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Preface:

The University of Vienna was founded in 1365 and now has about 48 00C students. Here
Boltzmann began and ended his scientific career, as mathematician, physicist, and natural philoso-
pher. His main research interest was understanding the microscopic basis of macroscopic thermo-
dynamic and hydro&yna.mic phenomena. Boltzmann was specially interested in irreversibility—in
understanding how the formally reversible equations of mechanics can give rise to the blatant ir-

reversibility summarized by the Navier-Stokes equations and the second law of thermodynamics.

Boltzmann’s heritage is nurtured in Vienna. Research into the instabilities exhibited by
chaotic dynamical systems and the correlations between molecules, as revealed by scattering and
described by statistical dynamical equations, is still being actively pursued here. It is particularly
appropriate to describe recent developments in numerical kinetic theory, “molecular dynamics”,
at Boltzmann’s own University. Complementary developments in computer technology and in the
structure of nonequilibrium dynamics itself have helped to bring Boltzmann’s goal of understand-
ing irreversibility closer to realization during the past decade. It seems likely that these technical
advances in nonequilibrium molecular dynamics will be useful in suggesting new methods for
treating and understanding quantum mechanical systems. Atomistic simulation is developing
rapidly on many fronts, as evidenced by the many international schools of physics and work-
shops devoted to this topic. The Paris workshops organized by Carl Moser at CECAM (Centre

Européen de Calcul Atomique et Moléculaire) have been particularly useful and stimulating.

These notes cover a series of lectures delivered to graduate students and faculty at the
University of Vienna during the summer semester in 1985. Those attending had rather varied
backgrounds, but were well-grounded in thermodynamics and eqﬁilibrium statistical mechanics.
The lectures simmarized the current state of what is now a world-wide activity, molecular dynam-
ics simulations. This summary includes a variety of sample problems taken from the literature.
Because I was invited to lecture on my research interests, the approach followed emphasizes phys-
ical and intuitive arguments at the expense of mathematical ones. For me, the path of least
resistance was to illustrate these arguments with sample problems from my own work. For this
same reason simple systems, with short-ranged forces and only a few degrees of freedom, predom-
inate among the examples chosen. These notes can serve to introduce the subject of molecular
dynamics at either the senior-year undergraduate or the graduate level as well as to stimulate
new developments along the rapidly moving research frontier. I have made no effort to attain
comprehensive coverage. But the reader will have no difficulty in finding more examples, by the

hundreds, in the rapidly expanding research literature on molecular dynamics.

Dr. Karl Kratky and Professor Dr. Peter Weinzierl were both helpful in arranging for
this visit and in providing gemdiitlich living and working conditions. Drs. Harald Posch and
Franz Vesely kindly offered comments on the oral version of these notes. Dr. William T. Ashurst

provided useful criticism of the typed draft. Mike Pound and Belen Flores assisted with the
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intricacies of computer-assisted type setting, using Donald Knuth’s TgX system. I thank them,
as well as the Universities of Vienna and California for support during this period. I prepared
the final manuscript version under the auspices of the United States Department of Energy, at
the Lawrence Livermore National Laboratory in California through Contract W-7405-Eng. I
thank Professor Fred Wooten, Chair of the Department of Applied Science at the University of
California at Davis/Livermore, and Dr. Lewis Glenn, Leader of the Theoretical and Applied
Mechanics Group at the University of California’s Lawrence Livermore National Laboratory, for
encouraging and supporting the publication of these notes. Dr. Giulia De Lorenzi was particularly
helpful in criticizing obscurities in the notes and assisting with some of the Figures. These notes

are dedicated to her.

Vienna, March-June 1985

Livermore, May-June 1986 %/ 7 %M
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I. HISTORICAL DEVELOPMENT AND SCOPE

I.A Newton’s Mechanics

Sir Isaac Newton (1642-1727) developed mechanics in order to understand the motion of the
planets and their moons. He recognized that the same mechanical laws and the same “universal”
gravitational attraction apply to all bodies, large and small. This correlation, spanning length
and time scales from astronomical to atomic, set the stage for the study of smaller-scale terrestrial
problems in fluid and solid mechanics, ranging down to those of special interest to Boltzmann and
to us, the “molecular dynamics” of atomistic particles. That these problems are many, important,
and varied can be verified by skimming any of the dozens of research journals devoted to their

solutions.

There are still interesting conceptual problems associated with applying Newton’s mechan-
ics in practice: how can the many degrees of freedom in a macroscopic system be described most
simply? That is, how does the few-parameter description of thermodynamics and hydrodynamics
come from the many-parameter microscopic description? How does the irreversible character of
the macroscopic linear diffusion equation arise? How can we understand nonlinear phenomena
which lie far from equilibrium without unnecessary complexity? Atomistic molecular dynamics is
an extremely useful tool in addressing all of these questions. It can reveal the hidden mechanisms
and correlations which underly macroscopic behavior and it can contribute to the testing and

improvement of theoretical descriptions.

All of the problems mechanics treats are idealized. They are not exact copies of nature, but
are rather intended to illustrate the interesting features of nature in a relatively clear and simple
way. Unimportant features are consciously omitted. Consider gravity. In a mole of material the
gravitational accelerations affect the trajectories only beyond the tenth decimal place. Likewise,
faraway stars and minor mountain ranges have a negligible influence on the evolution of the solar
system. In atomistic mechanics our model of the atoms themselves is imperfect, not so much
because quantum mechanics isignored, but because our knowiedge of constitutive behavior is still

inadequate for the reliable construction of interatomic forces that can reproduce the experimental
| data.

Because the best available trajectory data were those establishing Kepler’s laws of planetary
motion, the proving ground for Newton’s ideas was astronomical. Kepler found that [1] the planets
travel in elliptical orbits with the sun at foci of these ellipses, that [2] the vector joining the moving
planet to the sun sweeps out area at a constant rate, and that [3] the period during which each
ellipse is traced out varies as the three-halves power of the orbit’s size. In Figure 1 we include
finite-difference solutions of Newton’s equations of motion for two different orbits. The orbits were
generated using the “Verlet algorithm” described in more detail below. The orbits are shown as

series of dots to emphasize their finite-difference source.
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The orbits serve to illustrate all three of Kepler’s laws. Both orbits are ellipses, composed
of pie-slice pieces of equal areas. The relative size of the orbits has been chosen so that the period
-of the larger one is exactly eight times that of the smaller one. In accordance with Kepler’s third

law the ratio of the larger orbit’s major axis size 2R to that of the smaller orbit 2r is 82/3 = 4.

The last two of Kepler’s three laws are easily seen as consequences of the conservation
of angular momentum and the virial theorem, respectively. As an introduction to mechanics,
helping to establish the notation we use for more complicated many-body systems, let’s consider
-these laws in more detail. For convenience, we choose a plane polar-coordinate system with an

infinitely-massive point, the sun, at the origin.

The angular momentum of a particle, or planet, of mass m travelling around the sun, is
given by the cross-product of the vectors mr and v, where the velocity v is not necessarily normal
to the direction of r. The magnitude of the cross-product mr X v is also 2m times the rate at
which the radius vector sweeps out area in the plane of the orbit. This equivalence of angular

momentum with the rate of area generation establishes Kepler’s second law.

Kepler’s third law is simply related to the “virial theorem”, a theorem to which we will
return in Section C of Chapter II, in greater generality. To derive the simplest, scalar, version of
this theorem we can take the dot product of the radius vector r and Newton’s equation of motion

for the particle of mass m located at r:
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m# = F.
The righthand side of the dot product, r- F, is equal to the gravitational potential. A substitution,
(mr#) = md (rf)/dt — mi2,

followed by a time-average over one full orbit, shows that the gravitational potential energy is also
equal to minus twice the kinetic energy. This equivalence, between the potential, which depends
on the orbital radius as [1/r], and minus twice the kinetic energy, which depends on the radius r
and the period 7 as [r?/r2], establishes Kepler’s third law. Alternatively, this law can be used to

infer the inverse-square form of the acceleration due to gravity.

In astronomical problems the accelerations are gravitational. In the atomistic problems of
molecular dynamics the accelerations are much shorter ranged, acting over distances of the order
of nanometers. In truth, atomistic systems are governed by quantum mechanics, but in these
notes we mainly ignore quantum effects, concentrating almost completely on classical mechanics
and its recent modifications. The rationale for this choice lies in the fact that the qualitative fea-
tures of thermodynamic and hydrodynamic behavior are scarcely affected by quantum mechanics,
while the difficulties involved in implementing quantum simulations, especially away from equi-
librium, are formidable. Thus we will generate atomistic trajectories using techniques borrowed
from macroscopic Newtonian mechanics. Newtonian mechanics is concerned with using the “ac-
celerations” which result when “forces” act on “masses”. The goal of Newtonian mechanics is the

calculation of the velocities and trajectories of these masses.

In the absence of “accelerations” inertial-frame particles move along straight-line trajec-

tories. Changes in this straight-line behavior are due to “forces”. Particles respond to the forces

- imposed upon them by undergoing accelerations inversely proportional to their “masses”. If
these accelerations are given functions of the coordinates, such as the gravitational accelerations
acting among the planets and the stars or the idealized hard-sphere repulsions acting between
billiard-ball caricatures of atoms, the corresponding velocity changes can be calculated. Newton’s
second-order equations of motion cannot be solved without first specifying appropriate boundary
conditions. In the usual case these would be the initial values of the coordinates and veloci-
ties. Once these initial values are given the system of equations m# = F(r) can be solved by

straightforward numerical methods.

In his CalTech lectures, Feynman provides two nice illustrations to introduce numerical
simulation techniques. He works out two elliptical trajectories of the type shown in Figure 1
illustrating Kepler’s laws, the phase-space trajectory of a harmonic oscillator and the coordinate-
spéce trajectory of a planet about the sun. In both calculations he uses a centered second-

difference Stormer algorithm which has come to be known as the “Verlet algorithm”:

m[r(t + dt) — 2r(t) + r(t — dt) | = F(t) di®.

u



In order to start the algorithm it is necessary to approzimate the initial velocity by either [r(O) —
r(—dt)]/dt or [r(dt) — r(—dt)]/(2dt). Given the coordinates at times O and —dt the Stdrmer-
Verlet finite-difference equation can be solved for new values at times +dt,+2dt,... . It is easy to
see (by expanding the left hand side in powers of dt) that the difference equation becomes exact
through terms of order dt® for small dt. Because the “local” single-step error in r(t + dt) is of
order di* it might appear that the “global” long-time error at time 7, after [T / dt] steps, would

vanish as dt3. But the error is actually larger, of order dt?, because the equation of motion is

second order.

The reversibility of Newtonian mechanics is retained by Verlet’s approximate “finite-
difference” representation. “Reversibility” means that a movie of the motion, run backward,
would satisfy exactly the same equations of motion. There is nothing in the mathematically sym-
metric structure of the equations to suggest that they really do produce physically irreversible
behavior.

On the other hand, thermodynamics is certainly an accurate description of material be-
havior. And thermodynamics is not reversible. In isolated systems the energy is fixed (first law
of thermodynamics) but the entropy behaves irreversibly (second law of thermodynamics), al-
ways increasing with time in isolated systems not in complete thermal, mechanical, and chemical
equilibrium. For more than 100 years there has been a continuous discussion of how reversible

equations can produce, or be used to explain, irreversible behavior.

The apparent contradiction between the microscopic and macroscopic viewpoints can be
concisely expressed in terms of the Zermelo-Poincaré and Loschmidt objections to the explanation

of irreversibility using reversible mechanics:

(ZP) for an isoenergetic Hamiltonian system with a bounded “phase space” the long-time so-
lution of Newton’s equations must eventually approach the initial conditions arbitrarily
closely (Zermelo-Poincaré recurrence). [Phase space is the 2f-dimensional space whose
orthogonal axes correspond to the f coordinates and f momenta required to describe the

state of a system with f degrees of freedom.]

(L) the reversibility of Newton’s equations means that any entropy-producing trajectory could
be reversed in time to make an equally valid trajectory along which the entropy would
decrease (Loschmidt objection).

Both objections can be illustrated by the harmonic oscillator trajectories shown in Figure
2. Choosing an oscillator with unit mass and force constant gives an oscillator period of 27. The
recurrence time, for any initial state, is 27. Figure 2 shows also the reversibility of oscillator
trajectories. The ¢ and ¢ histories shown cover 7/12 of an oscillator period in the forward
direction, according to the equations ¢ = sin(t) and ¢ = cos(t). In the reversed direction ¢ changes

sign, and, after 7/12 of an oscillator period, the oscillator returns to its initial state. Thus an
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oscillator illustrates both the Zermelo-Poincaré recurrence and the Loschmidt reversibility alleged

to contradict the second law of thermodynamics. But the two objections to the use of reversible

mechanics as the basis for understanding irreversible phenomena can be countered in several ways:

()

(i)

(iii)

the time required for Poincaré recurrence is outrageously large, reaching the age of the

universe for systems with only a few dozen degrees of freedom.

the information required to produce a reversed set of trajectories is not available experi-

mentally.

the macroscopic equations refer only to “average” behavior. [Averages are constructed
by including many similar systems which begin with different initial conditions.] The

fluctuations seen in small systems can violate the second law of thermodynamics.

the influence of boundaries, faraway stars, Coriolis accelerations, in fact, any time-varying

influence from outside the system, effectively destroys reversibility.

the Lyapunov instability of the equations (discussed below) makes it impossible in principle

to solve them for long times.



{vi) only very simple systems such as the harmonic oscillator whose coordinate and velocity
trajectories are shown in Figure 2 are reversible. Systems only a little more complicated
than the oscillator typically exhibit the chaotic irreversible behavior characteristic of real

materials.

The discussion of reversibility may well continue for another 100 years, but it appears
likely that it is primarily a mathematical, as opposed to physical, problem. The intuitive ideas
of Boltzmann, which link reversible motion equations to irreversibility, have been buttressed by
the computer calculations carried out since the second World War. There is now no reasonable
doubt that the solutions of the reversible equations exhibit the same irreversible behavior that
thermodynamics and fluid dynamics describe for macroscopic systems. Furthermore, the study of
the solutions of Newton’s reversible equations, using molecular dynamics, reveals the mechanism

for that irreversible behavior, the Lyapunov instability of the underlying equations.

Molecular Dynamics calculations are not unduly difficult. Feynman obtains three-digit
accuracy in both of his elliptic-orbit back-of-the-envelope calculations. If such a calculation
involves more than a few time steps or more than a few degrees of freedom it is worthwhile to use
a fast computer to do the work. Typical molecular dynamics simulations involve 32, 108, 256, ...
particles (numbers chosen to be consistent with periodic face-centered cubic packing) and would
be far from fast if pursued with pencil and paper. “Fast” is just fast relative to human speed,
and includes the local departmental VAX computer as well as the dozen or so “multimegaflop”
(“flops” is an acronym for fleating-point operations per second) computers a hundred times faster

that are used at the Lawrence Livermore Laboratory.

There is no reasonable doubt that very high accuracy is unnecessary in solving Newton’s
equations of motion unless one is specially interested in rigor mortis properties related to mathe-
matical reversibility. High accuracy might prove necessary in classical periodic orbit calculations
to be used as bases for estimating semi-classical quantum properties. But in a typical study
intended to measure the pressure of a many-body system within one percent, one would expect
to need on the order of only six-digit accuracy in the fundamental description of the dynamics.
The dynamics must be known with a slightly greater accuracy than the desired thermodynamic
and hydrodynamic properties because the contributing variables are generated by a differential
equation. Thus the velocities and the accelerations (first and second time derivatives of the par-
ticle trajectories) contribute to the energy, pressure, and other macroscopic properties of interest.
Not just the trajectory, but also its first and second time derivatives need to be given with an

accuracy comparable to that of the desired macroscopic averages.

The trajectory equations for most nonlinear problems exhibit what is called “Lyapunov
instability”. This means that the separation in the phase space between two neighboring phase-
space trajectories increases, exponentially fast, on the average, with time. The separation con-
tinues to increase until it approaches a value imposed by the geometric and energetic constraints

on the system.
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We illustrate the non-Lyapunov stable case in Figure 3 by showing the motion of a particle
of unit mass in a gravitational field. The filled circles correspond to the trajectory of such a
particle moving to the right, at unit z velocity, while bouncing vertically on the y = 0 plane in
a gravitational field with g = 2. A similar particle, with z velocity component 1.25 rather than
1.00, traces out the trajectory indicated by open circles. The two trajectories depart from each

other linearly, not exponentially, with time. The motion is therefore “stable”.

We illustrate the Lyapunov unstable case by showing two representations (linear in Figure
4 and semilogarithmic in Figure 5) of a ball bouncing on a unit sphere, this time with a grav-
itational field of unity. The motion of this system is identical to that in which a ball with unit
diameter bounces on a fixed sphere of the same size. Initially the bouncing mass point is offset by
0.00001 diameters relative to the fixed lower ball. After nine bounces this offset has increased to
exceed the radius of the lower ball. The exponential growth of the offset is emphasized in Figure
5 by plotting the logarithm of the offset, which grows very nearly linearly with the number of

bounces. Each bounce increases the offset by about a factor of 3.7.

Boltzmann understood this dynamical instability, but widespread recognition that it is
inherent in most systems of nonlinear differential equations was long in coming. The instability is
easily illustrated by calculating the maximum number of bounces made by an idealized, perfectly

elastic and perfectly round, billiard ball, dropped from above on to a similar ball.
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It is 9 in the case shown in Figure 4 above and in Figure 5 with an offset of 0.00001.
In principle, if the dropping ball were exactly centered over the lower ball (and perfectly elastic)
the motion would continue, periodically, forever. On the other hand, a computer simulation of
the experiment would be likely to predict different results. The finite precision of the computer
calculation (typically between 8 and 14 decimal digits) would result in the upper ball’s landing
some distance away from the top of the lower ball, inducing a horizontal acceleration and velocity.
Both the acceleration and the velocity would then act to increase the offset on the second bounce,
roughly by a factor of ten, and then the offset would continue to increase exponentially until the
upper ball had missed the lower one completely. There is no doubt that a careful attempt to

carry out such an experiment in the laboratory would lead to the same kind of unstable behavior
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seen in the computer experiment, but probably with many fewer bounces due to the relatively

larger experimental asymmetries from nonuniformity and nonelasticity in real balls.

If we were to use quantum mechanics in setting up the initial conditions for the experiment
much the same result would be obtained, even for idealized perfect spherical elastic balls. Con-
sider Heisenberg’s uncertainty principle. This principle places theoretical limits on the accuracy
with which coordinates and momenta can simultaneously be known. The product of the two
“uncertainties” is at least of order Planck’s constant h. Thus the limited accuracy with which
one ball can be centered over another (with the product dpx dg of order h) allows only (about) 17
bounces. Either real irregularities or the real space-momentum correlations described by quantum

mechanics would lead to the unstable behavior seen in the idealized dropping-ball experiment.
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Figure 1.6

Solutions of differential equations for dynamical systems require appropriate initial and
boundary conditions. The problems with which Newton began had the simplest possible bound-
ary, a perfect vacuum. In the strongly nonequilibrium problems to which molecular dynamics
is now being applied such a simple vacuum boundary is not usually appropriate. Instead, the
container must be taken into account, or explicitly avoided through the use of periodic boundary
conditions. Periodic boundaries are illustrated in Figure 6 for a three-dimensional two-body
system by showing 125 = 53 separate images of both particles. Periodic boundaries have the

unusual property that they are inconsistent with the conservation of angular momentum. For

example, Figure 7 shows a particle passing out of the “top” of a periodic two-dimensional L x L
system, with y = +L/2. The sign of y, and hence of myz ’changes discontinuo\ sly when the
particle reenters at the bottom of the system, with y = L /2. Thus one of the two contributioné
to the angular momentum, ps = m(zy — yi) changes sign. The lack of conservation of angular
momentum is not usually a problem, but this example points out the need for considering the

effect of boundary conditions on observed properties.
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To illustrate simultaneously the ideas of Lyapunov instability and periodic boundaries,
we show in the Figure 8 three views of 125 superposed periodic 2-body systems undergoing
shear deformation. The larger of the two particles forms a lattice undergoing steady shear. 125
independent images of the smaller particle are shown in each of the three snapshots. Initially the
space coordinates of the small particles differed in the fourth digit only. These small differences
led, after just a few collisions of the small particle with the large (but periodic) scatterer particle,

to the nearly random small-particle distribution seen at the lower left of Figure 8.

Periodic boundaries have confused many students. Newton’s small-particle acceleration
equations, mf = F, can contain either an explicit vector sum of forces from all periodic images of
the large particle or, if the coordinates of the smaller particle are replaced within the central box
whenever a periodic boundary is crossed, and if the forces are short-ranged, only a few terms.
The simplest procedure, exact for forces which vanish beyond half the periodic box width, is to
select only the nearest particle for calculating the force. This is the “nearest-image” convention.
For the short-ranged forces characteristic of neutral matter it is usual to include all particles lying

within about three particle diameters in the force sum.

If gravitational forces were to be included, an attempt to work out the energy of an infinite
array of identical unit cells would yield not only a divergent sum, but also a divergent sum for

the interaction of each cell with the rest. So we have another good reason for ignoring gravity.

L
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Gravity is inconsistent with the so-called “thermodynamic limit”, in which the intensive proper-

ties converge to values given by the thermodynamic “infinite-system” equation of state.

To summarize, Newtonian mechanics consists of three elements:

(i) a recipe (forces F' and masses m) giving the accelerations in terms of the coordinates r:

#(r) = F(r)/m. Newton’s recipe is a set of second-order ordinary differential equations.

(ii) boundary conditions for the differential equations, including both initial conditions and

time-dependent boundary accelerations exerted on the system by the outside world.

(iii) an algorithm for solving the differential equations. Adams-Moulton, Runge-Kutta, or Gear
methods can solve first-order equations such as Hamilton’s, or the nonequilibrium equations
of motion described in Chapter IV. Runge-Kutta algorithms are easily programmed and

suitable for use on small personal computers.
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1.B Lagrange’s Mechanics and Hamilton’s Least Action Principle

Joseph Louis Lagrange(1736-1813) studied in his native Italy and spent his research career
in Berlin and Paris. He contributed to the description of physical systems by developing the

theory of differential equations.

For conservative (constant-energy) systems, Lagrange’s formulation of mechanics is spe-
cially useful in dealing with systems incorporating “holonomic” constraints. Taken literally, holo-
nomic means “whole laws”. In mechanics holonomic constraints involve geometric, as opposed to
kinetic, constraints. Lagrange’s equations of motion differ from Newton’s in making the motion
of constrained systems easier to treat. This is done by formulating equations of motion in terms
of “generalized” coordinates ¢(r,#), which can be complicated functions of the space coordinates
r. In either the Newtonian case or the Lagrangian case, the coordinates and their time derivatives

appear in equations for the accelerations.

