

L. 
-0.5 0 0.5 1 1. 

q 
FIG. 1. Motion of an ensemble of harmonic oscillators obeying Liouville's 
f = O  theorem. The initial ensemble, a square centered on ( x = q o = l , q  
= p o =  l ) ,  eventually circles the origin. Snapshots are shown at { t }  
={0.0,0.2,0.6,1.5,2.5,5.0}. Only the trajectory at the center of the cornoving 
square phase volume (heavy line) is critically damped by the force F ( f ) .  See 
Ref. 2. 

was stressed by Farmer et a1." It also illustrates the utility of 
the exponents in describing phase-space compressibility. 
With a frictional force the two exponents are both - 1 and 
the flow is compressible. With a time-dependent driving 
force the two exponents both vanish and the flow is incom- 
pressible. This instructive analysis of the harmonic oscillator 
cannot easily be extended to nonlinear chaotic systems. For 
these, numerical calculations are required. Let us turn next to 
the simplest chaotic example. 

VI. EXAMPLE: THE GALTON BOARD 

The equilibrium Galton board describes the field-free 
scattering of a particle by a fixed array of ~ c a t t e r e r s . ' ~ , ~ ~ ~ ~ ' * ~ ~  
Figure 2 shows collisions resulting when the scatterers make 
up a regular triangular lattice of hard disks. The successive 
collisions undergone by a scattering particle, a moving mass 
point, can be described by the two angles, {a ,P} .  a gives the 
location of a collision relative to the field direction, while p 
gives the direction of the outgoing velocity relative to the 
radius vector, at each collision. In the equilibrium case, with 
no driving field, all collisions {a,sinp} are equally likely, 
and, because the dynamics is mixing, the coverage in the 
Poincard plane tabulating these collisions is uniform. Al- 
though the motion obeys Liouville's f = O  theorem, the 
coarse-grained entropy, shown as the series of dots parallel 
to the abscissa in Fig. 3, is essentially independent of cell 
size. The distribution of 3 000 000 successive collisions is 
essentially uniform, as the number of phase-space cells is 
increased from 1 to 65 536, as is indicated in Fig. 3. 

Consider next a nonequilibrium finite-field sequence of 
3 000 000 collisions generated with isokinetic thermostat 
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FIG. 2. Collision sequences for the isoenergetic and isokinetic motions of a 
mass-pint particle in a “Galton board.” The sequences are sets of the 
collisional functions, {0 < a< T, - 1 <si@< + 1). The two cases illustrated 
correspond to driving fields of 0 (isoenergetic) and 3p’lmu (isokinetic), 
both at four-fifths the close-packed scatterer density. The scatterem are disks 
of diameter u and 300 OOO collisions are shown. The isokinetic sequence of 
collisions could also be obtained without friction or constraints, by using an 
exponentially increasing field. See W. G. Hoover, B. Moran, C. G. Hoover, 
and W. J. Evans, Phys. Lett. A 133, 114 (1988). 
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forces, which constrain the kinetic energy, providing a mul- 
tifractal phase-space structure with an entropy which varies 
with the logarithm of the cell size. 300 000 points, in a Poin- 
car6 section through the multifractal structure, are shown in 
Fig. 2. Now Liouville’s compressible theorem applies. This 
section produces a Gibbs’ entropy with an essential depen- 
dence on the cell size (see Fig. 3). The slope indicates that 
(ln(f/hded)) varies as 0.15 ln(l/e), where E is the cell width. 
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FIG. 3. Cell-size dependence of the coarse-grained distribution function for 
collision sequences ten times the length of those shown in Fig. 2. The 
Poincar; sections of Fig. 2 have been divided into E-* cells, with E 

= 1,0.5,0.25,0.125,. . . . The coarse-grained value of (InCf/fid,J), where 
fidcd is the uniform distribution, is plotted as a function of log,(l/E). 

This example shows that coarse graining does not cure the 
diverging entropy which inevitably accompanies determinis- 
tic chaos away from equilibrium. These same trajectories 
also result from a special time-dependent field, and then 
obey Liouville’ s incompressible theorem. 

Breymann et al. have rightly emphasized that the deriva- 
tives of coarse-grained entropy, with respect to external vari- 
ables, can be useful even when the entropy itself is not. Like- 
wise, in dealing with systems open to mass flow, the division 
of entropy change into separate convective and comoving 
parts can be useful in drawing a correspondence with irre- 
versible  thermodynamic^.^^-^^ 

VII. CONCLUSIONS 

Liouville’s incompressible flow theorem, f = 0, usually 
applied to equilibrium systems, is better known than the non- 
equilibrium compressible theorem, f= - f X d $ d p .  The 
compressible Liouville theorem usefully links fractal dimen- 
sionality, dissipation, and the Lyapunov spectrum for deter- 
ministically driven systems, and in a way which simplifies 
theoretical analysis. But Gibbs’ entropy, S = - k(lnf), which 
corresponds, in equilibrium thermodynamics, to the force 
driving systems toward equilibrium, is a casualty of this 
analysis. Gibbs’ entropy seems to have no fundamental in- 
terpretation away from equilibrium, although in some situa- 
tions derivatives of its coarse-grained analog may be useful. 
Is there a way to characterize the nonequilibrium fractals so 
as to form a nonequilibrium potential as useful as the free 
energies associated with equilibrium states? No one knows. 

The singular multifractal nature of thermostatted phase- 
space distributions is qualitatively different to the smooth 
nature which one might expect to apply with stochastic 
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boundaries. Because the number of boundary particles is 
small and the dimensionality decrease appears to be 
extensive,33 it seems likely that the multifractal structure will 
emerge only gradually. But no one knows for sure. A defini- 
tive test would be welcome. Likewise, an experimental or 
computational technique for the determination of Lyapunov 
exponents, or a stochastic analog of these exponents from a 
time series alone, would be welcome. Although formal em- 
bedding techniques, using time-delay coordinates, are effec- 
tive in problems involving only a few variables, a useful 
computational many-body analog is badly needed, as are also 
laboratory experiments. 
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