How does Lagrangian mechanics work? The fundamental equation, the equation of motion,
can be obtained from Hamilton’s Principle, often, but not always, also called the Prineciple of
Least Action. To start out, first write down the “Lagrangian”, L{m, ¢, ¢). The Lagrangian is the
difference between the Kinetic Energy of the system, K(m,q,¢), written in terms of the masses
m, generalized coordinates ¢, and velocities ¢, and the Potential Energy, ® : L= K — ®. The
kinetic energy is mv?/2 summed over all mass elements. Hamilton’s Least Action Principle then
states that the motion ¢(t) between any two fixed space-time points go(to) and ¢q(¢1) is that

which minimizes the integral of L relative to slightly different, varied motions:
/Ldt minimum, or / 6Ldt =0.

Figure 9 illustrates this principle for a unit mass travelling from z = 0 to z = 2 in a gravitational
field, with field energy ¢ = 2y. We work out the action integral for three different parabolic

trajectories, with the parameter « equal to 1,2, and 3, as shown in Figure 9:
z=¢ y=oat(l—0.5%).

For this set of trajectories the kinetic energy integrated over time is 1+ (1/ 3)o? and the potential
energy integrated over time is (4/3) c. The difference between these integrals is the action integral,
1—(4/3)a+(1/3)a?, which has a minimum value, —1/3, for a = 2. This path, which corresponds
to the parabola satisfying the classical equations of motion, has a smaller action integral than
do any neighboring paths. For instance, &« = 1 and a = 3 correspond to greater, and therefore
unacceptable, action integrals of 0. But there is a fly in the ointment. A path which passes
through the barrier shown in Figure 9 can have an arbitrarily large negative action (by making
the potential barrier, shown as a rectangular box, arbitrarily large and positive). This example
emphasizes the local nature of the variation in Hamilton’s principle. The principle must be applied

locally to avoid drawing qualitatively incorrect conclusions.



14

21— I
y=[t-%12] (0,1,23) X=t
. dt=0 m:‘l
Figure 1.9 .I.L . . -
. fLdt=-1/3 ",
1_ . ° . L] ° . . o 1
y . [ ] . . .
LT fLdt=0 . .
E . det=—°° * . .
0_
' |
0 1 2
t

Because, in the general case, L depends explicitly upon both ¢ and its time derivative ¢,

the variation has the form

/ SLdt =0 = / [(8L/0q) q + (OL/34) (d6/dt) ] dt.

The derivative (d6q/dt) can be integrated (with respect to time) by parts, because the integral,
g, is known to vanish at the two endpoints. Then, because the form of the variation that results,
f[(aL/aq) — (d/dt) (8L/3q')] 6qdt contains the arbitrary variation g, the coefficient of ¢ must

vanish at all times in the interval. This requirement establishes Lagrange’s equations of motion,

(d/dt) (9L/3q) = OL/dq.

Because the Lagrangian equations of motion still don’t convey much information, and are
identical to Newton’s equation m# = F provided that 8L/d¢ corresponds to mg and 8L/dq
corresponds to F, we consider an example with constraints. Shown in Figure 10 is a two-
dimensional system involving two holonomic constraints, a triatomic molecule with Particles
labelled 0, 1, and 2, with the two distances ryo and ry fixed at 1. We choose masses for the
particles which make the problem as simple as possible: the central particle, Particle 0, has no
mass; Particles 1 and 2 have equal masses, m. Because the center-of-mass motion of (ry + r3)/2
has no bearing on the motion relative to the center of mass, we consider the case in which the

center of mass is fixed at the origin.
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Figure I.10

In the Newtonian mechanics of Section A of Chapter I or the Gaussian mechanics to be
described in Section D of Chapter I we would need to introduce “constraint” forces to keep
these two distances fixed. In Lagrangian mechanics we can avoid defining the constraint forces by
incorporating the constraints in our description of the problem, using as “generalized coordinates”
«, half the angle between the 01 and 02 directions, and the angle 8 between r15 and some fixed

axis in space, chosen horizontal in Figure 10. The variable r is equal to sina.

Because there is no potential energy, the Lagrangian and the kinetic energy K are identical

for this problem:

L=K-&=K =m|(fsine)? + (&cosa)?].

From this Lagrangian, to which we return in the following section on Hamiltonian mechanics, aft)

and f(t) can be calculated from Lagrange’s equations of motion without any special difficulty.
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1.C Hamilton’s Mechanics - Introduction to Nosé’s Mechanics

William Rowan Hamilton (1805-1865) was educated in his native Ireland and joined the
faculty at Dublin in 1827. His analyses of optical phenomena led to mathematical tools funda-

mental to the treatment of both classical and quantum mechanical systems.

In Hamilton’s mechanics, just as in Lagrange’s, (generalized) coordinates ¢ can be used
to simplify the treatment of (holonomically) constrained systems. In Hamilton’s mechanics the
conjugate momenta p (not velocities) and coordinates ¢ appear in the Hamiltonian H(g,p) on
an equal and symmetric footing. Hamilton’s equations of motion also differ from Newton’s and
Lagrange’s in another way. They are first-order in time rather than second, giving ¢ and p in

terms of the coordinates and momenta:

¢g=-+08H/dp; p=—08H/dq.

Hamilton’s mechanics is basic to treating quantum systems. The Schrédinger equation of
quantum mechanics, which describes not only stationary states but also the time-development
of a quantum system’s behavior, is based upon the existence of a Hamiltonian description of
that system. Like Newton’s and Lagrange’s equations, Hamilton’s equations of motion are time-
reversible. But the coordinates and momenta behave differently when time is reversed. In the
reversed motion each coordinate ¢ is unchanged in value and with successive values traced out
in reversed order along the reversed trajectory. On the other hand each momentum p has to be

replaced by —p.

In any of the three kinds of mechanics we have mentioned so far the underlying potential
function, ®, L, or H, does not depend upon the direction of time. The Hamiltonian H is usually
the total energy, K + @, expressed as a function of the ¢ and p. Generally, it can be constructed

from the Lagrangian L(g, ¢) through the equations

p=08L(q,9)/9¢;

H(g,p) =(¢-p) — L.

Thus, in the case of the two-dimensional triatomic molecule considered above, the Hamil-

tonian has the form

H(a,f,pa;pp) = [(pa/cose)? + (pp/sine)?] /4m.
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Gibbs’ statistical mechanics gives the probability of finding a classical Hamiltonian sys-
tem at temperature T in the phase-space region ¢,p within dg and dp in terms of the system’s
Hamiltonian function, H(g,p). The corresponding “canonical-ensemble” probability density is
proportional to the “Boltzmann factor” e~H(@:2)/(¥T)  This result allows us to calculate the
probability distribution for the angle o defined above in the triatomic molecule problem. If we
perform a canonical-ensemble average, integrating first over g (which provides only a factor of
27), and then over the momenta, p, and pg, we find that the probability density P(e) is propor-
tional to sin{e) cos(a) = (1/2)sin(2c). This probability density has its maximum value for the
right-angled configuration. On the other hand, if we avoided Lagrangian mechanics and instead
forced the two distances ro; and roz to lie close to 1 by linking the pairs of particles 01 and 02
with very stiff Hooke’s-Law springs, there would be no coupling between the coordinates and

momenta. The Hooke’s-Law Hamiltonian in this case, for springs of unit rest length, would be
H = [(p} +p3)/(2m)] + (%/2) [(ror — 1)* + (roz — 1)?],

and a canonical average would give a constant probability density for the angle . In Figure 11

the rigid-constraint and the Hooke’s-Law probability densities P(2¢) are compared.

- . 2c

P (2w}

Vi Figure 1.11 .\,\

S | ! l L | | | L
00 T
2x

This example, which is relatively “well-known” (to the experts), illustrates that classical
mechanics contains many surprises. Simply stating that we would like to consider the dynamics
of 2 molecule with “fixed” bondlengths or fixed angles does not constitute a well-posed problem.

We must specify the details of how such constraints are to be imposed.
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Hamilton’s equations of motion differ from Newton’s in that the coordinates and momenta
are independent variables. No longer is p necessarily equal to mq. A very recent modification and
extension of Hamiltonian mechanics, due to Shiichi Nosé, can be thought of as scaling either time
or mass, in order to satisfy desirable constraints. In Nosé’s mechanics, to be discussed in Section
E of Chapter I, the time derivative of ¢ is generally quite different from Hamilton’s p/m. Let
us briefly illustrate that difference by considering a harmonic oscillator with mass m and force
constant k. We first consider a Hamiltonian oscillator, for which p ss identical to m¢, and next a

Nosé one-dimensional oscillator, for which it is not.

In the Hamilton case the Hamiltonian is
H = [(p*/m) + x¢"] /2,
from which the familiar equations of motion follow:
¢=p/m; p=—kKg
or, to emphasize the symmetry between the coordinates and momenta,
i=-w'q p=-w’p

These Hamilton’s equations, like Newton’s, are “reversible”. Figures 12 and 13 illustrate
a typical oscillator trajectory (with the force constant x« and mass m set equal to unity) ¢ =
sin(t); p= ¢ = cos(t), as well as the reversed trajectories. In the ¢, p,t representation of Figure
12 reversal would correspond to an inversion through the ¢ axis, from the point (g,p,t) to the
corresponding point (g, —p,—t). In the g,p representation of Figure 13 the reversed motion

shown at the bottom of the Figure corresponds to a jump, at fixed ¢, from p to —p.

q=p;p=-q;t=1

q
Figure 1.12
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An oscillator can also be described by a more complicated constant-temperature version
of Hamiltonian mechanics which was recently invented, or discovered, by Shiuiichi Nosé. This
important development merits its own section, Section E of Chapter I, but here we consider
briefly the harmonic-oscillator example to indicate the relation between Hamilton’s and Nosé’s
mechanics. Very little work has so far been carried out with Nosé’s mechanics, either in the
classical or the quantum case. But this is so only because it is new. For a classical one-dimensional

oscillator Nosé’s temperature-dependent Hamiltonian is

Hyose = [p*/(2ms?)] + (5¢*/2) + kT'Ins + [p2/(2Q)].

There is a new variable s, which is dimensionless, with a new “onjugate momentum? p,, which
has units of action, in addition to the usual oscillator coordinate ¢ and momentum p. T is the
temperature and k is Boltzmann’s constant. @ is a parameter with units of mass X area. A

polar-coordinate form of the Hamiltonian is more useful in the quantum-mechanical case:

L
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Hyose = [(p% + p2)/(2m)] + [£Q0%/(2m)] + (kT /2) In(mr?/Q).

The dimensionless variable s, which becomes r in the polar representation, can be thought
of as scaling the mass or scaling the time. Nosé prefers the latter interpretation. If we interpret
the variable r in the polar-coordinate Hamiltonian as a length, and ¢ as an angle, the conjugate
momenta become the conventional radial and angular momenta. @, the parameter determining
the time-dependence of the temperature (kinetic energy) fluctuations, still has units of mass times

area in this form.

It is straightforward to differentiate Nosé’s oscillator Hamiltonian in order to write down

the equations of motion. There are four of these, one each for ¢, p, s, and pg:
i=p/(ms’); p=-rg; 5=ps/Q; ps= [p*/(ms®)] — (KT/s).

There is no convenient way to rewrite these first-order equations as second-order equations, so the
Verlet algorithm cannot be used to solve them. Two typical (Runge-Kutta) solutions, projected
onto ¢gp space and followed for many oscillator vibration periods, are shown as the two upper

trajectories in Figure 14. These projected g, p trajectories are not affected by time scaling.

Figure I.14
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But the g¢,§ trajectories are changed, qualitatively, by scaling. Suppose that we pursue

Nosé’s time scalin. idea, introducing a new time tnew related to the old time by the equati()n
8
dtnew = dtold/s-

The effect of this time scaling on the four equations of motion just given is to multiply each time
derivative by s. Thus, with the dots now indicating derivatives with respect to the new time,

tnew, We have,

¢=p/(ms); p=—kgs; §=3sp,/Q; Ps= [p*/(ms?)] —kT.

In Figure 14 the g, ¢ trajectories from these equations are shown just below the corre-
sponding ¢, p trajectories after time scaling has been introduced. In Figure 14 the initial values
of ¢,p, s, and p, are respectively 1, 1, 1, and 0. The lefthand trajectory corresponds to Q = 1 while
the righthand trajectory corresponds to @ = 0.1. Nosé’s generalization of Hamiltonian mechanics
changes the connection between the momentum p and the time derivative of the coordinate q.
Because the time scale variable s is relatively small near the turning points the magnitudes of
the scaled velocities ¢ are much greater than those of the p/m. Because the trajectories are not

periodic a two-dimensional region in the space is gradually filled in.

P

0o
]
T

-q-{p
10 (p% - 1)
Po = Pmax = 2-25
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~q

Figure 1.15
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Figure 15 illustrates a periodic solution of the scaled Nosé oscillator equations. Any of
the three combinations of p, m, and s — [p/(ms?)], [p/(ms)], or [p/m] — can correspond to
“momentum”. (Remember that s is dimensionless.) The consequences of the three choices are
quite different because s varies over such a wide range of values. (The microcanonical-ensemble
fluctuations of 1/s diverge!) The variables ¢,p,s, and p, are interrelated in the same way by
either set of equations. But the trajectories are traced out at different rates in the two cases. The
equations shown in the Figure are written in terms of the new variables, corresponding to the
choice dnew = Pold/(MS) = Prew/m, with m, k, and kT all set equal to unity, and with Q set

equal to 0.10. The variable ¢ in the Figure corresponds to the momentum p,/Q.

Despite the close connection between Hamilton’s and Nosé’s mechanics, as illustrated here
for the oscillator, it is possible to develop another even more useful version of Nosé’s mechanics
which is entirely distinct from Hamilton’s. We will return to that subject in Section E of this
Chapter. The present version of Hamilton-Nosé mechanics, like the usual Hamilton’s, Lagrange’s,
or Newton’s mechanics, uses a potential function (here H, rather than L, or ®) to generate future
behavior. The main difference between the various approaches is computational. The numerical
techniques appropriate for second-order differential equations cannot always be applied to first-

order equations.

I.D Gauss’ Mechanics and the Principle of Least Constraint

There is a mechanics, founded on Gauss’ Principle of Least Constraint, which is still
more general than Newton’s or Lagrange’s or Hamilton’s mechanics. These other three forms
of mechanics can all be derived from Gauss’ Principle. This Principle is particularly useful
in describing the motion of constrained systems. A “rigid” diatomic molecule is probably the
simplest example. In such a molecule the two atoms are constrained to remain a fixed distance

apart.

Gauss’ Principle can readily be applied to the triatomic molecule just treated with La-
grange’s mechanics in Section B. This typical holonomiec application presents no difficulties.
Gauss’ mechanics can just as easily be applied to nonholonomic constraints, with the veloci-
ties entering in an essential way. If the constraints are either (i) holonomic or (ii) nonholonomic,
but only linear in the velocities, then Gaussian mechanics predicts nothing new. That is, the mo-
tion predicted by Gauss would be the same as that predicted by Newton or Lagrange or Hamilton.
On the other hand, for general nonlinear nonholonomic constraints, Gauss makes new predictions

while Newton, Lagrange, and Hamilton are silent.




23

There are very few solved problems in the mechanics literature involving nonlinear non-
holonomic constraints. We illustrate one of these museum pieces here, probably the best known,

with a quadratic nonholonomic constraint:
2= g% + 52

This textbook example arises in the approximate treatment of the motion of “Appell’s cart”. The
cart is shown in Figure 16. The knife-edged front wheel can rotate only in the plane parallel to

the cart body. The motion is driven by a weight mounted on a pulley at the rear of the cart.

Figure 1.16
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The twin skids at the rear of the cart can slide, without friction, both back and forth
and from side to side. The trajectories of Appell’s cart are interesting. In addition to the
oscillatory back-and-forth motion, the cart can spin about the bottom of the knife-edged wheel.
This combination of back-and-forth with spinning motions can trace out patterns resembling the

arrangements of petals in flowers.

Once we consider thermodynamic and hydrodynamic many-body systems, many nonlinear
nonholonomic constraints become possible. For example, energy, stress, and heat flux are all
nonlinear functions of the particle velocities. In constraining such variables Gauss’ principle is

useful in a unique way, inaccessible to Newton’s, Lagrange’s, and Hamilton’s mechanics.

Figure 1.17

— 32
Fc =-mr

What is Gauss’ Principle? Gauss stated that the constraint forces F, required to impose

any constraint should be as small as possible in a least-squares sense:
mi=F + F;

Z [F2/(2m)] minimized.

This is Gauss’ Principle of Least Constraint. Let us illustrate the Principle by applying it to the
simple two-dimensional rigid diatomic molecule shown in Figure 17. In this case Gauss’ Prin-

ciple produces a radial acceleration counteracting the centrifugal forces, without any tangential
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component. We can find the acceleration by considering two restrictions on the variation of the

constraint force F,. First, we formulate the constraint:

r%/2 = constant

in terms of the acceleration ¥. To do this we calculate the second time derivative of the constraint.

The result is

P+ +zi+yg =2+ 9%+ z(F*/m)+y (FY/m) = 0.

If we then consider a small variation of the constraint force, the variation must obey the

restriction:

z6(F7/m)+ y6(F¥/m)=0.

On the other hand, Gauss’ Principle also restricts variations in the constraint force. The vari-

ational condition, [(F.)2/(2m)] minimum, implies that the dot product of the constraint force

and its variation must vanish:

(F= §F® + FY §FY)/m = 0.

Combining the two restrictions on 6 F,, using a Lagrange multiplier A chosen such that
F? + Az = 0 implies that FY + Ay = 0 as well, so that the second time derivative of the original

constraint equation becomes

&%+ 4% + 2 (FE fm) + y (FY /m) = &% + §* — (A/m)(2® + ¢*) =0.

Thus we find the value of the Lagrange multiplier, A = m#%/r?, and the corresponding constraint

force, directly from the constraint equation.

This illustration of Gauss’ Principle is a typical textbook one in which the energy Zm(ré)z/ 2
is conserved because the forces of constraint do no work. But Gauss’ Principle can also be ap-
plied to more-complicated work-performing constraints involving collective thermodynamic and
hydrodynamic variables. No fundamental rules or variational principles independent of Gauss’
are available for such constraints. For instance it is not true that the work performed by the con-
straints should be a minimum. Constraint forces leading toward the ultimate potential minimum,
the formation of a perfect crystal, would perform less work against the potential energy ® than
would any others.
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Gauss’ Principle is particularly useful in simulating steady nonequilibrium flows. Such
flows require special methods to compensate for the natural dissipation of work into heat. The heat
should be extracted to avoid the complicated description and analysis of a continually changing

thermodynamic state.

For simplicity it is convenient to use Gauss’ Principle to remove the heat in such a way
that the nonequilibrium state is a “steady” one. By steady we mean that the driving force or the
resulting flux, as well as two thermodynamic state variables (energy and density, or temperature

and stress, for instance) are held constant.

To illustrate the application of Gauss’ Pr:mciple to the problem of maintaining temperature
constant, consider a D-dimensional N-body system. In such systems the kinetic energy typically
fluctuates on the same time scale as do the particle velocities. These fluctuations correspond to
fluctuations in temperature. The temperature of a many-body system can be most simply defined

in terms of the kinetic energy:

DNET/2 =" (mi?/2).

Thus, fixing the kinetic energy corresponds to fixing a dynamical estimate of the thermodynamic

temperature. The derivative of the isothermal constraint just given can be written

> omi-F=Y mi-[(F+ Fo+6F)/m] =) [m#-(6F/m)] =0.

Combining this with the variational form of Gauss’ Principle, > (F.:6F,)/m = 0, using a
Lagrange multiplier ¢ gives

F, = — ¢mr;

mf = F(r) + F(r,#) = F — ¢m7,

with

¢=Y (F-7)] Y (mi).

These second-order differential equations are the “Gaussian isothermal” equations of mo-
tion. Like Newton’s, these equations are time reversible with the friction coefficient ¢ changing
sign in the reversed trajectory. The friction coefficient enforces the constraint of constant tem-
perature. Like the temperature-dependent Hamiltonian of Nosé, this is an example of something
new in mechanics. Many more examples are given in Chapter IV, Nonequilibrium Equations

of Motion. In the next section we join Nosé in straying even farther from Newton.
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L.E Nosé’s Mechanics - Temperature and Pressure Constraints

The classical approaches of Newton, Lagrange, and Hamilton all generate trajectories r(t),
q(t), or q(t), p(t) along which energy is conserved. With periodic boundaries, linear momentum
is also conserved. The ensemble approach of Gibbs’ equilibrium statistical mechanics is more
flexible. Energy and volume can be fixed, as in the microcanonical ensemble. Alternatively,
temperature and pressure can be used as independent variables, allowing the energy and volume
to fluctuate. But in these cases temperature and pressure characterize an ensemble of systems and
not the individual members. It may be necessary to average over many states in an equilibrium

statistical ensemble in order to estimate the corresponding temperature or pressure.

On the other hand, any treatment of nonequilibrium problems would be useless if it lacked
a method for following stress, heat flux, and temperature as instantaneous functions of time in
individual systems. In real laboratory experiments such variables are monitored by measurement,
or inference, even under nonequilibrium conditions. In computer experiments one would also ex-
pect to measure time-dependent currents and to find that these currents vary in a reproducible
way. This expectation has been abundantly justified in a variety of simulations. Thus, molecular
dynamics simulations have instilled confidence that pressure and temperature can be usefully de-
fined as instantaneous mechanical phase functions in individual systems, rather than as nebulous

ensemble properties which can only be determined by exhaustive sampling.

Here we hold to the usual, and useful, viewpoint that the instantaneous temperature is

defined by the mean-squared velocity, relative to the local stream velocity
(DNET/2) = > (m/2)(v — v,)*.

With this point of view Gauss’ dynamics generates a canonical ensemble of configurations,
in which the probability of any configuration with potential energy ® is proportional to e~ ¥/ (kT),

where T is the temperature just defined.

This canonical-ensemble form for the phase-space distribution can be derived from the
extension of Liouville’s Theorem appropriate to non-Newtonian systems described by dynamical
equations such as Gauss’. In the system’s phase space ¢, p the product of the probability density
f(g,p) and the differential hypérvolume dq dp is conserved by any set of equations of motion which
neither creates nor destroys systems. The probability density itself flows through the phase space
as a compressible fluid because Gaussian mechanics allows the phase-space dilatational strain-rate,
Y [(34/8q) + (85/8p)], to be nonzero. Thus the probability density f(g,p) obeys a generalized

“continuity” (“mass” conservation) equation,

(8f/0t) + Y [8(fd)/aq] + > _[8(f5)/8p] =0.
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For clarity, it is worthwhile to illustrate this conservation relation with a specific example,
the damped one-dimensional harmonic oscillator. For convenience we choose the mass and the

force constant both equal to unity. The equation of motion is

i+ex+z=0,
where € = 2 corresponds to the critically-damped case. For the critically-damped oscillator
t

T=Z,€

is a solution of the equation of motion. This critically-damped case is compared with undamped,
underdamped, and overdamped trajectories in Figure 18 with initial condition z = ¢ = 1. In

the critically-damped case the phase space density follows the differential equation

f=~71(28/0p) =2f.

1.6

Damped oscillators
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Thus the critically-damped probability density tnereases exponentially in time, as the phase
points near the origin become increasingly likely. The volume element dzdp likewise decreases
exponentially with time, because the product, f X dzdp, is constant. Such a phase-space vol-
ume corresponds to an ensemble of critically-damped oscillators, originally distributed uniformly
throughout the volume dzdp. As time goes on, the ensemble will occupy a phase-space volume
which decreases exponentially in time. Because probability is conserved, the product, f(z, p)dzdp,

is a constant of the equations of motion, namely the number of systems in the ensemble.

The compressible flow of phase-space probability leads to interesting consequences for
many-body systems. Consider again our many-body Gaussian isothermal example, in which the
temperature is kept fixed by a friction coefficient ¢ which varies with time. The probability density
f(g,p) in the many-body phase space varies with time because the p are explicit functions of the

p. The derivative of the probability density function, following the motion, is

= (3f/0t) + Y _[d(8f/3q) + p(2f/0p)] =
~f > _[(8d/0q) + (98/9p)] = +3N¢f = —[/(kT)] f.

. Thus the logarithm of the probability density rises and falls, as a function of time, in phase with-
the fluctuations in the potential energy. It is evident that a steady solution of this differential

equation is the “isokinetic” canonical distribution

f o 6(K — K,) e~ ®/(*T),

where kT is 2K,/DN for an N-body D-dimensional system and where the delta function guar-
antees that K is equal to K,. It makes no sense to apply Gauss’ constant-temperature dynamics
to a single one-dimensional harmonic oscillator. Such an oscillator would have no turning point
and the coordinate would diverge linearly with time. The simplest oscillator problem which can
be treated with Gaussian constant-temperature dynamics is a two-dimensional harmonic oscilla-
tor. That case leads to coordinate-space trajectories resembling the floral patterns generated by

Appel’s cart.

Shaichi Nosé discovered a different dynamics which generates the complete canonical dis-
tribution, not just the configurational part. In Nosé dynamics fluctuations in the kinetic energy
K are included. His equation of motion is exactly the same as the isothermal example just given

using Gauss’ mechanics:

mf = F — ¢mfr,
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but the friction coefficient ¢ is not solely a function of the current phase variables. Instead it
depends on the time integral of the difference, K — K,, between the kinetic energy K and its

desired value K,:
¢=(1/Q) /0 t [Z(pz/m) - DNIcT] ds.

The lower limit of the integral must be a fixed, but arbitrary, time—here chosen equal to 0.

Other versions of Nosé’s equations can be based on higher velocity moments. For instance

the equations of motion for N one-dimensional particles

g=p/m; p=F—¢ (p¥mkT); ¢ =(kT/Q)D [(pz/m/cT)2 ~ 3 (pY/mkT))|.
have also the same canonical-ensemble steady distribution in the phase space.

Nosé’s mechanics is reversible in time, as are also the isoenergetic mechanics of Newton,
Lagrange, and Hamilton, and the isokinetic mechanics of Gauss. Just as in the Gaussian case, in
the reversed Nosé motion not only is the momentum p replaced by —p; but also Nosé’s friction
coefficient ¢ is replaced by —¢. See Figure 19 for a periodic solution of Nosé’s oscillator equations
of motion. Reversing the time would correspond, in Figure 19, to inverting the trajectory through

the ¢ axis so that the point (g, p, z) becomes (g,—p,—2) in the reversed trajectory.

. p
a=p
p=-q-p
¢ =100 (p2 - 1)
p, = 1.0085 o
t
-1 L~
§ q

Figure 1.19




31

Pedagogical derivations for Nosé’s dynamics can be developed in two different ways, (i) by
starting with a tempera,ture—d‘ependent Hamiltonian in which the variable s scales the time or the
mass, ‘or (ii) by requiring that the equation of motion generate the canonical distribution including
a Gaussian distribution in the friction coefficient ¢. Nosé’s papers follow the former approach.
Because the latter approach is not only constructive and simple, but also can be generalized
to other forms of the equations of motion, we illustrate it here. We begin by considering the
probability density f(g,p,¢) in an extended phase space which includes ¢ as well as all pairs of
phase variables ¢ and p. This density f satisfies the conservation of probability

(8f/0t) +_[0(af)/oa] + >_[3(51) /0] + [8(¢£) /8] =o.

This general continuity equation is called the “Liouville equation” in the special case that

it can be simplified, using the Hamiltonian equations of motion, to the form df /dt = 0.

If the distribution has the form

e
foce @ szT)fequilibrium,
and the equations of motion have a friction-coefficient form:
g=p/m; p=F-¢p; {=§(e,p,Q),

we can calculate each of the four contributions to the phase-space flow equations. These contri-

butions are:

(0f/88) = 0;
> 8(df)/8g =" F (p/m)(f/kT);
S a(fp)/op =D [-pF + ¢ (p* — (o™)] [/ (mkT)];
9(f$)/8s =¢(af/0¢) = —Q¢ (f/kT)S,

where we have assumed that ¢ depends only on the phase variables, and not on ¢. The conservation
of probability requires that the four contributions listed above sum to zero. This requirement in

turn implies that ¢ must satisfy the equation
§=) [0~ (09)]/(mQ) = 2(K ~ K.)/Q.

If we were to use a cubic frictional force, —¢'p3/(mkT) rather than —¢p, we could alter-
natively fix the value of the fourth moment of the velocity distribution relative to the second

moment, and again recover the canonical distribution. These same ideas can be generalized to
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include “constant-pressure” or “constant-stress-tensor” ensembles. The result is a strain rate (di-
latational for constant-pressure, and including shear for constant-stress) which obeys a first-order

relaxation equation similar to that just written for the kinetic energy.

Before leaving Nosé’s mechanics, a technical point should be made. It has only been
shown that the equations are conststent with the canonical distribution. That is, a canonical
distribution in the phase space is preserved by Nosé’s equations of motion. Whether or not the
equations will generate such a distribution from almost all initial conditions is a subtle question.
For a collisionless gas, they will not. Consider for instance a Nosé ideal gas with kinetic energy

K =Y p?/(2m). Nosé’s equation of motion gives
K =7 (bp/m) =) (~sp’/m) = —2K;

¢ = —[(d/dt)* In(K/K,)] /2 = 2(K — K.)/Q,
where K, is the specified time-averaged value of K.

If we introduce a new variable X, the logarithm of the kinetic energy ratio, K/K,, then

X oscillates in a nonlinear Toda potential:

X = _(4K0/Q) [ex — ex"] = —d( @/m)effective/dX'
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This Toda potential is sketched in Figure 20. Both the friction coeficient and the kinetic
energy itself oscillate (with harmonic oscillations if K is close to K,). These periodic oscillations
show that a collisionless gas will never actually reach a canonical distribution under the influence
of Nosé’s mechanics. On the other hand, numerical work indicates that the Lyapunov instabilities

associated with collisions are ordinarily sufficient to induce canonical behavior.

In general, if the parameter @, which is proportional to the square of the heat-bath response
time, is made small enough, Nosé dynamics becomes indistinguishable from Gaussian isokinetic
dynamics and never reaches a true canonical distribution in momentum space. If Q is large the
dynamics approaches Newtonian dynamics with {p?/m) = DkT. The approach to the Gaussian
and Newtonian limits for the one-dimensional oscillator is indicated in Figure 21. The truly
Gaussian case is singular, with turning points at too. In Figure 21, with @ = 0.01, there are
turning points just beyond g = +4, but the limiting behavior for @ ~ 0 is easy to visualize. The
inner Nosé trajectory shows the same solution in Nosé’s original variables, without time scaling.

The one-dimensional Newtonian ellipse with (p?/m) = kT is also shown.

From Figure 21, it can be seen that a single harmonic Nosé oscillator doesn’t achieve the
canonical distribution, for any value of the parameter Q. And the situation is no better if cubic
frictional forces, enforcing the fourth moment, are added. Thus the indications are that systems
cannot be too simple if they are to show the phase-space mixing properties necessary to establish

the canonical distribution.
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At present it isn’t possible to prove that a particular system has the necessary mixing
property. Computation can provide clues, but ultimately the problem of proof is a theoretical
one. The finite precision of any computer simulation guarantees that the long-time solution of
any interesting trajectory will be dominated by numerical errors. On the other hand, it appears,
from numerical work, that a two-dimensional two-body problem can already exhibit canonical
behavior. The precise degree of complexity required for Nosé dynamics to produce canonical
behavior is not yet firmly established, even numerically. Evidently the value of @ is important
to the convergence properties. If @ is very small, then the frictional reaction to disparities in the
kinetic energy is rapid, and Gaussian isothermal dynamics results. In the opposite limit, when
@ is very large, so that the response of the frictional forces is sluggish, the dynamics reduces to
Newton’s original form. All that can be said at present is this: “For some sufficiently chaotic
problems, in two or more space dimensions, it seems that Nosé mechanics does generate the

canonical distribution.
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The Nosé oscillator is an extremely interesting problem in its own right. For some,
relatively-high-energy and small-@ initial conditions, the distribution function in the (g,p,¢)
phase space has a sponge-like structure, with many holes of various shapes and sizes. Figure 22
shows a g = O cross section (sometimes called a “Poincaré surface of section” or a “puncture plot”)
through a long trajectory. The occupied part of the phase space resembles a three-dimensional
sponge. The holes in the sponge correspond to structures known as Kolmogorov-Arnold-Moser
tori, stable regions surrounding reentrant periodic orbits. Resonances describing the coupling
of pairs of these tori are responsible for the irregular sponge-like structure seen here. Such a

structure is characteristic of chaotic dynamical systems.

LF Numerical Mechanics - Fermi, Alder, Vineyard, and Rahman

With the invention of fast computers the scope of numerical integration expanded by orders
of magnitude. By now, with the CRAY-2 and CRAY-XMP computers, computer capabilities have
reached more than ten orders of magnitude beyond pencil-and-paper capabilities. Fast computers
proliferated in the National Laboratories in the United States, first at Los Alamos, for the second
World War bomb calculations, and later at Livermore, Brookhaven, and Argonne. For the first
time, it became possible to solve Newton’s equations for relatively complicated systems, with
many degrees of freedom and for long periods of time. This capability made it possible to study
numerically the irreversibility paradox that fascinated Boltzmann. This paradox can appear even
in small systems such as the one-dimensional Nosé oscillator. In outline form, the reversibility

paradox is as follows:

(i) From a macroscopic standpoint many-body systems exhibit irreversible behavior, as de-

scribed by the second law of thermodynamics.

(ii) From a microscopic standpoint many-body systems are described by reversible equations

of motion.

At Los Alamos Enrico Fermi wanted to resolve the paradox by applying the new compu-
tational tool, the computer “MANIAC”, to the many-body problem. He wanted to study the
approach to equilibrium of an anharmonic chain, in which the linear-force modes were coupled

together by quadratic or cubic force functions of the interparticle separations.

Fermi expected to find that the entropy increase for isolated systems, predicted by the
second law of thermodynamics, would follow as a consequence of Newtonian mechanics. The
resulting Fermi-P lam calculations, mostly carried out with 16 and 32-particle anharmonic
chains, showed what first appeared to be a slow approach to equilibrium, with the energy in the
initially excited mode returning to its initial value less closely with each near repetition. These
near repetitions occurred after dozens of vibrations of the chain, so that only a few repetitions

could be accurately calculated. The early Los Alamos work did show that the number of particles
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was not important—17 behaved in essentially the same way as did 16 and 32—and also that the

motion could be accurately reversed after several hundred time steps so as to retrace the reversed

history back to the original configuration.
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It is interesting that in these pioneering molecular dynamics simulations Fermi, Pasta,
and Ulam did not even describe the algorithm used to integrate the equations of motion. It was
assumed that the reader could work out such a scheme. The centered-difference “Verlet” scheme

used by Feynman or the even better fourth-order Runge-Kutta method would be good choices.

Later calculations, carried out by Tuck and Menzel at Los Alamos, showed that the Fermi-
Pasta-Ulam chains do not, in general, equilibrate and that statistical mechanics is therefore not
generally valid for these oversimplified systems. See Figure 238. It shows a typical variation of
mode energies with time. The curve labelled “1” is the amplitude of the energy of the initially-
excited lowest-frequency “mode”. The initial condition nearly recurs after about 13,000 time
steps, as shown in the top of the Figure. The recurrence is even closer after the 200,000 timestep
superperiod discovered by Tuck and Menzel. The somewhat pathological character of these sys-
tems which don’t equilibrate continues to stimulate the interest of mathematicians even today.

The Nosé oscillator is probably the simplest such system.

There is a reference to some unpublished two-dimensional many-body calculations by Fermi
at Los Alamos, but the first (and very extensive) published simulations in two and three dimen-
sions were carried out by Berni Alder and Tom Wainwright at the Lawrence Livermore “National”
Laboratory (then the “Radiation” Laboratory). Alder and Wainwright wanted to see whether
or not the reversible equations of motion of Newton could account for the irreversible behavior

described by the Boltzmann Equation and the second law of thermodynamics.
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Alder and Wainwright studied the motion of 100 hard spheres, all with the same initial
speed, but with different velocities. Their calculation of the low-density approximation to the
entropy S = —Nk{Inf(p,t) ), where f is the one-particle probability density in momentum space,
is shown in Figure 24. They found that the spheres established an equilibrium momentum
distribution relatively rapidly, in about three collisions per particle. The resulting equilibrium
thermodynamic properties also agreed with the Monte-Carlo statistical predictions generated by
Alder and Wainwright’s collaborators, Wood and Parker, at'Los Alamos.

Alder and Wainwright also predicted the rate at which Boltzmann’s low-density form

for the entropy —Nk{Inf(p,t)) = S(t), would rise to the equilibrium value according to the
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| Boltzmann equation. Their prediction was fully consistent with the results of the molecular

dynamics simulation. At that time it was not generally recognized that the hard-sphere behavior
| incorporated the typical Lyapunov instability, while Fermi’s anharmonic chain did not. So the
early computer results were a little puzzling, with statistical mechanics and the second law of

thermodynamics working at Livermore, but failing at Los Alamos.

At the Brookhaven Laboratory George Vineyard and his coworkers were interested in an
application of molecular dynamics to metals damaged by radiation. This class of problems has
remained important in the design of reactors. The Brookhaven calculations were fully three-
dimensional, used continuous forces, and incorporated viscoelastic boundary particles. The earli-
est literature reference to this work seems to be the cover of the August 1959 issue of the Journal
of Applied Physics. The cover, reproduced as Figure 25, shows the trajectories of several metal
atoms in a crystal. Inside the issue there is no accompanying article, only a caption identifying

the workers and a very brief description of the problems being studied.

At the Argonne Laboratory, Anees Rahman was carrying out an ambitious simulation of
liquid argon, using periodic boundary conditions and 864 particles, for a long time the world’s
record. Rahman’s calculation was the first attempt to study liquid physics with continuous
potentials, focusing on structural information that could be directly compared with experiment.
This emphasis followed Vineyard’s in seeking to simulate particular materials. Fermi’s and Alder’s
calculations, on the other hand, sought to elucidate mechanisms underlying general properties of

simple materials.

Rahman’s innovative work was honored at an Argonne Laboratory Festschrift in 1984.
Alder celebrated his 60th birthday in 1985. So molecular dynamics is well on its way to becoming
a “mature” field. The fact that Rahman used 864 particles, rather than a smaller number,
is to some extent responsible for the relatively large number of particles that many subsequent
investigators used. As we will soon point out, with several examples, both the equilibrium and the
transport properties of simple systems depend only weakly on the number of particles. Because
the equilibration time increases roughly as N2/3, the diffusion time across an N-particle system,
it is often more efficient to carry out a longer calculation on a smaller system than a shorter large-

size calculation. A considerable amount of work has been carried out on the number-dependence

of computer-experiment results. We discuss number-dependence in Section E of Chapter II.

These four sets of workers, at Argonne, Brookhaven, Livermore, and Los Alamos, set the
stage for what is now called “molecular dynamics” (despite the fact that until recently most of
the calculations involved monatomic interactions), an enterprise now carried on in a hundred
institutions in a dozen countries, and having tremendous impact on the development of the

theoretical description of classical many-body systems.
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Figure 1.26

By 1985 Farid Abraham and his coworkers at IBM San Jose had carried out long simula-
tions using 161,604 particles. Figure 26 shows the cell structure formed by a monatomic layer
of rare-gas atoms adsorbed on graphite. This was done by plotting the positions of those atoms
which were out of register with the underlying graphite lattice. The calculations are unusual in

that the number of atoms treated in the computer experiment is approximately the same as that

observed in corresponding laboratory experiments.
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The Lyapunov instability present in the equations of motion of most interesting systems
is discussed in two recent books on nonlinear dynamics, Hao Bai-Lin’s Chaos (World Scientific,

Singapore, 1984) and Heinz G. Schuster’s Deterministic Chaos (Physik-Verlag, Weinheim, 1984).

Current papers in molecular dynamics can be found by scanning the Journal of Chemical
Physics, the Journal of Statistical Physics, Physica, the Physical Review, and Physical Review
Letters. The early molecular dynamics calculations are summarized in a popular article, “Molec-
ular Motions”, by B. J. Alder and T. E. Wainwright, in the Scientific American for October, 1959,
This article attracted me to Livermore in 1962.

Equilibrium applications of the “Nosé thermostat” are described in two clear papers by
Shuichi Nosé: “A Unified Formulation of the Constant-Temperature Molecular Dynamics Meth-
ods”, Journal of Chemical Physics 81, 511 (1984) and “A Molecular Dynamics Method for Sim-
ulations in the Canonical Ensemble”, Molecular Physics 52, 255 (1984). See also W. G. Hoover,
“Canonical Dynamics: Equilibrium Phase-Space Distributions”, Physical Review A 31, 1695
(1985) and H. A. Posch, W. G. Hoover, and F. J. Vesely, “Dynamics of the Nosé-Hoover Oscilla-
tor: Chaos, Order, and Stability”, Physical Review A 33, 4253 (1986).

A comprehensive and pedagogical treatment of holonomic constraints can be found in a
paper “Constraints”, by N. G. van Kampen and J. J. Lodder, American Journal of Physics 52,
419 (1984). Nine different forms for nonholonomic constraint forces are compared in treating a
heat-flow simulation in the review by D. J. Evans and W. G. Hoover, “Flows Far From Equilibrium
via Molecular Dynamics”, Annual Review of Fluid Mechanics 18, 243 (1986). See also Section D
of Chapter IV of these notes.

The “Feynman Lectures”, R. P. Feynman, R. B. Leighton, and M. Sands, Feynman Lectures
on Physics {Addison-Wesley, Reading, Massachusetts, 1964) contain not only the finite-difference
calculations mentioned in the chapter, but also an interesting chapter on Hamilton’s Principle of

Least Action.

For applications of Gauss’ Principle see “Nonequilibrium Molecular Dynamics via Gauss’
Principle of Least Constraint”, by D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran, and A. J.
C. Ladd, Physical Review A 28, 1016 (1983). See also Section G of Chapter IV of these notes.

The Fermi-Pasta-Ulam calculation is extensively reviewed and extended in an article by
J. L. Tuck and M. T. Menzel, “The Superperiod of the Nonlinear Weighted String (Fermi-Pasta-
Ulam) Problem”, Advances in Mathematics 9, 399 (1972).

The 161,604-particle simulation is described in F. F. Abraham, W. E. Rudge, D. J. Auer-
bach, and S. W. Koch, “Molecular-Dynamics Simulations of the Incommensurate Phase of Kryp-

ton on Graphite Using More Than 100,000 Atoms”, Physical Review Letters 52, 445 (1984).



II. CONNECTING MOLECULAR DYNAMICS TO THERMODYNAMICS

II.A Instantaneous Mechanical Variables

The two main goals of microscopic molecular dynamics calculations are to simulate and
to understand macroscopic behavior in microscopic terms. We wish to understand the way in
which the relatively complicated microscopic many-body dynamics gives rise to the relatively
simple macroscopic few-variable behavior described by phenomenological thermodynamics and

hydrodynamics.

Some of the variables useful for describing macroscopic systems have obvious microscopic
analogs. The macroscopic mass pdr and momentum pv dr in a volume element dr, for instance,
correspond to simple sums of one-particle contributions. The macroscopic energy and the pressure
tensor are more complicated functions. They include not only one-particle kinetic parts, but also

two-or-more-particle potential contributions.

The entropy and free energy functions are even more complicated than mass, momentum,
energy, and pressure. For small few-particle volume elements there is no sensible and appealing
instantaneous definition of an entropy guaranteed to resemble thermodynamic entropy. But for
large volume elements, at least sufficiently close to equilibrium, Gibbs showed that the entropy
corresponds to the logarithm of the available phase-space volume. This phase-space volume can
only be determined by explicitly carrying out calculations over an interval of time or by integrating
over the appropriate phase space. Thus, the entropy depends upon the current state of the system
in a relatively complicated way. Fluctuations likewise involve either time or phase-space averaging,

and are more complicated to evaluate than mass or momentum or energy sums.

In transient nonequilibrium systems, far from equilibrium, it is not practical to define
instantaneous properties in terms of constrained time or phase-space averages. This is because
such systems change with time, so that the variables constraining a “phase-space-average” are
not apparent. Nevertheless, no useful description of time-dependent nonequilibrium behavior is
possible without some recipe for describing the instantaneous state of a system. Accordingly, we

here consider the overall variables describing a microscopic many-body system.

Energy, volume, and the number of particles are the independent variables describing
either an isolated system or a microcanonical ensemble of such systems. For any individual
closed and isolated system, obeying Newton’s, or Lagrange’s, or Hamilton’s equations of motion,
these properties are constants, “constants of the motion”. The only other known constant of the
motion, for most interesting interparticle force laws, is the momentum. It is convenient to divide
the other nonconserved macroscopic variables needed to describe a many-body system into two

categories.




43

The first category includes “mechanical variables®. The mechanical variables of a dy-
namical system can be usefully defined as instantaneous functions of the sets of coordinates and
velocities, r and 7, or the coordinates and momenta, ¢ and p. These mechanical variables include
not just mass, momentum, and energy but also the fluxes of these quantities. Provided that the
interparticle interactions are pairwise-additive, the mechanical variables most useful to a hydro-
dynamic description can all be expressed in terms of coordinates and momenta by using simple

one-body and two-body functions.

There is a second category of macroscopic variables, involving the thermodynamic entropy,
which could be termed “entropic variables”. These depend upon Gibbs’ statistical definition of
thermodynamic state, and include an entropy contribution based on a phase-space volume. The
thermodynamic entropy, as well as the Gibbs and Helmholtz free energies, are examples taken

from this second category. We will discuss both categories, mechanical and entropic, in turn.

Three of the fundamental mechanical variables correspond to the zeroth, first, and second
moments of the microscopic velocity distribution function. The zeroth moment is proportional
to the mass density p. The first moment is proportional to the stream velocity v. The second
moment, giving the fluctuation of the microscopic velocities about the mean, is, at equilibrium,
proportional to the thermodynamic temperature T'. This same equilibrium temperature definition
serves as a convenient and consistent nonequilibrium generalization of temperature to far-from-

equilibrium states.

Temperature arises in two different ways in the microscopic statistical theory of equilibrium
systems. In that theory it is usual to consider a “canonical ensemble” of similar systems weakly
coupled together in such a way as to share a fixed total energy. If the probability distribution of
the coupled systems over their states is expanded around the most likely distribution, temperature
emerges as the derivative (9E/3S)v. Here the entropy S is defined as the product of —k, where
k is Boltzmann’s constant, multiplied by the average value of the logarithm of the phase-space
volume accessible to an N-body system in the volume V' with an energy E. The alternative, but
equivalent, Lagrange-multiplier calculation of the distribution of maximum probability, using the
constraint of fixed total energy for the ensemble, produces 1/kT as the corresponding Lagrange

multiplier.

In equilibrium thermodynamics temperature is introduced through the ideal-gas ther-
mometer. This thermodynamic definition is more suggestive than the statistical phase-space
definition because the second moment, relative to the mean, of the D-dimensional gas veloc-
ity distribution, { p>/m) = DkT, is common to all classical equilibrium systems, not just ideal
gases, and characterizes the whole equilibrium distribution, because the equilibrium distribution
is Gaussian. The one-dimensional equilibrium distribution is shown in Figure 1. The arrow, at
the inflection point, indicates the momentum p, for which p2 equals mkT. The use of ( p2)/(mk)
to define a dynamic temperature is easy to defend. Given the need to do something, we follow

Occam in making this, the simplest choice.
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It is an empirical result of equilibrium thermodynamics that specifying the tempera-
ture, volume, and composition is a complete fluid-state description. All other thermodynamic
variables—pressure, energy, and entropy for instance—are coupled together through the empirical
equilibrium “equation of state”. An isolated nonequilibrium system relaxes toward such an equi-
librium state during a characteristic time of the order of the time required for mass, momentum,

or energy to diffuse across the system.

The number of such variables required to describe a nonequilibrium “state” sufficiently
accurately has to be determined empirically. Any such state description must involve at least
those variables required in equilibrium thermodynamics, plus the additional variables necessary

to provide a reproducible description of the deviation from equilibrium.

In nonequilibrium systems the main requirement useful state variables must satisfy is that
these be mechanical, depending upon the particle coordinates and momenta, rather than en-
tropic. This is because so little progress has been made in defining and calculating entropic
variables for nonequilibrium systems. Entropy is certainly more complicated to define than is
temperature. A generation ago, Jaynes suggested using Gibbs’ equilibrium expression for the en-
tropy, S = —k (Inf)—where f is the N-particle phase-space probability density—even for states
far from equilibrium. This idea is the “information-theory” approach to statistical mechanics.
The basis, choosing as many states as possible consistent with known restrictions on the system,

is undisputable but unworkable.
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The mathematics involved in using this definition is relatively involved because f, from the
mathematical standpoint, is a constant of the motion. Thus the entropy too would be constant if
it were calculated exactly. But this mathematical view of the entropy leaves out the “Kolmogorov
entropy”, that part of the entropy production which comes from the exponentially-fast diffusive
motion of f in the phase space due to Lyapunov instability. This diffusive motion persists until

an equilibrium or steady distribution has been reached.

At present no simpler useful nonequilibrium prescription for entropy than Jaynes’ is avail-
able. But it ¢s possible that suggestions will emefge, motivated by the results of nonequilibrium
computer simulations. Entropy has an apparent connection to the friction coefficient ¢, which
appears in Gauss’ or Nosé’s generalized equations of motion described in Sections D and E of
Chapter 1. In either case the derivative of the logarithm of the phase-space density function,

f(g,p), with time, following the motion, is just
(d/dt)Inf = = "[(4/q) + (3p/dp)] = DN.

Thus, if we use the Boltzmann-Gibbs connection between —k (Inf) and entropy, the ther-
modynamic friction coefficient measures directly the rate of entropy production, excluding the
Kolmogorov instability entropy. This relationship is potentially useful in nonequilibrium systems,

but has not so far been applied to estimate nonequilibrium free energies.

In principle, equilibrium or nonequilibrium free energies could be calculated from § =
—k{lnf) if the phase-space probability density were known. In practice, too much time is required
to visit, even once, each of the states of a system of any size at all, so as to find the entropy
associated with that distribution. Twelve liquid argon atoms, with a triple-point entropy of 77k,
require approximately the age of the universe to travel through all of their 1033 (quantum) states.
Even the simple one-dimensional classical Nosé oscillator requires a time of this same order, using
a current CRAY computer, to reach a phase-space state lying only 11 standard deviations from

the most-likely zero-energy state.

An alternative to defining the entropy through state-counting can be based on a working
definition of the free energies as equilibrium values corresponding to the instantaneous energy,
density, and the fluxes. But because we will have no need for such a definition in these lectures,

and, because this idea has never been used, we will not elaborate on this possibility.

There s a special class of systems, “hard-particle” systems; for which entropy and the
free energies can be estimated as instantaneous dynamical variables. In dense fluids or solids of
hard spheres (or disks, in two dimensions) the space available for an additional sphere, a kind
of “free volume” made up of holes distributed through the system, gives a direct measure of the

instantaneous work required to insert another sphere:

n= (aA/aN )V,T .
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 Figure I1.2

Figure 2 shows a typical configuration of 48 hard disks taken from an equilibrium sim-
ulation. The density was half the close-packed density and periodic boundaries were used. The
region lying outside the large “exclusion disks” is the free volume vy available for the center of a
49th disk. The “excess” chemical potential p#XC®55 (measured relative to that for an ideal gas

at the same density and temperature) can be evaluated from the equilibrium average of v:
f
(vf> e P'EXGESS/(kT).

Whether or not this recipe is useful in nonequilibrium systems such as far-from-equilibrium shear
flows would be interesting to test. For sufficiently large volumes, free volume fluctuations can be
ignored. Then the many-body state-counting problem reduces to estimating the probability of

inserting one additional particle. Such an estimate involves errors of order (InN)/N.
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II.B Macroscopic Dynamics

The macroscopic description of continuum systems makes use of the mass density p, the
stream velocity v, the pressure tensor P, the energy per unit mass e, and the heat flux vector
@ as fundamental variables. The three basic dynamical equations connecting the time variation,
conservation, and flow of mass, momentum, and energy can be written in terms of these vari-
ables. The equations have their most transparent, compact, and elegant form when written in
terms of the so-called “Lagrangian variables”, using coordinates which follow the motion. These

coordinates can alternatively be called Heisenberg-picture or comoving coordinates.

The “Lagrangian coordinates” have no connection with Lagrange’s equations of motion.
Figure 3 illustrates the difference between comoving “Lagrangian” coordinates and inertial-frame
“Eulerian” coordinates. The two-dimensional disk shown in Figure 3 rotates counter clockwise
about its center at angular velocity w. The comoving Lagrangian coordinate system keeps pace
with the rotation, rotating with this same angular velocity. In the comoving Lagrangian system
the mass and energy fluxes are both zero. The momentum flux is not zero because it contains

centrifugal force contributions from the frame’s rotation.

The same problem can be considered in a fixed-frame coordinate system, corresponding to

the Schrédinger picture of quantum mechanics. In this inertial fixed-frame coordinate system—
usually called the “Eulerian frame” —the mass and energy fluxes are nonzero. In the Eulerian

frame these fluxes are vectors in the 8 direction, with magnitudes pwr and pwrie + (w?r?/2)].

The comoving Lagrangian derivatives which follow the motion are sometimes termed “con-
vective” or “substantive” or “total” derivatives. Such derivatives are conventionally indicated by
D/Dt, by d/dt, or by a superposed dot. For example p = dp/di gives the change in the mass
density of a volume element dr following the motion of the element.
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Velocity vanishes in a comoving frame. It is understood therefore that the symbol v, for
velocity, refers to an inertial frame. Thus v is the rate at which the velocity of a volume element
(measured in an inertial frame) changes with time. Derivatives describing changes of density,
velocity, and energy density, (dp/dt), {dv/dt), and (de/dt), can be expressed in terms of the
corresponding Eulerian derivatives, (8p/8t), (8v/dt), and (de/dt), by including the convective

contributions proportional to the inertial-frame velocity v:

d/dt=9/dt+v-8/dr.

The fundamental continuum equations describe the conservation of mass, momentum, and
energy. Mass conservation is simplest. In the comoving Lagrangian coordinate system the mass

of a moving volume element, pdr, is a constant of the motion, so that the “continuity equation”,

(dlnp/dt) = =V - v,

follows from the observation that the volume strain-rate, dinV/dt, is measured by the divergence

of the velocity.

dInV/dt = (8v./8z) + (Bvy/By) + (v, /0z).

The continuity equation can be derived from the inertial-frame “Eulerian” picture. In the
Eulerian treatment the coordinate mesh is fixed in space, rather than embedded in the flowing
materials, and the fluid or solid moves through the mesh. Thus, provided that the flow velocity v
is a smooth function of the coordinates, the flow into a sufficiently small fixed cube dr = dx dy dz

is given by the flux differences across the cube:

B(pdr) /ot = —dz (8/0z)(pv. dy d2) — dy (8/dy)(pvy dz dx) — d2z(8/8%)(pvs dx dy).

Figure 4 shows the two-dimensional version of this flow problem, in which the element of
“volume” is the area dzdy. The hatched regions represent mass entering and leaving the volume
element during a time dt chosen sufficiently small that the vertical motion in the hatched regions
can be ignored. Because the Eulerian volume element dr = dz dy dz doesn’t change with time, a

simple differential equation results when the flux difference relation is divided by dr:

(8p/0t) = —v-Vp — p(V -v).
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This equation is the Eulerian version of the continuity equation. It relates the change
of density with time at a fixed location 9p/dt to the mass-density gradient and the divergence
of the velocity field. Combining the two density derivatives in the Eulerian continuity equation

reproduces the Lagrangian one.

The equivalence of the alternative Lagrangian and Eulerian approaches applies not only
to the transport of mass, but also to the transport of momentum, energy, or any other property
carried by a continuum. Both coordinate types can be useful. The Lagrange coordinates are
particularly useful in numerical simulations involving large deformations, shockwaves, or interfaces
separating materials, as long as the shear and rotation rates are not too large. Under such extreme
conditions, the Eulerian coordinates are cumbersome and inconvenient. But problems involving
very large deformations, or deformation rates, can lead to the tangling of hydrodynamic zones.

In such a case neither choice of coordinates, Eulerian or Lagrangian, is troublefree.
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Conservation of momentum in a continuum leads to the “equation of motion”
pdv/dt=—V . P,

where the comoving momentum flux P is the “pressure tensor”, and includes all viscous con-
tributions. In this Lagrangian form of the equation of motion, the comoving momentum flux is
measured in a Lagrangian frame moving with an inertial-frame velocity v. Because momentum
flux has two directions associated with it—one for the direction of the flow (z, y, or z) and one for
the type of momentum (z, y, or 2)—the tensor is a “second-rank” tensor, with doubly-subscripted
elements. The element P;; of the tensor P represents the flux, in the 7 direction, of 5 momentum.
Equivalently P;; is equal to the force per unit area exerted on the surrounding fluid by the sth

face of an infinitesimal cube in the direction j.

P . dx
Figure I1.5 X

Yy

Normal and
shear forces 3
on p dx dy PxdyY

Figure 5 shows a small two-dimensional “volume” element dx dy. In a comoving frame the
forces exerted on the boundary of this element by the surrounding continuum are proportional to
the appropriate pressure-tensor elements and to the magnitudes of dz and dy. For a sufficiently
small volume element the forces exerted on any of the four edges can be written as a superposition
of perpendicular and parallel contributions as is shown in Figure 5. The forces exerted on the
rightmost edge would be — P, dy and — Py dy, respectively. The minus signs follow because Py,

and P, are fluxes of z and y momentum moving in the positive = direction, that is, leaving the

volume element.
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It might appear that the normal forces would act to accelerate linear momentum and that
the shear forces would excite angular momentum, but the symmetry of the pressure tensor requires
that Pry = Py, for instance, so that the shear stresses (P;; — Pyy)/2 and Py act to change the
shape of the volume element, not its rotational velocity. It is an interesting exercise to show that
an imbalance of P,y and Py, would lead to a divergent angular acceleration (proportional to L=2

for an infinitesimal D-dimensional cube with sidelength L).

The derivation of the continuum equation of motion follows by considering the sum of the
forces exerted by the surrounding continuum on a comoving cube (square in the two-dimensional
case that was shown in Figure 5). Such a cube can be accelerated in the z direction if, for
instance, the x forces on the z faces at = — %dz and z + %dz are not equal. In that case
pdr dvg/dt includes dy dz [Pyo(z— 3dz)— Peo(z+3dz)]. In two dimensions the dz is absent and the
units of momentum flux are [mass/time| rather than [mass/(lengthxtime)]. The force difference
approaches —dr (8 P,,/dz) for a sufficiently small cube and a sufficiently smooth pressure tensor.
Including also the z forces on the y and z faces gives the complete £ component of the equation

of motion:

(pdr)dve/dt = —dr [(8Py2/0z) + (8Pys/8y) + (0P:z/82)].
Dividing by dr then leads to the Lagrangian form of the equation of motion given previously.

Let us now consider the momentum flux P from the more-detailed atomistic viewpoint. On
a microscopic basis there are two different kinds of contributions to the pressure tensor, “kinetic”
and “potential”. To describe the kinetic part we use the notation p to indicate the momentum
carried by a particle relative to the comoving Lagrangian frame. Each Particle i in the comoving
volume dr carries momentum p;. During a small time interval dt this momentum is transported a
distance {p;/m;) dt. This means that, on the average, a comoving plane, with area dydz and per-
pendicular to the z axis will intersect the moving momentum with probability (dy dz/dr) p, dt/m
during the time interval dt. The resulting “kinetic” contribution to the momentum flux, summed

over all particles within the volume element dr is
Pkinetic = Z(Pp/m)/d’"

An additional “potential” flow of momentum, between all pairs of particles within dr,
occurs through the mechanism of the interparticle forces. Consider the pair of particles, Particle
1 and Particle 2, shown in Figure 6. The rate at which momentum is transported from Particle 1
to Particle 2, the force on Particle 2 due to Particle 1, is given by the pair force Fp; = —Fy5. For

each such ¢J pair the direction of this transport is along the line of centers, parallel to r;; = r;—r;.
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The contribution of all pairs of particles to the pressure tensor is the “potential” contribution to

the momentum flux:

Ppotential - Z Fijrij/dr-

The action-at-a-distance interactions described by the interparticle forces give the micro-
scopic pressure tensor, P = Pginetic + Ppotential, @ nonlocal character. The details of treating
pairs of particles which lie only partly in dr can lead to different definitions of P(r) and hence
to different macroscopic constitutive relations. This is important in problems involving surface
tension, where curvilinear coordinates seem natural for describing the pressure tensor. A simi-
lar ambiguity arises if we attempt to go beyond a linear constitutive theory of nonequilibrium

transport.

Conservation of energy in a continuum leads to the “energy equation”
pdré=dr [——P:Vv— V-Q],

where e is the energy per unit mass and @ is the “heat flux vector”. The heat flux vector measures
the conductive flow of energy, per unit time and area, in the Lagrangian comoving frame. The
energy equation is a straightforward generalization of the first law of thermodynamics, which
gives the energy change in a volume element as the sum of the work done on that element by
its surroundings less the heat leaving the volume element through comoving conduction. The
relative motion of the « faces in the z direction gives a contribution to the work per unit volume,
[—Pzz dy dz (8v, [9z) dz] /dz dy dz. The sum of the nine separate terms of this type obtained by
summing contributions of z,y, and 2z forces in the z, y, and z directions are indicated by the
dyadic product —P : V.
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From the microscopic point of view the heat flux vector, like the pressure tensor, con-
tains both kinetic-energy and potential-energy contributions. If we retain the simplest possible
assumption, that the energy of interaction of two particles is shared equally by both members of

the pair, then each Particle i has an energy of the form

B = [p}/(2m3)] + D _(¢4/2).

where the sum includes all Particles j with which Particle i interacts. The flow of this energy, for

all particles in the volume dr, gives the kinetic contribution to the energy flux:

dr Qrinetic = Z(Pi/ m;) E;.

The potential contribution of the interparticle forces to the flow of energy can best be
visualized by considering the example pair of hard-disk particles shown in the preceding Figure
6, Particles 1 and 2. During a simple head-on collision .of these two disks the potential energy
transports the (kinetic) energy p%/2m through one particle diameter. The general expression for

the flow of energy associated with this mechanism has the form

dr ontential = Z Fijrij i (Pi + pJ)/(Zm)
where the sum includes all pairs of particles in the volume element dr.

With mechanical definitions of mass density, stream velocity, energy density, pressure
tensor, and heat flux, we have the tools necessary to relate the microscopic and macroscopic
descriptions of matter to each other. In deriving the continuity equation, equation of motion, and
energy equation, our reasoning has been macroscopic, treating materials on a continuum basis.
We also indicated the way in which atomistic flow mechanisms make it possible to define the

fluxes as sums of one and two atom contributions. In the next section we consider the formal

structure of the pressure tensor and heat flux vector from the detailed microscopic point of view.
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I1.C Virial Theorem and Heat Theorem

In order to connect the microsopic pressure tensor P and heat flux vector @ to particle
coordinates and momenta, we will examine the well-known virial theorem and a close relative we
will call the “Heat Theorem”. The usual derivation of the virial theorem of statistical mechanics

begins with the canonical partition function
Z(N,V,T) = e"A/]T) = / drP¥ / dpPN ¢~ K+ (T) Ny RPN

where A = E — TS is the Helmholtz free energy, h is Planck’s constant, and the integration
is carried out over all DN of the particle coordinates r and momenta p. The pressure can be

obtained from the partition function by differentiating it with respect to volume

P=—(04/8V)r = kT (310Z/8V ).

But straightforward differentiation is inconvenient because the volume dependence of the
partition function-is implicit, appearing only in the integration limits. For simplicity, consider
a three-dimensional cubic volume with V = L3. Next, introduce the dimensionless distance

variables indicated in Figure 7:

z=r/L; L= ys,

L 1
—— T ——
- =— 1 X
L r X L
L 1

Figure IL.7

Old New

Then, the volume dependence appears instead only as a multiplicative factor of V¥ in
the partition function and in an explicit dependence of the potential energy @ (le/ 3) on the
volume. Differentiation of the partition function with respect to volume, when expressed in terms

of the original variables then yields the usual virial theorem:

PV/(NKT) =1+ Y [(rij - Fij)/(DNKT)].
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This expression has been used for over 30 years in obtaining pressure from many-body
simulations. The theorem can be applied to elastic solids by making the shape of the volume, as
well as the size, variable. To treat solids in a consistent way it is convenient to restrict (the center
of) each particle to an individual cell, of volume V/N, and to introduce reduced coordinates
which span this reduced volume rather than the total volume V. The tensor version of the virial
theorem then results:

PV = NKTI+Y > ri;Fi;.

where I is the unit tensor and the double sum includes each pair of particles. The “unit tensor”

I has unity for each of its diagonal elements and zero for each off-diagonal element.

But, for nonequilibrium systems, where no analytic expression for a partition function
can conveniently be used, this virial theorem is not applicable. In that case, a second, more
useful, approach to the virial theorem begins with Newton’s atomistic equation of motion p = F,

multiplied by r, summed up over all particles, and averaged over a sufficiently long time 7:

(x rxi>ﬁme =) [ Slaon) e - o= (Y- R)

time

—NKTI=—-PV+)Y ) rjF;.

The pressure tensor P arises by separating the total force on each particle into “external”
(wall) forces described by the pressure tensor and “internal” (particle) forces described in terms
of microscopic interparticle forces. We work out the external forces for the simplest case, a cubic
box. This involves no loss of generality because, if the box is sufficiently large, such sums become
independent of box shape. The external forces acting on the z face of a cubic box are + P, V2/3,
+P,,V?/3, and £P,,V?*/3 Tt is necessary to assume that the wall forces are relatively short-
ranged, so that the z coordinates of particles interacting with the corresponding pair of faces
normal to the z axis differ by V'/3. In that case the summed contributions are —P,,V, —Py,V,
and —P,.V.

The relationship between the internal and external forces is a tensor equation. The tensors
contain sums involving the interparticle forces and the particle velocities. The equivalence, F (on
i due to j) = —F (on j due to ) = Fy;, has been used to combine the two terms r;F;; and
riFj; to which the force Fj; makes a contribution. The second-line equality, which introduces
the temperature T, follows only at thermal equilibrium, where T is isotropic and well-defined. In
that case the tensor (J_ pp/m) is diagonal, and the three diagonal elements have time-averaged

values equal to NkT'.
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Figure I1.8
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This time-averaging derivation can be modified in a conceptually important way, for solids.
This involves introducing coordinates R fixed at the lattice sites and corresponding displacement
coordinates dr such that r = R + dr. In Figure 8 the sites are indicated by filled circles and
the displacement vectors dr by arrows. If we multiply the atomistic equation of motion m# = F
by the lattice coordinates R rather than the instantaneous coordinates r of each particle—and
this is unambiguous for solids—then the result for the pressure looks very much the same. But
the dynamical variable r;; is replaced by R;; and the velocity terms on the lefthand side do not
appear because Rij is zero. Thus an alternative, but still exact, form for the solid-phase virial

theorem is

> RiFij = PV.

This lattice-coordinates version of the virial theorem, with R;; = R; — R;, can also be
derived from the solid-phase partition function by using the special particle displacement coor-
dinates dr just defined. In Figure 9 three deformation modes for a (periodic) volume element

containing two particles shown. The lattice coordinates, shown as filled circles, R, are carried
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along with the deformation while the displacement coordinates, shown in Figure 9 as horizontal
lines joining the open-circle “particles” to their lattice sites, dr, are unchanged. These displace-
ment coordinates are tied to lattice positions, r = R + dr. Then, in the differentiation of the
Helmholtz free energy, only the R coordinates depend upon volume or shape. This solid-phase
virial theorem has the advantage that it could be applied to a nonequilibrium steady state in
which the external pressure forces and the temperature are constant. But the time-averaging

step is particularly inconvenient in treating transient nonequilibrium problems.

A third, and still more useful, virial theorem can be obtained by returning to the fun-
damental definition of pressure as a momentum flux. In the Lagrangian frame a particle in the
volume V = L,LyL,, moving a distance (pz/m) dt and carrying with it some property 8 con-
tributes (p/m)B/V to the z component of the flux of . To see this, imagine sampling this flux
component in a uniform way, with a small element of area dy dz oriented perpendicular to the z
direction. What is the probability that this element will intersect the trajectory through which
a particle moves during dt? In the z direction the probability of overlap is (p;/m) dt/ L., where



‘,,"‘u )
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L, is the box length in the z direction. In the yz-plane at any z the probability of overlap is just
dydz/LyL,. Thus the fluz of p, the probability of observing the flow of 8 divided by the time dt
and by the area LyL,, is (po/m)B/V.

To illustrate the calculation of such a flux we imagine a shear flow in which the z velocity
component varies with y, so that the transverse momentum flux, P,y = Py, is nonzero. Consider
the contribution of a particle to Py:V, the flow of £ momentum p; in the y direction. The
quantity being carried, p., intersects a plane perpendicular to the y direction with probability
(dzdz/L,Lz)[(py/m) dt/ L], for a momentum flux contribution p,p,/(mV). The total pressure

tensor for a volume V includes the corresponding sum over all particles,

Z(PP/ m) = PgineticV C PV.

But momentum can also be transferred from Particle i to Particle j through the interparticle
forces exerted by i on j and j on i, Fj; and Fi; = —Fy;. This momentum transfer can be visualized
as a direct connection between the two interacting particles r;; = r; —r;. {If we wanted to derive
the result for a solid we could alternatively use the separation vector linking two lattice sites,
R;;.) Then the probability of intersection of the 75 vector with an area dzdz perpendicular to

the y axis is (the absolute value of) y;; dzdz/V.

" The complete instantaneous momentum flux has the form

PV =3 (pp/m) + D > rijFy.

The expression is clearly symmetric, with P;; = Pj;. Only six of the nine elements of this tensor
are independent (three of the four in two dimensions). In the alternate expression involving the
lattice coordinates R;; this symmetry is lost. A very similar complexity results if we consider
molecules composed of atoms and imagine that the momentum of each molecule is located at its
center of mass. The best feature of this third and most useful, direct, derivation of the virial
theorem from momentum flux is that the unpleasant and impractical time-averaging, used to
avoid the Y rp term, as well as the fluctuations in the external forces, is not required. The third

and last instantaneous form of the virial theorem applies equally well far from equilibrium.

In most molecular dynamics simulations relatively short-ranged forces are used. Tt is
apparent that the minimum-image method for calculating the energy, in which each Particle i
interacts with the nearest image of Particle j, leads in a natural way to the realization that the

ri; appearing in the virial theorem are minimum-image separations.
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In computer simulations this last expression for the pressure tensor is the most useful one.
An analogous form for the heat flux vector can be derived by writing down the equation for the
rate at which the energy of Particle i changes, E;, and multiplying by either r; or R;. If an
external source of heat produces a heat flux @ by interaction with boundary particles, then the

resulting theorem, the “Heat Theorem”, is

QV =D piBi/mi+ YD rij[Fij - (pit )/ (2m)],
where again the double sum is over all N(N — 1)/2 pairs of particles in the volume V.

If we multiply by R; rather than r;, the first sum disappears, because R; vanishes and the

double sum contains R;; rather than r;;:

QV =3 Rii[Fy - (p: + p;)/(2m))].

Just as with the virial theorem, an instantaneous derivation of the heat theorem can be
based on a physically-based microscopic calculation. The kinetic contributions come from the
rate at which particles carry energy, with each single-particle contribution multiplied by the
probability that the corresponding trajectory intersects a sampling plane. Potential contributions
to the heat flux occur whenever two moving particles interact in such a way that one particle

transfers a part of their joint energy to the other particle.

The nature of this energy transfer is most obvious in a collision between two hard spheres,
with one at rest before collision, and the other at rest after collision. In such a collision the total
energy of the pair is transferred through a distance o, the hard-sphere diameter, at the instant

of collision.

ILD Elastic Constants

“Tlastic constants” are equilibrium thermodynamic properties which describe the response
of the pressure tensor to strain. These strains describe the stretches in the z, y, and 2 directions,
as well as the changes in angles at the corners of a slightly-deformed cube. Thus the deformation
of a three-dimensional solid can be described by specifying these six independent strains. In a two-
dimensional solid there are only three independent strains, the stretches in the z and y directions
and the change in the angle at the corner of a slightly-deformed square. Figure 9 illustrated
these deformations. If the volume has already been specified as an independent variable the
number of independent strains is reduced, from 6 to 5 in three dimensions, and from 3 to 2 in

two dimensions.
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At equilibrium, from either the microscopic or the macroscopic viewpoint, reversible elastic
strain deformations can be carried out either isothermally or isentropically, so long as the change
is sufficiently slow. Thus two different types of elastic constants—isothermal and adiabatic—can
be measured for any particular choice of geometric deformation. In either case the kinetic energy,
which measures the microscopic temperature, must remain in equilibrium with the potential
energy throughout the deformation. In the adiabatic case temperature generally varies with
deformation, but in such way that the energy change is solely the result of reversible “work
terms” of the form —VP:Vu.

Adiabatic sound waves result from macroscopic sinusoidal deformations, with wavelengths
sufficiently long that heat conduction between the compressed and dilated parts of the crystal can
be ignored. Thus the calculated microscopic adiabatic elastic constants correspond to the moduli

which describe the propagation of macroscopic sound waves.

There seems to be no direct dynamical derivation for the elastic-constant formulae. Micro-
scopic expressions for the elastic constants follow from differentiation of the microscopic internal
energy with respect to strain at constant entropy or the Helmholtz free energy with respect to
strain at constant temperature. In both cases the first derivative gives the usual pressure tensor.
The second derivative produces averages of fluctuations of pressure-tensor components. These
so-called “fluctuation terms” arise from the changes in relative probability of a system’s states

brought about by the deformation itself.

The reason for the extra terms can be understood by applying time-dependent perturbation
theory. In first order, the theory shows that a system does not change state when it is deformed
reversibly. Thus the pressure, P = —(8E/8V)g, can be calculated by averaging —(dEstate/dV)
over all of the quantum (or classical) states of an elastic solid. In second order the state populations
change. Thus the isentropic bulk modulus, —V(8P/8V)s cannot be calculated by so averaging
the adiabatic second derivative, (d?Estate/dV %).

Just as in deriving the virial theorem, there are alternative expressions for the elastic
constants corresponding to the two kinds of deformation considered in our pressure-tensor deriva-
tion, deforming the individual atomic coordinates r and deforming the underlying lattice-site

coordinates R.

In computer simulations the elastic constants can be determined by using the equilibrium
fluctuation formulae. Alternatively, nonequilibrium simulations of deformation can be used. If
the deformation is slow the response can be reversible and either adiabatic or isothermal. If it
is fast the viscoelastic respose can be measured. Artificial deformations can be carried out so
rapidly that the structure has no chance to relax. Then the so-called “infinite-frequency” elastic
constants are measured. Simulations of elastic response over the whole frequency range from
the zero-frequency adiabatic soundwave quuli to the infinite-frequency omnes can be carried out

using the nonequilibrium methods described in Chapter IV.




61

3 , l T
Figure II.10

0 | | 1

0 10 20 30 40
WO/ MJ€e

Typical results for a dense liquid, taken from Denis Evans’ work, are sketched in Figure
10. A typical single-particle vibrational Einstein frequency would correspond to the middle of the
frequency range shown in the Figure. At that frequency the response of a fluid to a sinusoidal
strain is mainly elastic (labelled “imaginary” in Figure 10) rather than viscous (which is labelled

“real” in that Figure).

Simulations become difficult outside the regime of small-amplitude homogeneous defor-
mation. Exploratory work on high-amplitude deformation and plasticity has shown that the
flow response is sensitive to both geometry and size. This>work suggests strongly that new
. and fundamental understanding of deformational constitutive relations will result from increased

computational power.
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I1.E Number-Dependence

The number-dependence of small-system results needs to be understood in order to make
the most efficient use of computer time. It is generally best to study the properties of several
systems of different sizes rather than expending the entire computational effort on one large-sized
system. The variation with number found in this way can be an accurate guide to extrapolation.
By number-dependence we mean the way in which a thermodynamic or hydrodynamic system
property depends upon the size of the system. Such a property must first be defined in a clear way.
There are several different ways in which mechanical properties such as pressure can be measured.
Not only can different methods produce different values, but also the corresponding fluctuations
can differ. The differences vanish for sufficiently large systems, and the fluctuations vanish, but
for finite systems the number-dependence is sometimes the largest source of uncertainty in a
computer simulation of macroscopic properties. For this reason it is necessary to choose carefully

the method through which a particular many-body property will be determined.

For gases and for solids the number-dependence of thermodynamic properties can be un-
derstood theoretically. Consider, for instance, the canonical partition function for the three hard

disks shown in Figure 11:
Zs = (27rka)3//////(1 + 3020+ 3d 0 + o) dr®/(3! £°).

The diagrams represent the Mayers’ expansion of the Boltzmann factor e=*/(*T) into a

product of terms:

[e=®/0D ] = [ [1+ (e~#/0D) — 1)),

in which lines joining particles together represent factors

[e—¢/(kT)_1]_

Two separate types of number-dependence can be seen in this simple three-particle ex-
ample. The 3 appearing in the second term of Zs, for instance, corresponds, in the general
N-—particle case, to the number of pairs of particles in the system, N(N —1)/2 = 3. The pres-
ence of an N — 1, rather than N, produces a number-dependence, in the free energy per particle,
of order 1/N. Likewise, the N! in the denominator introduces a different number-dependence in
the entropy and free energies per particle, of order (InN)/N. This dependence can be seen by

using Stirling’s expansion to the factorial:




63
(1/N)InN!=1In(N/e) + (InN)/2N + (In27)/2N + O(N~?).

The same logarithmic dependence arises again in the two-dimensional solid. As a series
of pfogressively larger crystals is examined the low-frequency end of the vibrational spectrum

gradually dominates the high frequencies in determining the mean-squared displacement of the

particles,

(67%) = DET{1/w?)/m.
In two dimensions the linear dependence of the frequency distribution, proportional to w for

low frequencies, leads to a logarithmic divergence of the mean-squared displacement, proportional

to (kT /) In.N, where & is a force constant. The gradual growth of the mean-squared displacement
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for a series of N-particle nearest-neighbor triangular-lattice crystals is shown in Figure 12.

The slope can alternatively be calculated directly from elastic theory, and agrees well with the
numerical data.

[ I f I I T
25+ Figure I1.12 n
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Both kinds of number-dependence illustrated here, 1/N and (InN)/N, are typically
present in the mechanical and thermal properties of fluids and solids. It is usual to express the
dependence of hard-particle macroscopic properties on the volume relative to the close-packed

volume. For disks and spheres of diameter o, these volumes are
A, = (3/4)Y/2No? and V,=(1/2)/%No®,

respectively. To illustrate these number-dependent effects in a quantitative way consider the
following Table of compressibility factors PV/NkT for three hard disks at a density one-fourth
the close-packed value, with V =4 x 3 x (3/4)/20%:

Thermodynamic Monte Carlo E constant K constant
PV/NKT 1.68 1.49 1.74 1.99
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The first entry in the Table gives the large-system “Thermodynamic” value. The “Monte
Carlo” compressibility factor describes the result of an analytic evaluation of the three-disk par-
tition function equivalent to an exact canonical-ensemble Monte Carlo simulation. The last two
values, likewise calculated analytically, correspond to two different kinds of three-disk molecu-
lar dynamics calculations, isoenergetic and isokinetic. The distinction between isoenergetic and
isokinetic molecular dynamics may appear strange for hard disks, but hard-disk dynamics only
makes sense as a limiting case, with the range in which the forces act approaching zero. In this
limit, two different results are obtained, one for isoenergetic (Newtonian) dynamics and one for
isokinetic (Gaussian) dynamics. Both results approach the thermodynamic limit as the number
of particles is increased from three toward infinity, but exhibit deviations of order 1/N from this

limit in intensive thermodynamic properties.

The situation for transport properties is similar. The Newtonian viscosity for a periodic

low-density system of two hard disks,
n = 0.166 (mkT)*q,

is about half the infinite-system value. Similarly, the heat conductivity for a moderate-density
three-disk system is lower than the large-system value by about a factor of three. This last
comparison is at present a little uncertain because the three-disk conductivity appears to vary

logarithmically with the strength of the current, as discussed at the end of Chapter IV.

Small systems often provide very interesting and suggestive results in return for relatively
little computational effort. A periodic system of two hard disks is a good example. The canonical
partition function for two disks or spheres can be worked out analytically at any density up to
the maximum, at which the area A equals the close-packed area A,. If boundaries are chosen as
shown in Figure 13, so that the two disks can make a “triangular” (close-packed) lattice at high
density (so that one side of the rectangular periodic box is 31/2 times the length of the other),
then an interesting equation of state, shown as a solid line in Figure 13, results. It has a loop
resembling a van der Waals loop linking a diffusionless solid phase to a fluid phase. This is a
simple example illustrating the possibility of finding phase transitions, singularities in free-energy

derivatives, in finite, even very small, systems.

It is also shown in Figure 13 that the pressure and volumes at which this two-disk melting
transition occurs lie within 10% of the large-system values indicated by the dashed line. Similar
close agreement is found for the three-dimensional hard-sphere analog. The melting transitions
found for two-dimensional hard disks and three-dimensional hard spheres were early successes of
equilibrium molecular dynamics and Monte Carlo simulations. The phase transition found in two
and three dimensions occurs in other numbers of dimensions too. See the paper by Michels and

Trappeniers cited in-the Bibliography for a discussion of the hard hypersphere melting transition.
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Solids also exhibit number-dependence in their constitutive properties. Again, these ef-
fects are usually of order 1/N and (InN)/N. Both of these dependences can be illustrated and
understood by considering the simplest prototype of a crystal, a periodic one-dimensional chain
of Hookes’-Law oscillators. We show a three-particle specimen in Figure 14. We choose the
spring constant, interparticle spacing, and mass all equal to one. With these units a two-particle
chain has a single vibrational frequency of 41/2 = 9, Because the two particles would move in
opposite directions the force each would feel is fwice that which would result if the other were
fixed. There is a second factor of two because there are two springs, not just one, in a periodic

system. For the three-particle chain there are two degenerate modes with frequencies 342 in
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Figure 11.14

which one particle moves with an amplitude twice the magnitude, and opposite in sign, of the
others. In a four-particle chain we have the same vibration that occurs in the two-particle chain as
well as two more degenerate modes, with frequencies 21/2, which occur when two non-neighboring

particles are fixed and the remaining two move in opposite directions.

From these examples we see that the products of the nonzero frequencies in the 2,3, and
4—particle periodic chains are respectively 2,3, and 4. Thus we correctly guess that the Nth
root of the fixed-center-of-mass vibrational partition function for an N + 1 particle chain with IV

vibrational modes,
. 1/N
[zgisrztionel] ™ = (kT /hw) = (KT [hr) oo [(N +1) 7Y/,

lies below the infinite-system limit by a factor of (N +1)'/¥, so that the small-system free energy
per mode exceeds the limiting thermodynamic-system value by kT [ln(N + 1)] /N.

II.F Results

Molecular dynamics simulations began over 30 years ago. Since then a vast body of
gas, fluid, and solid results has been generated. These data have been invaluable in developing
theories and models linking microscopic mechanisms to experimental data. Some of the early
work, exemplified by Rahman’s efforts, was motivated by the availability of distribution functions
from xray and neutron data as well as Kirkwood’s efforts to calculate these functions theoretically.
As it became clear that computers could simulate the structure and motions of real fluids and
solids, the work became more quantitative, elaborating the thermodynamic properties for simple

potentials, over a wide range of conditions, to accuracies of a percent, or better.

By combining thermodynamic properties from different phases, “phase diagrams” were
mapped out for a variety of simple pair potentials. The simplest of these is the hard-sphere phase
diagram shown in Figure 15. The diagram divides all possible equilibrium states for N hard
spheres in a volume V at a temperature T into three classes: on the left, fluid; on the right, solid;

in between, fluid-solid mixtures. Hard spheres, like hard disks, exhibit only two phases, fluid and
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solid. The fluid phase transforms at high density into the solid phase. At expansions (V/V,) — 1,
relative to close packing, between 35% and 50% an equilibrium hard-sphere system contains both
phases. In principle phase diagram calculations of this kind are relatively easy to carry out. If
only single-phase calculations are included, first compute the pressure (using the virial theorem)
and temperature ( p?)/(Dmk) as functions of energy and volume, P(E,V) and T(E,V) for each
phase. Then, use thermodynamic relations to find the Gibbs’ free energy, G = E+ PV — TS as

a function of P and T for each phase. From this the phase diagram follows easily.

o0

Figure I1.15
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In practice there can be difficulties with the free-energy approach due to the persistence
of metastable states. This metastability difficulty can be minimized by using external fields to
stabilize phases or to promote the conversion process linking pairs of phases. The essential idea is
to develop a reversible computer process for the phase transformation, o which thermodynamics
can be applied. Such studies have shown that not only do hard disks and spheres exhibit a first-
order melting transition, but also that these transitions can be used as prototypes for melting in
real systems. An alternative to the free-energy approach is to simulate a system in which two
or more thermodynamic phases coexist, thereby automatically satisfying the requirements of a

common pressure, temperature, and chemical potential.
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A simulation carried out at the two-dimensional Lennard-Jones triple point is illustrated

in Figure 16.

As reliable thermodynamic data became available for different pair potentials the value of
corresponding-states approaches, through which properties of different systems are correlated, was
established. The success of corresponding-states or perturbation theories of dense fluid properties
can be understood in terms of old variational principles due to Gibbs. He pointed out that
the distribution function in phase space characterizes each Hamiltonian and that the use of a
distribution function for one Hamiltonian to calculate thermodynamics for a different one (the
essence of perturbation theory) always leads to a positive error in the Helmholtz free energy.
This principle has been developed into an operational model capable of predicting gas and fluid
properties for simple materials with high accuracy. A related theory of solid properties has also

emerged.

Less is known away from equilibrium, because the problem is a harder one. It has been
established that the properties of low-density gases not too far from equilibrium can be described
quantitatively by solutions of the Boltzmann equation. A successful combination of the Liou-
ville probability propagation at constant density with the spreading described by Kolmogorov’s
entropy—actually a rate of entropy production—hasn’t yet been carried out. But there are in-
dications that transport properties can also be described by corresponding states relations. For
instance, we will see in Chapter IV that the thermal conductivity for fluids composed of particles
interacting with simple force laws can be found within about ten percent by relating it to the
excess entropy. This relationship between conductivity and entropy can be understood by relating
both properties to the Einstein vibrational frequency. In view of the difficulties standing in the
way of an exact theory, the computer simulations are essential to developing understanding of

nonequilibrium corresponding-states relations.
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III. NEWTONIAN MOLECULAR DYNAMICS FOR NONEQUILIBRIUM SYSTE

. ITII.A Limitations of the Newtonian Approach

Conservative Newtonian mechanics can be used to treat a variety of nonequilibrium prob-
lems involving the approach to equilibrium of isolated systems or the mechanical coupling of
systems to external energy sources. The expansion of a system into a vacuum, the equilibra-
tion of a nonequilibrium velocity distribution, and the relaxation of initially-excited modes are
all examples of isolated systems exhibiting interesting transient behavior. Systems treated with
Newtonian mechanics need not be isolated. A system can be compressed by using a rigid wall,
converting the mechanical work done by the wall into internal energy. But without formulat-
ing a thermostat, or some method for equilibrating thermally with an external reservoir, only
mechanical problems can be treated with Newtonian mechanics. In particular, problems involv-
ing steady nonequilibrium states always require the extraction of heat by an external force that
cannot be formulated using Newtonian mechanics. For this reason many of the applications to
nonequilibrium problems require new equations of motion. We will come to the implementation of
thermostats and modifications of the Newtonian approach in Chapter IV. In this chapter we con-
centrate instead on what can be done with gases, liquids, and solids obeying Newton’s equations

of motion.
II1.B Gases: Boltzmann’s Equation

Whenever the density is low enough that successive binary collisions are uncorrelated and
the collisions can be considered to occur between particles at the same spatial location, but is
still high enough that the dynamics is not dominated by the boundary conditions, Boltzmann’s

gas-phase equation
df /dt = 0f /0t +v8f/0r + F8f/0p = (df /dt) cottisions

can be used to describe the corresponding nonequilibrium systems. This equation is the exact
Liouville equation until the collision term is approximated to make solutions possible. Boltzmann
used a quadratic approximation to the collision term. We will use instead the even cruder linear
relaxation-time approximation. Here f is the one-body probability density. For three-dimensional
monatomic particles this probability density has to be integrated over three space and three
velocity coordinates (momenta could equally well be used) to correspond to a (dimensionless)

probability. Thus the units of f are either [seconds®/meters®] or [(seconds/kilograms)®/meters®].

Solutions of the Boltzmann equation incorporating gradients of mass, momentum, or en-
ergy lead to numerical estimates of the diffusion, viscosity, and conductivity coefficients in terms
of the interparticle forces. John Barker and his coworkers have carried out a careful comparison
of the transport properties for the rare gases, from the Boltzmann equation, using a force-law

fitted only to equilibrium properties. The agreement was very good.
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In dériving the Boltzmann equation for the one-body distribution function from the many-
body Liouville equation, it is necessary to assume that the rate at which collisions occur between
particles with two different momenta, p; and po, is proportional to the numbers of such parti-
cles at r, f(r,p1,t) and f(r,p2,t). This statistical assumption makes the righthand side of the
Boltzmann equation irreversible, unlike the lefthand side (which describes reversible collisionless
streaming in phase space) and unlike the Liouville equation. This qualitative difference between
the underlying reversible equations of motion and the irreversible equation for the probability
density evolution seems paradoxical and has triggered many attempts to “understand” the source

of the irreversibility.

As we saw in Chapter I, Alder and Wainwright studied the approach to equilibrium of
100 hard spheres, all moving with the same initial speed, but in different directions. After one
collision such spheres can have any kinetic energy between zero and twice the initial energy. After
two collisions one sphere could end up with an energy three times the mean, and so on. Figure 1
outlines a sequence of two such transverse collisions which are maximally effective in transferring

energy between colliding particles.

Figure IIL.1

“bg DO GO

1 hits 2 3 hits 2 2 exits

Alder and Wainwright verified that Boltzmann’s description of the approach to equilibrium
(through following the time dependence of {Inf)) was in excellent agreement with their reversible
dynamical simulation. Unless the initial conditions are specially chosen to violate it, Boltzmann’s

irreversible equation is an excellent description of gas-phase dynamics.

We shall see that Boltzmann’s equation even describes very small two- and three-body
systems. By using periodic boundaries it is possible to simulate diffusive, viscous, and heat flows
with such small, few-particle systems. The Boltzmann Equation can be applied to these problems
and, in the two-hard-sphere case, it has a particularly simple form. Both the coordinate space
and the momentum space are shown for such a two-particle system in Figure 2. The two spheres.
must move in opposite directions, because the only reasonable value of the total momentum, a
constant of the motion, is zero. If the Boltzmann equation description can be applied at all to
such a simple system the solution can only correspond to the properties of an ensemble of these

two-body systems in which the initial coordinates and the directions of motion are chosen from

an appropriate statistical distribution.
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Figure II1.2

2

The usual Boltzmann equation, describing the collisions of pairs of particles, is quadratic
in f, and therefore nonlinear and difficult to solve. For an ensemble of very simple two-sphere
systems, in which all members of the ensemble are restricted to have the same kinetic energy,
the Boltzmann equation reduces to a linear equation rather than a quadratic one, and becomes
relatively easy to solve. The equation is linear because f is the same for both the two colliding

particles in a fixed-energy system with fixed center of mass:

f(rap,t) = f(ry_p7t)'

Given the momentum of either colliding sphere we know the momentum of the remaining sphere,
Further, the collision rate is independent of the momentum p, because the magnitude of p cannot
vary in a constant-energy system. Thus an ensemble of two-body systems can be described by a
linear Boltzmann equation. It has the form of the “relaxation-time” approximation often used in

treating many-body flows:

df /dt = (8f /t) + 8(fF)/ar + 8(fp)/8p = (fo— f)/.

Here, f, is the equilibrium post-collision distribution function. We include the possibility
that the sum (97/dr) + (8p/9p) may not vanish. In the general case the time between collisions,
7, depends inversely on the particle speed. It is therefore only in the special case that all particles

have the same speed, as in the two-sphere problem, that this approximation becomes exact.

To illustrate the usefulness of the relaxation-time Boltzmann equation let us consider again
the problem of Alder and Wainwright, in which a velocity distribution localized to a constant-
speed shell approaches the Maxwell-Boltzmann distribution. In the relaxation-time approxima-

tion f has the form:

f = fo = finitiat — fo] e7¥/".
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This approximation provides a useful estimate of the time required to reach equilibrium

(a few collision times), but as we saw, the velocities in a many-sphere system are correlated, with

the higher speeds filling in more slowly than predicted according to the approximate two-sphere

model.

Bird suggested a much better, but computationally more-involved approximation, in which

particles are selected for collisions statistically, based on a computed collision rate. In this way

the actual particles followed, up to about a million, represent many more particles. This method

is specially useful in solving aerodynamic “Knudsen-gas” problems. In such gases the mean free

path fs comparable to boundary dimensions. Thus the particle flow is influenced by the details

of the boundary and Navier-Stokes continuum mechanics can be qualitatively wrong.
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Bird’s method has been successfully applied to a host of flow problems involving rarefied
gases. Very recently Meiburg carried out a molecular dynamics simulation of the flow of 40,000
hard spheres past an inclined plate. He compared the predictions of Bird’s approximation with
his own molecular dyna,niics results. The results of both calculations are shown in Figure 3. The
top flow field is Meiburg’s molecular dynamics result. Each arrow represents the instantaneous
average velocity of several dozen hard spheres, all lying within a fixed Eulerian spatial zone. The
collisions in Meiburg’s calculation are calculated without approximations. The lower flow field is
based on Bird’s idea of selecting nearby pairs of particles for collision on a statistical basis. The
two flow fields are qualitatively different.

Meiburg’s calculation shows that the plate inserted into the gas stream generates and sheds
vortices when the flow is averaged over zones containing a few dozen spheres each. Figure 3 shows
that these vortices are absent in the calculation carried out using Bird’s statistical collisions. The
vortices are missing because statistical collisions do not conserve angular momentum. In a “head-
on” statistical collision between particles located in different spatial zones, their contribution to
the angular momentum changes sign, as indicated in the following Figure 4. The effect of these
collisions between separated particles is to lengthen the effective mean free path, thereby enhancing
viscous dissipation and reducing the Reynolds number, a measure of turbulence discussed in
Section H of Chapter IV. Meiburg’s work is stimulating the development of a hybrid method
combining stochastic collisions with angular momentum conservation. It is one of many examples

in which the results of the molecular dynamics simulation were surprising and suggestive.

Figure IT1.4
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III.C Liquids: Shockwave Simulation and Fragmentation

A one-dimensional steady fluid-phase shockwave is one of the simplest and one of the
most interesting nonequilibrium systems. Shockwaves are a logical phenomenon to study using
molecular dynamics because they are atomic in scale. Within the shockwave the relationship
between the longitudinal pressure, parallel to the direction of wave propagation, and volume is a
linear one, as we show below. At the same time there are gradients, not just in one property, but
simultaneously in all of them, pressure, temperature, density, energy, and entropy, for instance.

Thus a wealth of far-from-equilibrium effects can be studied by generating shockwaves.

In the shockwave cold material is converted into hot in a steady way, the moving shockwave
simply separating two equilibrium fluid states, one hot and moving, the other cold and static, from
one another. The usual textbook way of making a shockwave is to push on a fluid with a piston.
If this is done with a series of small, successively harder, pushes then the resulting pressure wave
has steps in it according to linear wave propagation theory. But nonlinearity typically causes
the wave velocity to increase with compression. Then the trailing steps catch up and the wave
steepens to become a shockwave.

s
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Figure 5 shows the geometry used to produce a one-dimensional shockwave, viewed in

three different coordinate systems. In each view the shockwave is indicated as the transition zone
between a cold fluid and a hot fluid. Such idealized steady one-dimensional transformations can

be closely approximated experimentally by applying a high pressure to a planar fluid or solid

boundary.
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In the top view, a piston, moving from the left at speed u, compresses and heats the
static cold material lying to the right. Consider next a coordinate system fixed on the piston. In
this middle view the cold material, initially moving to the left at speed u, stagnates against the
fixed piston. In the final bottom view, which provides the simplest theoretical treatment of the
problem, the shockwave disturbance is fixed in space with cold material entering from the right

and hot material leaving to the left.

In a steady shockwave, generated as is illustrated in Figure 5, the description of thermo-
dynamic and hydrodynamic properties is time-independent, and therefore simplest, in the bottom
frame, moving with the wave. The variations of the local quantities, density, pressure, energy,

and temperature, as shown in Figure 6, constitute the shockwave “profile”.

I I | | { [
. 250 |
Figure II1.6
1.6+ w
2 z
T 12 S .
nergy
Densit
0.8 " 0 < F——f——F—
1000 | | | 100 —
L L
N =
o ~
o
Pressure Temperature
| | | | |
0 -0/2 0 /2 o 0 -0/2 0 c/2 o

The Figure shows very good agreement between the molecular dynamics results—full
curves—and a numerical solution of the Navier-Stokes hydrodynamic equations—open circles at
the shockwave center. In the bottom fixed-shockwave frame conservation of mass requires that the
product of the density and velocity be constant. If the mass flux were not constant, throughout
the wave, the density profile would change. The constancy of the product pu, the steady-flow
mass flux, can be used, at the cold and hot ends of the shockwave, to relate the shock velocity u,

and the particle velocity up, to the two densities, po for the cold material and p; for the hot:

pPU = pO(_us) = pl(up - ua)-
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In the absence of phase transitions, and over the range of piston and shock velocities
ordinarily observed in laboratory experiments, there is typically a nearly-linear relation between
the two speeds, as shown in Figure 7 for the Lennard-Jones liquid phase initially at the triple
point. The relationship linking the shock velocity u, and the particle velocity u, covers a range
of shockwaves ranging from soundwaves, for which u, vanishes, up to twofold compression. For a
real liquid, such as argon, under the extreme condition of twofold compression, the temperature

reached would be of the order of an electron volt.

The flow of momentum must likewise be steady in the frame moving with the wave. There
are two contributions to the momentum flux, the comoving flow, in the frame of the fluid, given
by the pressure tensor element, P, and the additional convective component pu?, where u is
measured relative to the comoving frame. Thus u is —u, for the cold material and up — u,
for the hot. Conservation of momentum requires that the total momentum flux, given by the
longitudinal pressure P, plus the convective momentum flux (pu)?/p be a constant. Applying
momentum conservation to the cold and hot end points of the shockwave gives a relation linking

the equilibrium pressures Py and P; of the cold and hot materials:

Poz+ [(pu)’/p] = Po + [(pv)%/p0] = P1 + [(pu)*/p1].
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Thus, in a steady “one-dimensional” (planar) shockwave, the longitudinal component of
the pressure tensor varies linearly with volume from the initial value Py, to the final value Py,
as shown in Figure 8 for the same Lennard-Jones liquid shockwave. The linear pressure-volume

relation is called the “Rayleigh Line”.
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For weak shock waves, the difference between this linear relation and the isentrope is small,

with the entropy change AS of third order in the compression, so that shock waves, for small

compressions up to 20%, are very nearly isoentropic. Stronger shockwaves, such as that detailed
in Figures 6 and 8, attain states far from equilibrium at pressures and temperatures which
cannot be achieved by other methods. The locus of pressure-volume states which can be achieved
from a given initial state (the Lennard-Jones liquid triple point in the case shown in the Figures)
is called the Hugoniot curve. For any final state Py, Vy, with energy Ei, the energy change from
the initial state P,V can be found by integration. The integration is carried out along the

appropriate Rayleigh line, the straight line linking the initial and final states, with the result

AE=FE;—FEy= (1/2) (Po + Pl) (Vo — Vl)

This exact relation, the Rankine-Hugoniot equation, follows from the conservation of energy in

the shockwave process.
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By measuring the shock and particle velocities of these waves and using the conservation
relations the thermodynamic properties far from usual conditions can be measured accurately.
Published data for aluminum have been reported at over one gigabar, hundreds of times the

pressure at the center of the earth. These pressures are achieved using hydrogen bombs.

We can estimate the physical extent of a one-dimensional shockwave disturbance by setting
the generated pressure A P, ; equal to the product of the viscosity coefficient n and an estimate

of the strain rate ¢/w, where ¢ is the sound speed and w is the shock width:
APyy =Py — Py = nejw.
Using kinetic theory to estimate these quantities gives the results:

n ~ (mkT)Y?/(na?); ¢~ (KT/m)"* P = NkT/V.

Thus we find that the shockwidth is of order V/(N7o2), the kinetic-theory mean free path.
In a dilute gas, the mean free path is so long, thousands of particle diameters, that the shockwave
can scatter light. But for fluids, the mean free path is of the order of one particle diameter. This
suggests that the shock transition is localized in condensed matter and can accordingly be studied

by molecular dynamics.
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This has been done by using time-dependent periodic boundaries of the type shown as
solid lines labelled “Shock” in Figure 9. These boundaries correspond to the compression of an
initially quiescent system using two opposed pistons which are periodic, but moving, images of the
system itself. The boundaries move at a constant speed (£ the particle velocity) so that the system
is compressed at a constant rate. But adjacent images have different speeds so that the relative
velocity of a particle, relative to the system image within which it lies, jumps discontinuously, by
+v,, whenever such a particle crosses an image boundary. In the laboratory frame all particle
velocities are continuous. The mean particle velocity within any periodic image of the system has
a discontinuity, viewed macroscopically, between shocked material, which has felt the influence of

the moving boundaries, and quiescent material, which has not.

If the mean particle velocity is instead chosen initially to vary linearly with coordinate,
without jump discontinuities, as in the dashed curve marked “Shear” in Figure 9, longitudinal
viscous flow could be simulated. Because the distortion indicated in the Figure is longitudinal,
both bulk and shear viscous stresses would result, in addition to the equilibrium increase in
pressure associated with a quasi-static reversible compression. We will return to viscous flows
in Chapter IV. But in shockwave simulation the velocity instead varies in a series of equally-
spaced jumps. 'The thermodynamic and hydrodynamic profiles describing the shockwave agree
semiquantitatively with the predictions of Navier-Stokes continuum mechanics. This continuum
model is based on the assumptions that Newtonian viscosity and Fourier heat conductivity are
sufficient to describe the nonequilibrium momentum and energy flows. At the highest pressures
studied it was found that the shockwidth was a little wider than the continuum prediction. The
30% discrepancy cannot be explained by the dependence of viscosity or conductivity on frequency,

wavelength, or strainrate, and is not yet understood.

The molecular dynamics simulations show also that the velocity distribution in the vicinity

of the shockwave is very different from the equilibrium one. The Maxwell-Boltzmann relation
(pz) =3(p2)%

is a poor approximation near the shock front. The discrepancy with this property of a Gaus-
sian distribution is expressed in terms of the “kurtosis”, shown for both the longitudinal and
transverse directions in Figure 10. In a strong shockwave the longitudinal and transverse
temperatures, (p2)/(mk) and (p2)/(mk), can differ by a factor of two. These substantial
anisotropies should lead to correspondingly substantial deviations from simple Arrhenius kinetics

in shockwave-induced chemical reactions.

Because the shockwave simulations are time-consuming relative to single-phase homoge-
neous studies, only a few shockwave simulations have been carried out. It is not presently known
how well dense-fluid shockwaves or solid-phase shockwaves satisfy corresponding-states relation-
ships. For fluids this could be explored by solving the Navier-Stokes equations for a variety of

simple force laws.




83
_—Longitudinal Figure II1.10
& 104 |
A
(]
>
«w
V
N
A Transverse
LT o e
[Ze]
N
~
&
N
E
_104 |
0
e 25 ¢ :{

Another nonequilibrium problem which is similarly free of boundary difficulties is the ex-
pansion of a high-pressure fluid or solid into a vacuum. The fluid-phase problem has an application
in one design of a fusion reactor in which liquid lithium is used to transfer the heat from the fusion
reaction away from the fusion chamber. In this design hot jets of lithium, a few centimeters in
radius, absorb the energy of fusion neutrons, and are thereby heated very rapidly, essentially at
constant volume, to pressures of a kilobar or so. This high pressure then causes the Jjets to expand
rapidly and fragment. It is important to know whether the energy is primarily kinetic, with large
lumps of relatively cold lithium colliding with the walls of the reactor, or thermal and surface,
with a quiescent froth of lithium fog harmlessly filling the reactor chamber. Either outcome is

consistent with conservation of momentum and energy.

A semiquantitative model, developed by Dennis Grady and elaborated by Lewis Glenn,
describes this situation by assuming that the lithium expands in a uniform way, with the outer
edge moving at a “jumpoff” velocity u; = P/pe, where c is the sound velocity. The local (co-

moving) kinetic energy density can then be calculated from the strain rate, u;/R, to give the

available kinetic energy in a fragment of size r. This kinetic energy is of order rP+2R-2,
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Setting this energy source equal to the surface energy created in the fragmentation process,
of order rP~1 for a fragment of size r, predicts that the number of fragments varies as the cube root
of the total mass available (in either two or three dimensions). This prediction has been confirmed
by computer simulations using over 14,000 particles. Figure 11 shows the conformation of a two-
dimensional simulation of such an expansion. The time involved in the simulation is on the order

of a few sound traversal times, or about 100,000 time steps.

Figure I11.11
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III.D Solids: Breakdown of Continuum Mechanics

Many problems in materials science involve defects which are small, either microscopic or
mesoscopic in scale. Microscopic diffusion of atoms, both in surface layers and in the bulk, and
the mesoscopic motion of the dislocations which are the mechanism for plastic deformation are
examples. These problems, which cannot be dealt with using macroscopic continuum mechanics,

present a variety of opportunities for stimulating and useful research in molecular dynamics.
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There is an interesting correspondence between atomistic mechanics and a two-dimensional
elastic continuum (equivalent to a three-dimensional plane-strain or plane-stress elastic solid in
three-dimensional space). A two-dimensional triangular-lattice crystal of Hooke’s-Law particles,
in which each particle interacts only with its six nearest neighbors, obeying the equations of
motion p = F' can be brought into exact correspondence with an isotropic elastic continuum
when the interparticle spacing is small. It is easy to show that a “quasiharmonic” triangular-lattice
crystal (one in which energy contributions depend only quadratically on the particle displacement
coordinates) is elastically isotropic . This can be done by considering the two shear deformations
of a triangle of atoms shown as the lower two deformations in Figure 12. Thus the dynamics
of the crystal can be described by a bulk modulus and a shear modulus. These same elastic

quantities describe the behavior of an elastic isotropic continuum.
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The analogy can be made more detailed. If a continuum is divided into equilateral trian-

gular finite elements within which the displacement varies linearly, the six coefficients describing

this linear variation can be determined uniquely from the z and y displacements of the three

vertices of each triangle. The dynamics of the vertices can be calculated in two different ways,

from the atomistic Hooke’s-Law equations or from a finite-element approximation to continuum

mechanics. If the time-dependence of the vertex displacements is calculated from the elastic

equations in the linear approximation just described, the motion is identical to the motion of a

Hooke’s-Law crystal described using molecular dynamics!

This correspondence shows that the simulation of elastic continuum problems using finite-

element methods can produce solutions closely resembling motions seen in atomistic simulations,

The primary difference between the macroscopic continuum problems and the microscopic atom-

istic simulations concerns the dependence of wave velocity on wavelength. In a continuum it is

expected that elastic acoustic waves all travel with the appropriate sound velocity, independent

of wavelength. This simple behavior is consistent with a linear density of vibrational frequencies

(quadratic in three dimensions). The exact lattice frequency distribution is shown in Figure 13.
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The Figure shows that in the nearest-neighbor triangular lattice, this linear behavior
breaks down at a frequency about one third of the maximum, corresponding to a wavelength of
six atomic diameters. Accordingly, continuum mechanics can be expected to fail, even in elastic

problems, at length scales of order a few atomic diameters.

A similar atomistic-continuum correspondence to the one found in two dimensions, with
the triangular lattice, doesn’t exist in three dimensions (where the shear modulus is strongly
direction dependent in close-packed crystals) or for incompressible fluids (for which it is hard to
develop a corresponding atomistic model which avoids expansion or compression of the volume
elements). Nevertheless, this correspondence between two-dimensional atomistic and continuum
properties is useful in a relatively wide class of problems that involves defects of various kinds:
vacancies, dislocations, or cracks, in solids. This is because molecular dynamics is required only to
investigate displacements within a few atomic diameters of these defects. Beyond a few diameters

continuum elasticity can be used.

Defects are of importance in designing structures because they concentrate stress, and
stress causes materials to fail, either by flow or by fracture. The idea of stress concentration is
familiar to engineers. If we consider a plate under a uniform vertical longitudinal tensile stress
o, and then bore a small hole in it, of radius a, the maximum tensile stress near the hole will
increase by a factor of three, to 3¢. The stress concentration in the vicinity of such a hole is

shown in Figure 14.

3 Stress concentration in a plate

r/a

Figure II1.14
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From the standpoint of safety a circular hole is the best case, because it gives the least stress
concentration. The concentration is greater for other shapes, such as ellipses or polygons. The
solution for an elliptical hole has an interesting property as the ellipse is deformed to approximate
a thin long crack. In that limit the stress concentration diverges. This can be seen in another
way. If the displacements near a crack tip vary as the square root of the distance from the tip,
as would be expected for a parabolic crack tip, then the stresses and strains (proportional to the
symmetrized derivatives of the displacements) vary as the inverse square root, in agreement with

the analysis based on an elliptical crack.

Thus the structure and motion of cracks cannot be treated by straightforward continuum
mechanics. On the other hand, molecular dynamics simulations of crack motion can be carried
out. The fracture velocities and stress fields correspond relatively well to results obtained ex-
perimentally for brittle materials. The energy and entropy associated with static cracks can be
calculated easily, but dynamic simulations can lead to highly irregular size-dependent structures.
Even for computer experiments, the interpretation of fracture is complicated by the irregular

nature of the fracture surface.

In both the microscopic and the macroscopic cases cracks can travel at speeds approaching
the transverse sound velocity and can propagate into regions in which the stress is not enough
to cause a static crack to move. An example appears in Figure 15, taken from Bill Moran’s
1983 thesis. He studied the fracture of triangular-lattice crystals by breaking several adjacent
nearest-neighbor bonds, forming a “crack”, under tensile conditions imposed at the boundaries.
Under sufficiently great tensile stresses the stress concentration at the crack tip was sufficient
to cause the crack to propagate into unbroken material. In the case shown tapered boundary
conditions were used to build a linear decrease of tensile stress with distance into the material.
Static simulations indicated that a crack at the location indicated by the arrows could propagate
no farther into the crystal. On the other hand a moving crack exhibited “inertia”, penetrating
into a region with stress some 15% less than would be predicted by a static analysis. The dynamic

vibrations of atoms neighboring the crack tip are responsible for this effect.

It is interesting to run a crack-propagation calculation backwards, reducing the stress and
watching the crack heal. This healing occurs only with difficulty, moving in a much less steady

way than in the more natural (order-destroying) fracture process.
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The dislocations responéible for the plastic flow of rocks and metals are, like cracks, atom-
istic defects which can also be treated, in an approximate way, using continuum mechanics.
Dislocations can be formed by inserting an extra half-plane of atoms into a three-dimensional
crystal. In the two-dimensional case the additional particles form an extra row. In the case
shown in Figure 16 three dislocations are included in the periodic unit cell. In order to see
the dislocations clearly this Figure should be viewed obliquely. Compare this three-dislocation

Figure to the two-dislocation Figure 21 in Chapter IV.

Because the atoms near a circle of radius r centered on an isolated dislocation will encounter
displacements of order one atomic diameter b, the corresponding strain field is of order b/r,
more localized than the field associated with cracks. The divergent strain causes the energy
density integral, which has an integrand proportional to stress times strain, proportional to r—2,
" to diverge logarithmically both at small and at large r. Pairs of dislocations interact with ‘a

logarithmic tensorial potential and can be treated by a “mesoscopic” dynamics intermediate
between molecular dynamics and continuum mechanics. In such simulations the “equation of

motion” is the relationship between the dislocation velocity and the local stress tensor.
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The parameters required to apply such calculations to a particular material are many,
primarily because in real three-dimensional materials the dislocations form loops rather than

straight lines, and these loops move locally in a,Aseries of jumps and jogs, rather than in synchrony.

These fracture and flow problems are difficult to treat from a realistic point of view because
forces, impurities, and defects in real materials are complicated. Nevertheless the atomistic
calculations do indicate that the basic physics of fracture and flow can be understood on the basis
of simple (but atomistic) mechanical principles. The transient nature of these nonequilibrium
problems underscores the need for simpler steady-state simulations. To carry the steady state
simulations out requires the new methods of nonequilibrium molecular dynamics that we discuss

in Chapter IV. We return to the subject of plastic flow in Section H of that chapter.
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IV. NONEQUILIBRIUM MOLECULAR DYNAMICS

IV.A Motivation for Generalizing Newton’s Equations of Motion

Nonequilibrium molecular dynamics is a modification of Newton’s mechanics. About a
dozen years ago simulations of viscous flows and heat flows led to the development of these
nonequilibrium techniques. Bill Ashurst’s 1974 thesis at the University of California at Davis,
“Dense Fluid Shear Viscosity and Thermal Conductivity via Nonequilibrium Molecular Dynam-
ics”, is a pioneering example. In addition to Newton’s “applied” forces F, (interatomic, grav-
itational, electromagnetic, and the like) and “boundary” forces Fj, we consider systems with

additional “comnstraint” and “driving” forces:
mr=F,+ F,+ F,+ Fg.

The extra forces can be chosen so as to study systems away from equilibrium. This does not
necessarily mean that energy conservation cannot be used to check the calculations or that the
simulations will not be reversible in a mathematical sense. Most of the simulations do carry
over the deterministic constants of the motion, as well as the formal time reversibility, and the

Lyapunov instability associated with Newtonian mechanics.

Why change Newtonian mechanics? The reasons are pragmatic. It is simpler and cheaper
to simulate and study those processes we understand and to explore those we do not yet under-
stand using modified forms of mechanics. Boundaries are always present in real physical systems.
These cause difficulties in computer simulations. There is a tendency for particles to order at
physical boundaries and to behave in an atypical way there. Figure 1, from Farid Abraham’s
recent review, shows a solid-fluid interface.
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The mean density is plotted as a function of distance normal to the crystal boundary. Such
density profiles suggest that the effective range of interfaces (within which atomistic simulations
are necessary for quantitative work) is comparable to that found for cracks and dislocations, of
order ten atomic diameters. To minimize the relative importance of such interfacial effects a large
system has to be used. With periodic boundaries the interfaces present at system boundaries are
eliminated. Thus bulk properties can be measured using much smaller systems. In nonequilibrium
simulations it is not obvious how to introduce temperature and velocity gradients using periodic
boundaries. A trick needs to be used to force a periodic system to support a heat flux or an
anisotropic momentum flux. The constraint and driving forces introduced by nonequilibrium

molecular dynamics make it possible to do this.

John Barker has emphasized that the extra constraint and driving forces associated with
nonequilibrium molecular dynamics bear a close resemblance to the electromagnetic fields used in
spectroscopy. In either case external fields are used to modify and to probe dynamical behavior.
Without such constraint and driving techniques it is extremely difficult to study nonequilibrium
viscous or heat conducting steady states. With the extra forces the systems studied will perhaps be
simple enough to stimulate quantitative theoretical treatment. Example nonequilibrium problems
which can be handled theoretically include the two-body diffusive and viscous flows, which can
be treated by a simple modification of the Boltzmann Equation, and the more complicated three-
body heat-flow problem. These applications, as well as many-body simulations, are the subject
of this Chapter.

CI Figure IV.2
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IV.B Control Theory and Feedback

“Control Theory” formalizes the connection between observed dependent variables and the
specified independent variables controlled by the experimenter or simulator. Mechanical controls,
operating with feedback based on the observed values of dependent variables, are relatively fa-
miliar. For instance, a centrifugal governor can be used to reduce the fuel supply if the rotation
of a shaft becomes too rapid. Electronic controls are even simpler to design. The circuit shown
in Figure 2 combines inductive, resistive, and capacitive elements to produce a voltage V with

differential, proportional, and integral responses to the current I:

V =LI+RI+ /(I/C) dt,

where L, R, and C are the circuit’s inductance, resistance, and capacitance, respectively.

If we wish to control a deviation A through a control variable ¢ it is natural to use the

same procedure:

§=AA+BA+C/Aﬁ.

Such linear felationships have been much used because they can be solved analytically, using
Laplace transforms, or electronically, using simple circuits. The coefficients can be chosen em-
pirically, or in accord with a physical principle such as Gauss’. Simple linear control equations
are adequate to describe all of the nonequilibrium molecular dynamics work carried out so far.
This includes the simulation of diffusive, viscous, and heat flows together with problems involving

combinations of these flows.

IV.C Examples of Control Theory: “Isothermal” Molecular Dynamics

We discussed the application of Gauss’ Principle of Least Constraint to the simulation
of systems at constant temperature in Section D of Chapter I. Gauss’ Principle corresponds
to “differential” control. The principle leads to additional constraint.forces having the form of

frictional forces:

ﬁzFa'l'Fc:Fa_gp'

Exactly the same expression for the constraint forces would be the likely choice of a control
engineer asked by a physicist to help design equations of motion with specified properties. The
friction coefficient ¢ differs from the better-known friction coefficients occuring in the Stokes-drag

friction on a body moving in a viscous fluid (proportional to the size of the body and to the fluid
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viscosity) or in the stochastic Langevin equation describing the interaction of a test particle with
an irreversible heat bath. In both these cases the friction coefficient is a positive constant. In
Stokes drag the moving particle is typically accelerated by a constant external force (gravity or
an electromagnetic field} to offset the drag. In the Langevin approach to Brownian motion, the
moving particle is instead accelerated by stochastic forces with random magnitude and orientation.
In Gaussian isothermal dynamics Gauss’ friction coefficient ¢ can be either negative or positive.
It varies with time and has a time-averaged value of zero at equilibrium. If we consider ¢ as a
control variable Gauss’ Principle is an example of differential control. In the equilibrium case ¢

is proportional to the time rate of change of the potential energy.

¢ = _(.D/(ZK)’
where K is the kinetic energy.

Hermann Berendsen has suggested the use of proportional control to keep either the tem-
perature or the pressure near its desired value. In Berendsen’s schemes the control variable ¢ is
again used to control the temperature, but ¢ is chosen to be proportional to the difference between
the present and desired values of the temperature or pressure. In the latter case the volume can
be changed by an amount proportional to the pressure error (defined as the difference between the
virial theorem pressure and the desired pressure). These proportional-control equations of mo-
tion are not time-reversible and are, for this reason, harder to analyze theoretically. Irreversible

motion equations like them have been studied for more than 100 years. Both Rayleigh’s equation,

E=—z—1(z*-1),

and its time derivative, van der Pol’s equation,

5:—0—6(302—1),

are well-known examples. If we rewrite van der Pol’s equation, replacing the dependent variable

V3 by z, we find again an example of proportional control, as applied to a harmonic oscillator:

i=-—z—(z* -1).

But now van der Pol’s equation provides feedback to the friction coefficient on the basis of
a potential, rather than a kinetic, energy. Solutions of the Rayleigh and van der Pol equations, for
initial values of ¢ and ¢ = p both equal to 1, are shown in Figure 3. Both solutions exhibit typical

{mathematically) irreversible behavior, converging exponentially fast to steady limit cycles.
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Although nesther equation can be derived from a Hamiltonian, etther can be usefully expressed as
a pair of first-order ordinary differential equations, as indicated in the Figure. Rayleigh’s 1883
Philosophical Magazine paper “On Maintained Vibration” describes multitudes of applications

for these simple feedback equations. Both Rayleigh’s and van der Pol’s equations are examples

of proportional control..

Nosé introduced the use of tntegral control variables in statistical mechanics. His approach
was described in Section E of Chapter 1. Nosé suggested choosing ¢ proportional to the time inte-
gral of either the pressure or temperature deviation from its desired value. This procedure has the
twin virtues of time reversibility and a direct connection to Gibbs’ statistical equilibrium theory.
The new equations generate the canonical and constant-pressure ensembles. It is straightforward
to generalize Nosé’s approach in two ways: first, to nonequilibrium systems; second, to systems in
which higher moments of the velocity, or higher derivatives of the volume, are controlled. Nosé’s

equations are examples of integral control.




97

The distinction between differential and integral control is not entirely clearcut. In the
limit that the response time of Nosé’s tntegral control approaches zero, Gauss’ differential-control

equations of motion are recovered.

IV.D Heat Conducting Chain - 9 Examples

In Section D of Chapter II we discussed the number-dependence of a one-dimensional har-
monic chain. The rest configuration of a three-atom chain is shown at the top of Figure 4. In
the equilibrium case such a chain has no mechanism for scattering, and is relatively uninteresting.
Away from equilibrium this can be changed, by using constraint and driving forces. An unper-
turbed harmonic chain can support either standing or travelling waves. The two lower drawings
in Figure 4 suggest two fundamental standing-wave vibrations of a three-particle chain. Such
a chain is the simplest for which it is possible to consider the transfer of heat via phonons. From
the standpoint of control theory the travelling waves (phonons), which have constant total energy,

potential energy, and kinetic energy, are simpler than standing waves.
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In a standing wave the displacements are products of space-dependent and time-dependent
functions. The potential and kinetic energies vary sinusoidally in the time while the total energy
is fixed. In a travelling wave, or phonon, the chain passes periodically through the lower two
configurations indicated in Figure 4, but in such a way that the sums of the three particles’
kinetic and potential energies remain constant. Thus phonons are already exact solutions of
the control-theory equations which seek to control kinetic, potential, or total energy. We will
investigate this three-body system in the case that an additional energy-sensitive driving force

induces a preference for the right-moving phonon over the left-moving one.

For convenience we choose the rest positions of the three particles as follows:
z1=1/2; z2=3/2; z3=25/2.

The motion of the right-moving and left-moving phonons are described by the equations

§zy = Acos(V3t+1n/3);
6zy = Acos(v3t +371/3);

§xg = Acos(\/gt +57/3).

where plus signs correspond to the left-moving and minus signs to the right-moving phonon. We
have chosen to set the mass and force constants all equal to unity, so that the frequency is /3.
The wavelength is 3. A is the phonon amplitude. The phase space for this three-particle system
is four-dimensional (three coordinates and three momenta, but with the total displacement and
total momentum zero) so that it is useful to look at projections onto a two-dimensional subspace

to visualize the motion.

It is convenient to plot the momentum for one particle as a function of the coordinate of
one of its neighbors. If we choose p2(z;) the right-moving phonon generates an ellipse, traversed
counter clockwise, lying primarily in the first and third quadrants. The left-moving phonon, in
this same space, corresponds to a counter clockwise orbit lying primarily in the second and fourth
quadrants. We will use the ps(z1) projections to diagnose the effect of nine different types of
Non-Newtonian constraint forces, F.. In addition to the constraint force F,, which plays the réle
of a thermostat, we need a driving force Fy appropriate to heat flow. Such forces must be chosen
to be consistent with the results of Green-Kubo linear response theory. Evans and Gillan showed
that driving forces proportional to each particle’s contribution to the energy and to the potential

part of the pressure P? should be used:

p=F,+Fy=F,+ X(6E+V§P%).

i
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The rate at which work is done by these driving forces, which is the “Power Loss”, is

related to the resulting heat current through the heat conductivity in the usual way:

Power Loss = T = Q?V/(xT).

This relationship will be established in Section I of this Chapter. It follows easily from the
Heat Theorem applied to a bar maintained at a higher temperature Ts ~ T at one end and a

lower temperature Tc ~ T at the other, resulting in a steady heat flux Q.

To apply the Evans-Gillan heat-current driving force to a one-dimensional chain requires
only a way of specifying each particle’s energy and pressure contributions. For Particle 2 these

are
E3 = (p} + ¢12+ $23)/2;

VP$ = [(1+ 62 — 621)(831 — 622) + (1 + Szs — 625) (83 — 6z3)] /2.

Gauss (E) Berendsen (E) Nose (E)
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Figure IV.5
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To compensate for the power absorbed by the chain we can use constraint forces designed
to control any one of the three energies: total (E), kinetic (K), or potential ($). Each of these
three energies could be controlled by any of the three kinds of constraint forces: differential
(Gauss), proportional (Berendsen), or integral (Nosé). Trying out all nine combinations shows
that, qualitatively, eight of the nine actually work, leading to similar steady solutions. All nine
calculations are shown in Figure 5. The unstable solution shown in the lower lefthand corner
corresponds to keeping the potential energy of the system fixed. This approach is a clear failure.
The chain simply traverses the same constant-potential set of energy states at faster and faster
rates with the kinetic energy diverging as time goes on. In the eight steady solutions, and with
moderate field strengths, all of the energy eventually contributes to the right-moving phonon,
which maximizes the heat flux at fixed energy. At higher fields, the differential (Gauss) and
integral (Nosé) reversible controls are both more stable than Berendsen’s irreversible proportional
control. From the gualitative standpoint, in eight of the steady state solutions the current reaches
the same dynamical state, a phonon carrying heat current to the right. But the amplitude varies
with the particular method chosen. From the gquantitative standpoint the eight steady solutions
differ considerably from one another. The amplitudes of the eight stable motions shown in the
Figure vary by more than a factor of two, with correspondingly large differences in the resulting

conductivities.

For a one-dimensional chain the zero-field conductivity diverges because reducing the field
strength A does not reduce the steady-state current, only the rate at which the system achieves it.
This lack of a limiting conductivity stems from the absence of an efficient scattering mechanism
in one dimension. Thus the conductivity « varies inversely with the field in one dimension. In
two dimensions, three hard disks are already sufficiently complex to have a more complicated
dependence of current on field strength. For the disks, the conductivity increases gradually as A
is made smaller, varying logarithmically instead of inversely with current for the smallest X’s that
have so far been investigated. This logarithmic dependence is consistent with the predictions of
a complex theoretical approach called “mode-coupling theory”, but because that theory is based

on the interaction of sound waves, I believe that a simpler approach will eventually be developed.
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IV.E Linear and Nonlinear Response Theory

Conventional linear response theory is based on adding a perturbation 6 H to the Hamil-

tonian and using the resulting changed distribution function

/1o = eOIGD)

to compute averages. In the linear theory these averages involve the equilibrium distribution
function, f,. The theory can be used to generate nonlinear nonequilibrium dynamical equations

which produce limiting fluxes consistent with the linear theory.

As an illustration consider heat conduction. From irreversible thermodynamics, the dissi-
pation TS necessary to maintain a heat current Q between hot and cold reservoirs at temperatures
Ty and Tc is Q2V/(kT). The generalization of the one-dimensional Evans-Gillan external driving
force to three dimensions, which generates a heat current in the = direction @., and produces
exactly the same dissipation, with Ty and T again replaced by T, has driving-force components

in all three spatial directions:

Fy=)[6E+V§PS, V6PS, VEPS).

Thus the distribution function at time t, foet2E/(kT) where AE is the work done by the

driving force during the time interval from 0 to time ¢, is

F=f e[,\V/(kT)]fo‘q, ds_

Using the linear expansion of this exponential, tlte average long-time nonequilibrium cur-
rent that results as ¢ approaches oo, f f F Qz(t) dgdp can be expressed as an equilibrium auto-

correlation integral:

@V e = (V?/(7)] [ (@ul0)Qu(0)en e

Jaynes and Zubarev suggested that not just linear distribution functions, but also nonlinear
distribution functions can be obtained in this way. For heat conductivity, the distribution function
is just that given above, without expanding the exponential. Substituting this distribution into
the appropriate time evolution equation for f demonstrates that f is indeed a solution of the
nonequilibrium equations of motion. But the solution has serious flaws. It doesn’t apply to

systems with periodic boundaries and it cannot be used to describe steady states. We will point

out how the solution must be modified in the next section.
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IV.F Diffusion and Viscosity for Two Hard Disks

The simplest nonlinear transport problem is the mutual diffusion (caused by an external
field E, with units of force) of two isothermal disks. With periodic boundaries this problem
corresponds to an infinitely high and infinitely wide “Galton Board”, in which one of the disks
“falls” horizontally through a triangular lattice of “pins” (periodic images of the second disk).
Finite Galton Boards, such as the fifteen-pin example shown in Figure 6, are used—at least in
“thought experiments”—to generate binomial distributions. If an ensemble of falling particles
were “dropped”, from the left, into a board such as that shown in the Figure, making inelastic
collisions at each column of pins, we would expect to find a binomial distribution at the righthand
boundary. In the infinite-board limit the binomial distribution becomes a Gaussian. Here we

study a periodic Galton board. One periodic parallelogram cell is indicated in Figure 6.
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In a real Galton Board, inelastic collisions would eventually produce a steady-state distri-
bution of density within the cell, the deviation from uniform density depending upon the strength
of the accelerating gravitational field. The problem is easier to treat if a constraint force is used
to maintain the falling particle’s temperature. If the field, with units of force, is of strength E
and the kinetic energy is kept comstant by using an isokinetic friction coefficient ¢, the exact
solution of Boltzmann’s time-dependent equation, in the relaxation-time a,ppl:o>dmation, can be
written down directly, by summing up the distribution of particles which have not collided and

the distribution of particles which have collided one or more times.

To start out, consider the equations of motion for the field-driven diffusion problem with
the mass and speed and diameter of both disks set equal to unity. The equations are simplest
if the field is oriented parallel to the z axis, as shown in Figure 6. It is convenient to choose
p* = 1 so that the momenta can be described with polar coordinates with a radius of unity. The
resulting equations of motion, with a plus sign for Particle 1 and a minus sign for Particle 2, are

then as follows:

Z = p, = cos(0);
y = py = sin(f);
Pz =Fy—¢p L E;

Py = Fy —¢py.

The same equations result if the motion is described in a frame fixed on either of the two
particles. But then the reduced mass, 1/2 in the case that both particles have unit mass, must be
used and the speed of the moving particle must be doubled. Between collisions F vanishes, and

the equations can be simplified:

Pz = —6sin(6) = —¢cos(0) £ E; py = +0cos(8) = —¢sin(6).
The requirement that the friction coefficient ¢ be chosen to make the sum p.p. + pypy
vanish gives

¢ = Ecos(d); 6=—Esin(6).

The steady—sta.te relaxation-time Boltzmann equation, in polar coordinates, has a relatively

simple form:

8(fé)/60 = (df/dt)collisione = (fo - f)/'r,

where 7 is the mean time between collisions.

L ...
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To solve this equation at any time ¢ we need only notice that f(§) can always be written as a
sum formed by adding the distribution of those particles streaming from 6, to § during the time
t which haven’t collided at all, finitiare™?/ T[sin(8,) /sin(0)], to all particles which had their most
recent collision a time s in the past. Because the collision rate is independent of f, the latter
term has the same exponential form, f, e=%/7. The ratio of sines corresponds to the Jacobian of

the transformation from time 0 to time ¢.
db,/do = 6,/ = sin(8,) /sin(6).

It is necessary to know the change in angle since the last collision. From the equation of motion

the time ¢ required to stream from 6, to 6 is

t = (r/E) In[tan(0,/2) /tan(8/2)].
Making this substitution gives the solution of the relaxation-time Boltzmann Equation

8o
f/fo = (finitia.l/fo) e—t/f [Sin(oo) /Sln(a)] + /; C—S/Tdﬂ/(E Sina),

where the integral includes all angles 6, > 8 > 0 from which @ can be reached during the time ¢
and where s is the time required to stream from f to . Direct substitution into the Boltzmann
equation verifies this solution. The resulting nonlinear dependence of the diffusion coefficient on

the field strength is shown in Figure 7.
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This two-body Boltzmann Equation solution is useful in illustrating a pitfall associated
with Jaynes’ information theory. That theory suggests that the exact nonequilibrium distribu-
tion function can be found, at any time ¢, by specifying all relevant properties of the system in
question at that time and, simultaneously, maximizing the entropy, -k (Inf ). Figure 8 shows the
solution of the Boltzmann equation for two disks as well as the information theory solution. The
angle § measures the direction of Particle 1’s velocity relative to the field direction. Information
theory takes the point of view that the distribution function f can be found by maximizing the
entropy subject to all known constraints. What are the constraints? If one matches the density,
temperature, and current from the Boltzmann equation the resulting information-theory distri-
bution, marked “Information Theory” in Figure 8, is very different from that of the Boltzmann

equation, marked “Exact”. The field corresponding to the case shown in the Figure is 1/(27).
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Why is the information-theory distribution wrong? The difficulty is that the information-
theory distribution is not a steady solution of the equations of motion. The steadiness requirement
has to be included in order for the information-theory approach to make correct predictions.
That is, not only must the current have a specified value. Also, the first, second, third, ... time
derivatives of the current must all vanish. Because implementing this infinite string of restrictions
is fully as difficult as solving the Boltzmann Equation in the first place, it is not clear that the
theory is a useful one for kinetic-theory problems far from equilibrium. This is unfortunate because

there are no other theories at present which appear to be useful in solving these problems.
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The exact solution of the two-dimensional diffusion problem can be generalized to apply to
the three-dimensional case of hard spheres diffusing in an external field as well as to the two- and
three-dimensional cases of viscous flow. In the viscous-flow case the equations of motion include
the strain rate, ¢ = du,/dy, and again a friction coefficient ¢. The viscosity which results for the
corresponding two-dimensional hard-disk case is shown in Figure 9. The disk diameter is 0. As
the strain rate increases beyond the inverse collision time the viscosity drops to a small fraction
of the low strain rate limit calculated from the analytic solution of the Boltzmann equation. This
drop in viscosity, called “shear thinning”, is also typical of results obtained with many particles,

not just two.
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IV.G Simulation of Diffusive Flows
IV.G.1 Fractals.

Diffusion generates particle trajectories which are “fractal objects” with interesting geo-
metric properties. We begin by describing these objects. A fractal object generally has a dimen-
sionality less than that of the space in which it is embedded. The fractal dimensionality is usually
not an integer. The main idea is that the “volume” of the fractal object varies systematically with
measurement scale . Thus a fractal object remains irregular, with a nondifferentiable boundary,
at an arbitrarily fine scale. The idealized mathematical concept can be a physically useful one

whenever such scaling can be applied over length scales spanning a decade or more.
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If, for instance, we estimate the “volume” of an ordinary one-, two-, or three-dimensional
object in three-dimensional space by multiplying by 6% the number of cells of sidelength & in-
tersecting a part of the object, as a function of the measuring length §, we can see that a line
will have a limiting “volume” varying as 6%, an area will have a “volume” varying as 6%, while
a “real” volume approaches a definite limit as § approaches zero. Thus a natural extension of
the usual dimensionality is just Dgractat = 3 — (d1n“volume”/d1né). This new fractal dimension

closely resembles the “Hausdorf dimension”.

The usual textbook example of a fractal object is a Cantor set. This is a line segment on
which the following operation has been repeated an infinite number of times: delete the middle
third of the line segment, thereby generating two new shorter segments. With each repetition
of the process the line segments which were formed in the previous deletion have their middle
thirds removed. If this process is repeated N times then the actual remaining length of the line
is (2/3)N times the original length. Thus changing the measuring length § by a factor of 1/3
changes the apparent line length by a factor of 2/3. The fractal dimension of the fractal object

formed in the limit is

Dfractar =1 — [In(2/3)/1n(1/3)] = 0.631.

v

@ RWEAR

a mmm ‘lmm mm

% QAR
EER R R

)

2 2
&)
\“

A AVAVAVAVAVAVI VAT AADDABR D RSB BY

A NAw S As oA aAs o Be o Be o A= o

AAVAVLDADDDA VAR A ARDT AT D

~§A\1 A AAw A SR a7 afe aTBa a(Ra

Q@ WQARWLBAXNDAUAAAADTAAATADABY B

WA M A D ADAEARRTATD AL DAEAADBDAADB

'AA \l"A’\l EYY X nmm' ﬂ‘]m{ a\ B a e a BB




108

Figure 10, reproduced from Benoit Mandelbrot’s stimulating book, shows an extension
of this Cantor-set idea to three dimensions. If three intersecting square holes, of width 1/3, are
bored in a cube of unit sidelength 20/27 of the original volume remains. Repeated iterations of
this operation result in the “Sierpinski Sponge”. The dimensionality of the sponge is Dfroctal =
3 — [In(20/27)/In(1/3)] = 2.727.

The trajectory of a particle diffusing in three-dimensional space according to Fick’s law,
with {z%) = (y?) = (2%) = 2Dt, can also be analyzed as a fractal object with a dimensionality less
than that of the three-dimensional space in which it is embedded. If we follow a diffusing particle
for N randomly oriented jumps of length A then the distance traveled along the trajectory, NA,
takes the particle only a distance of order v/N X from the origin. This result follows from the
Central Limit Theorem or from Fick’s Laws of diffusion, given below. This same kinetic-theory
random-walk Brownian-motion result would obtain if the moving particle made only N/(n?)
longer jumps of length nA, where n is any positive integer. The total length of the path, using
the longer jumps would be smaller, just NA/n. The “longer jumps”, of length nl, can play the
r6le of the measuring length 6 introduced above. The volume associated with this description of a
Brownian path would be (NA/n) (nd) (nA) = nNA3. Thus the apparent “volume” of a Brownian-
motion trajectory varies linearly with the measuring length and is therefore two-dimensional
from the fractal point of view. It is clear that the fractal dimensionality is a far-from-complete
description of the geometry. Both a smooth two-dimensional surface and a Brownian trajectory
in three dimensional space have the same fractal dimensionality, but they are very different from

the geometric point of view.
IV.G.2 Fick’s Laws

Macroscopic diffusion is conventionally described by Fick’s first and second laws. The
fundamental first-law relationship is a linear one, stating that the current responds to the gradient

in concentration in a linear way:
J =—DVp, (Fick’s first law)

where D is the diffusion coefficient. From the microscopic viewpoint, in which each particle has
its own velocity, an equilibrium fluid contains two fast and powerful currents, equal in magnitude
and opposite in direction. Because these currents are clearly proportional to the density it is
reasonable that a density gradient would lead to a resultant current proportional to that gradient.
If D is constant then the rate at which concentration builds up in a volume element, from the

divergence of the current J, can be expressed in terms of the second derivative of p:

(8p/8t) = DV?. (Fick’s second law)




109

A useful solution of this equation describes the one-dimensional spreading of a spatial

Gaussian delta function with time:

o(t) = po e_’2/4Dt/(47rDt) 12,

Here D is the diffusion coefficient, not the dimensionality. This solution indicates that the width
of the (Gaussian) distribution, shown in Figure 11, increases as the square root of the time and
that the amplitude varies as the inverse square root. If the diffusion occurs in three-dimensional

space then normalization requires that the amplitude vary as 13/,

1 I

Figure IV.11

How large is the diffusion coefficient D? According to kinetic theory D is of order Av,
where X is the mean free path and v is the root-mean-square speed. For a gas this product is
about one square centimeter per second. For a liquid the mean free path is smaller, perhaps 0.1
Angstrom rather than 5000 Angstroms. Thus the liquid diffusion coefficient is smaller, about
10~% centimeters?/second. The Gaussian solution following from Fick’s Second law also predicts
that the higher moments can be expressed in terms of the lower ones. In a Gaussian distribution

all the moments are interrelated. For instance,

(z*) =3(z?)2

But the evidence from low-density kinetic theory, supported by relatively low-density
molecular dynamics simulations, is that this relation fails for diffusion, so that Fick’s laws apply

only at length scales exceeding a few free paths.

\
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Figure I'V.12
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IV.G.3 Irreversibility and Heating

Diffusion can be measured in two ways, by observing the spreading out of equilibrium
concentration fluctuations, or by measuring the steady current which results when an applied
field accelerates particles. In either case the current arises so as to dissipate energy stored in
the form of chemical potential. We can most easily understand the dissipation associated with

diffusion by considering the case in which the driving force is an external field.

For definiteness, consider two hard spheres again, with mass m and diameter o, as shown
in Figure 12, with periodic boundaries and a field +F, with units of force, pushing Sphere 1
to the right, with a field — F pushing Sphere 2 to the left. The velocities of the two spheres are
indicated by solid arrows in the Figure. On the average the isotropic scattering of spheres in a
center-of-mass frame guarantees that the velocities of an ensemble of pairs of colliding spheres,
with initial velocities +v and —v, are randomly oriented after one collision. If we calculate the
ensemble-averaged velocity gained from the field by Sphere 1, the value is just Er/m, where
7 is the mean time between collisions. The conservative field in which the particles move thus

increases the kinetic energy at the rate EZr/m.
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Why doesn’t the atmosphere, which is similarly composed of particles falling toward the
earth under the influence of a nearly-constant gravitational field, heat up in a similar way? A

consideration of the steady-state Boltzmann equation for an isothermal equilibrium atmosphere,

(af/at) + 2 (af/az) —mg (af/apz) = (af/at)collisions =0

with f given by the Maxwell-Boltzmann equilibrium distribution, shows that both time derivatives
vanish and that the other two derivatives cancel, each giving £mgv,|f/(kT)]. Thus the velocity
gained from the field exactly offsets the differential flow due to the equilibrium density gradient.

IV.G.4 Relaxation-Time Boltzmann Equation for Diffusion

Consider the homogeneous diffusion, under the influence of an external field, of a low-
density gas. We will forgo the unforgettable experience of studying the rigorous s;)lution of
the Boltzmann Equation, as detailed in Chapman and Cowling’s text. Instead we consider a
much simpler, but fairly faithful, approximation to the complete theory, the “relaxation-time
approximation”. In the time-independent, homogeneous case the relaxation-time approximation

to the Boltzmann equation,

(E/m)(0f]dve) = (fo— f)/T,

can be solved as a power series in 7, the collision time. This establishes that the first-order

perturbation to f,, is given by the equation

f1/fo = (E[/m)[mvz/(kT)]; f=fot+ fir+ ...

The corresponding distribution function is sketched in Figure 13 in terms of the angle
# defining the velocity of Particle 1 relative to the field direction. This distribution leads to a

current

J = (Nm(v2)/V) = (Nm/V) [Er/(KT)] {2 )eq = NEr/V

linear in the field and giving again for the current

J = Epr/m.

The corresponding conductivity, pr/m, is obtained on dividing the current by the field
strength. This formula should be thought of as a useful approximation, in the event that the
collision time 7 can be estimated. Alternatively this simple approach can be used to estimate
collision times from measured conductivities. In the event that better than factor-of-two accuracy

is required a many-body simulation can be carried out, as described below.
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IV.G.5 Simulations

The diffusion coefficient has been the most-studied of all the transport coefficients, ever
since the work of Berni Alder and Tom Wainwright on hard spheres. It is simplest to calculate
because mass, unlike stress and energy, is a one-body property. Despite considerable work on
the linear diffusion coefficient, appropriate to the zero-flux limit, nonlinear diffusion is not at all
well understood. We saw in Section F that the two-disk results from the Boltzmann equation
indicate a diffusion coefficient that falls with increasing field strength, just as viscosity falls with
increasing strain rate. On the other hand simulations of larger systems of Lennard-Jones particles
near the triple point show an tnerease in diffusivity with field strength. The liquid calculations so
far carried out make it possible to compare diffusion coefficients calculated using three different

methods.

(i) Green-Kubo evaluation of the velocity autocorrelation function.

(ii) Isothermal molecular dynamics in a constant field.

(iii) Isothermal molecular dynamics with a constant current.
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Figure 14 shows that the results from all three methods are internally consistent with one
another. The Green-Kubo evaluation of the diffusion coefficient, which gives only the zero-current
conductivity, has been in use ever since the pioneering calculations of Alder and Wainwright more
than 30 years ago. Both “isothermal” methods, labelled H and G in the Figure, were implemented
by constraining the kinetic energy contributions normal to the field direction, E(p"; + p2)/(2m).
The results indicated by H used a fluctuating current induced by adding an additional constant
force in the = direction. The results indicated by G in Figure 14 used instead a Gaussian
constraint force to fix the current in the z direction. In the last calculation Gauss’ Principle was
used to find the forces necessary to keep the current constant. All three approaches predict the
same diffusion coefficent (or conductivity) at zero field strength. The last two nonequilibrium
methods also give nearly the same nonlinear conductivity, within the few percent uncertainties
of the calculations. Other schemes, based for instance on keeping the energy, as opposed to the

temperature, fixed, could also be used.
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IV.H Simulation of Viscous and Plastic Flows

IV.H.1 Definitions and Typical Flows.

The three terms “viscosity”, “plasticity”, and “elasticity” are used to describe the de-
pendence of shear stress on strain and strain rate. The shear stress (minus the appropriate
pressure-tensor element) in fluids, caused by a strain rate, é = du,/dy in the simplest case, is
called viscous stress. Its magnitude is proportional to the shear viscosity n. The shear stress in
flowing solids is described by the plastic yield strength ¥. The shear stress in elastically deform- ’
ing solids is described by the elastic shear modulus G or 5. Molecular dynamics can treat all
of these three idealized cases with the same microscopic equations of motion. If the shear stress
is studied for a gradually deforming solid, the initial linear increase in stress with strain is the
product of the elastic shear modulus G and the strain ¢. If, for larger strains, as the solid deforms
inelastically, the stress is found to have a steady value, Y, this shear stress is a “plastic yield
strength” or “flow stress”. If the shear stress for a deforming fluid is studied, this steady stress,

divided by the strain rate ¢, is a “viscosity coefficient”, proportional to the shear viscosity 7.
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The three simplest flows are shown in Figure 15 for a two-dimensional square volume
element. From top to bottom these examples are compression, plane Couette flow, and simple
irrotat‘iona,l shear. The three flows can be described in terms of the fluid velocity gradient or the
solid displacement gradient, Vu. In either case, fluid or solid, these tensors have the same form.
The tensors corresponding to the three flow fields are shown in the Figure, using é to indicate
the size of the nonzero elements in the tensor Vu. In fluids the shear stress is described by the
shear viscosity and the extra compressive stress by the bulk viscosity. This extra stress is not
usually discussed for solids, and is thought, or hoped, to be relatively small compared to the yield

strength, the solid-phase analog of viscosity.

The linear relation between stress and strain, or strain-rate, is only a useful approximation,
but it is hard to go beyond that approximation. In the next order volume-element rotation must
be taken explicitly into account, and there is no consistent way to do this using continuum
mechanics. This subject generates considerable adrenalin in encounters between adherents to the
rigor mortis school of continuum mechanics. Of course there is considerable data available, both
from laboratory experiments and from computer experiments, describing the nonlinear response
of fluids and solids to shear stress. In fluids it is typically found, in the second case above, plane

Couette flow, that the viscosity is a decreasing function of strain rate.

The phenomenological description of stress in an ideal spatially isotropic elastic solid or an
ideal viscous fluid is the same, with two parameters A and n describing the resistance to changes
in volume and shape. For elastic solids these are the Lamé constants. For viscous fluids these are
the viscosity coefficients. In either case a linear combination of the two coefficients [ + 5 in two
dimensions and X + (2/3)n in three dimensions] describes the dependence of stress on volume,
with the coeflicient 1 describing the dependence of stress on shape. The stress tensors have the

form:

o= [aeq + AV - u]I +7n [Vu 4+ Yylranspose ] .

For an elastic solid « is the vector displacement from an unstrained reference configuration.
If the symmetrized tensor [Vu + Vu"“""”""] is nonzero then stress exists in the solid. For a
viscous fluid the vector u is the stream velocity. If the symmetrized velocity gradient, called the
strain-rate tensor [Vu + Vu”“""""“] is nonzero then the fluid has viscous stresses. The fluid
rotation rate is described by the nonsymmetric part of the velocity gradient [Vu — Vytronspose ] ,
the “vorticity tensor”. The fact that both the elastic solid and the viscous fluid stress tensors
have the same form can be exploited in a limited class of problems for which ¢ is maintained by

external forces (a sphere moving through a viscous fluid is an example.)
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The flow around such a moving sphere is shown in Figure 16. Both velocity profiles (line
segments proportional to the horizontal velocity) and streamlines (paths followed by elements of
the fluid) are shown. This solution of the steady viscous flow problem corresponds exactly to the
solution of an elastic problem in which an embedded rigid sphere is displaced relative to its rest

position in an elastic medium. In that case the velocity profiles shown in the Figure correspond

to displacement profiles. Even the two solutions of the fluid problem corresponding to sticking or
slipping boundary conditions at the surface of the sphere have elastic analogs, depending upon

whether or not the embedded sphere is linked to the continuum over its entire surface.

Viscosity, either shear or bulk, can be related to the lost work involved in carrying out
a cyclic deformation. Suppose, for instance, that the magnitude of the driving strain varies

sinusoidally in time with amplitude ¢, and frequency w :

€= g sin(wt); €= eowcos(wt); o =né.
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Work/cycle

" Volume Slope = Viscosity
/\ Figure IV.17 o

Then the work done per unit volume in the corresponding cycle shown in Figure 17, the

Area =

Me

integral of stress times strain rate, f oédt, is the area of the stress-strain ellipse:

(27 w) n (weo)? /2.

In order for this loss to be comparable to the thermal energy density, NkT'/V, a frequency w of

order 102 hertz is required. Thus, except in shockwaves, viscous heating is a relatively slow and

insignificant process.

Viscous flows in fluids can be described by a diffusion equation having the same form as
Fick’s Second Law. In the simplest case, plane Couette flow, with u, = éy, the x component of

the linearized equation of motion for a Newtonian viscous fluid is

(Ous/0t) = (dus/dt) = (1/p) (90y=/3y) = (n/p) (9%us/0y?),

so that the combination 1/p plays the role of a diffusion coefficient. This combination of shear

viscosity and density is called the kinematic viscosity.

We can see the importance of kinematic viscosity to a description of fluid flow by calculating
the ratio of the time required for the shear motion of the L X L square volume element shown
in Figure 18 to diffuse away, L?/v, to the time required for the element to deform (to a shear

strain of unity) L/v. The dimensionless ratio of these times is the “Reynolds Number” Re

Re=Lv/v.

For Reynolds numbers which are not too large, viscosity dominates and the flow is regular
“laminar flow”. For flows which are not dominated by viscosity (Reynolds numbers of a few
thousand and above) the flow is “turbulent”. It is interesting to see that a “thermodynamic
limit” doesn’t exist for flow problems. With a fixed velocity on the boundary, or a fixed velocity
gradient, the large-system limit always becomes turbulent. The length scale at which this happens

is called the Kolmogorov length. It is of order one millimeter for both the atmosphere and the

ocean.
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IV.H.2 Andrade’s and Enskog’s Viscosity Models.
Andrade suggested the Einstein-like vibrational model shown in Figure 19 for estimating
the viscosity of a fluid. Imagine that fluid atoms oscillate (at a frequency Vgipstein of order 1012

hertz) and that the fluid has a macroscopic velocity gradient du,/dy = é. Then, as an atom
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vibrates, it can transmit momentum between its neighbors. During a vibration time 1/vVEginstein,
these vibrations transmit momentum 2md X ¢ through an area d?, where d is the interparticle
spacing and ¢ = dug /dy is the shear strain rate. Because this momentum flux, —2vg;nsteinmé/d,

is minus the shear stress o, the coefficient of proportionality ¢/é is the viscosity coefficient

NAndrade = 2”Einateinm/d-

Numerical estimates (with Vginstein = 5 X 1012 hertz, m = 3 x 10722 grams, and d =
3 x 1078 centimeters) give a viscosity of about 0.01 poise (the centimeter-gram-second unit of

impulse or viscosity, pressure times time), about what is observed for simple fluids, such as water.

Enskog’s model for fluid viscosity is a little more complicated. He estimates the enhanced
transport of momentum through the mechanism of interparticle forces, using a hard-sphere model,
and finds an increase of up to about a factor of twenty over the low-density Boltzmann equation
value we estimate in the next section. This increase is reasonable in view of the fact that each

collision, in a dense fluid, transports momentum a distance on the order of 10 free paths.

IV.H.3 Boltzmann Equation.

An accurate detailed description of a low-density gas undergoing shear flow can be obtained
whenever the Boltzmann equation is valid. Here we again consider the simpler relaxation-time
version of that equation. To start out, we consider a local equilibrium distribution function in

which the stream velocity has a gradient,
é=duy/dy:
fol9:v) = (p/m) (20kT fm) e~ 1(mos =8 4 mel I/ GRT),

If we consider a time-independent field-free system, only the spatial gradient is nonzero

and the relaxation-time Boltzmann equation at y = 0, where (v, ) vanishes, has the form

y8f/0y = (df /dt)cottisions = — f1 = mwgvyéfo/(kT),

where we have approximated f = f, + 7f1, and 1/7 is the collision rate. The average pressure-

tensor component P,y can then be calculated as an equilibrium average

Poy = (p/m) (vsvy),, = — [pér/(ka)] (mzvivz )eq = —pkTér/m = —n¢;

n = pkT1/m.
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The viscosity coefficient is just the product of the ideal-gas pressure, pkT/m, and the
collision time 7. This time is about a nanosecond for room-temperature air at atmospheric

pressure, and about a thousand times less for a liquid.

The somewhat approximate treatment of the Boltzmann equation can be made exact in
the case of two hard spheres, with periodic boundary conditions. In that case, using spherical
polar velocity coordinates, the equation of motion reduces to an equation for the motion of 2
point, representing the hard-sphere velocity, on the surface of a sphere. The surface describes
all states of fixed energy for a sphere. This problem has been solved analytically. The solution
exhibits shear thinning (decrease of viscosity with increasing strain rate) as well as normal stress

effects.
IV.H.4 Numerical Methods.

In 1979 Evans described a straightforward method, with periodic boundary conditions,
for solving the many-body equations for an isothermal (isokinetic) molecular dynamics system,
using a highly-idealized model of 108 methane molecules undergoing shear. He describes the

macroscopic velocity field by the linear function
u=1u,+A-r,

and determines at each timestep the least-square values of the vector u, and the tensor A. A new

velocity is then chosen for each particle which reproduces the desired flowfield
u' =Br; ¢=u+(p/m)

and the velocities relative to the local velocity are scaled, in order to reproduce the desired

temperature, T = ( p?/(Dmk)) in D dimensions.

This accelerating and scaling process can alternatively be carried out in a continuous way
by solving the corresponding differential equations of motion. In the simplest case, with u, = éy

the equations of motion are:

&= (p=/m) + éy;
¥ = (py/m);
Pz = Fy — ¢ps — épy;
by = Fy — ¢py;

where the Gaussian isothermal friction coefficient ¢ has the form

¢ =Y _[F:(p/m) = (éppy/m)] [ (2Ko),

where K, is the (constant) value of the kinetic energy.
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These shear flow equations can be applied equally well to fluids, to determine the shear

viscosity, or to glasses or crystalline solids, to find the yield strength. The extension to polyatomic
molecules has also been carried out.

IV.H.5 Fluid Results.

Hundreds of simulations of fluid viscosity with systems ranging from two to a hundred
thousand particles have been studied. Many of the data can be correlated with equilibrium
thermodynamic properties, as was suggested by Rosenfeld, who plotted a reduced (dimensionless)

viscosity as a function of the reduced excess entropy $¢, as shown in Figure 20.
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The excess is measured relative to an ideal gas at the same density and temperature.
Because Rosenfeld chose macroscopte reduction parameters — volume and temperature— for the
viscosity rather than microscopic potential parameters, his corresponding states relation can be
and has been applied directly to real materials. Here the predictions have been compared to
a variety of computer simulation results. The straight line best fitting the data predicts fluid

viscosities within 30% of the molecular dynamics values for a wide range of force laws.

Why should viscosity be related to entropy? The answer is clear from Andrade’s model.
Andrade’s viscosity varied as the Einstein frequency. The fluid vibrational(!} partition function

could be approzimated by the 3N power of a single-particle Einstein-model partition function

Zyibrational = (I‘CT/hI/E,'nste,;n)mv = e 3N+(S/k)

combining this relation, S/Nk ~ —3lnv, with the Andrade-Einstein relation, lnn ~ Inv, estab-
lishes that the Rosenfeld plot should be a straight line with a slope of one third. The actual slope

shown in Figure 20 is closer to unity.

Less is known about the nonlinear strain-rate dependence of the viscosity. In two dimen-
sions the viscosity varies as Iné for high strain rates and is approximately independent of ¢ at
smaller rates. In three dimensions the data can be described approximately by a linear relation
in ¢€1/2. There is also a simple barrier-jumping model due to Eyring which predicts that the shear
stress should vary as the inverse hyperbolic sine of the strain rate. No complete analyses of these

nonlinear behaviors have appeared yet, but the problem is undergoing intensive investigation.

IV.H.6 Solid Results.

Solids can be deformed too, by applying the same equations of motion Evans used for
fluids. In solids the stress rises to a fairly high value, perhaps five percent of the elastic shear
modulus. At that point a pair of dislocations is generated somewhere in the crystal, the shear
stress drops, and the pair separates to lower the energy. Such a dislocation pair, in a hexagonal
cell satisfying periodic boundary conditions, is shown in Figure 21. The Figure should be
viewed obliquely. Compare to the periodic cell containing three dislocations shown in Figure 16
of Chapter III.

The motion of a dislocation pair through a crystal in the z direction induces a shear strain
of 2b/L,. In terms of the plastic strain rate érlastic the dislocation velocity vgisiocation, and the

dislocation density 2/L.Ly, = 2/V, Burgers’ relation results

éPlaBtic = (N’U) dislocation b/V'
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The dislocations can be clearly seen in movies made with molecular dynamics simulations,
but their behavior is a little complicated. The usual “theory” sets the rate of dislocation produc-
tion (psoportional to the jump rate cver an energy barrier) equal to the rate of annihilation, which
varies as the square of the dislocation density. Molecular dynamics simulations show instead that
the production rate varies as the cube of the dislocation density, leading to the straight lines
shown in the double logarithmic plot of a dimensionless shear stress, 0/G as a function of the
dimensionless strain rate (éd/c) shown in Figure 22. G, d, and c are respectively the shear mod-
ulus, interparticle spacing, and transverse sound velocity. By using reduced stress and reduced
strainrate, results from computer calculations in both two and three dimensions can be compared
with data, either directly measured or inferred, for real materials. The data in Figure 22 were
obtained by analyzing the shapes of plastic deformation waves in several metals. The molecular
dynamics results shown in the Figure include both two- and three-dimensional systems. These

two kinds of molecular dynamics results agree within the width of the line.
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The relatively untouched field of mesoscopsec dynamics, in which the particles are inter-
mediate in scale between atoms and macroscopic flow features, appears relatively promising for
solid plasticity. In such simulations the individual particles are dislocations in two dimensions,
or elements of dislocation lines in three dimensions, which interact with a tensor force and which
can be created and destroyed with rate laws depending upon the local stress and temperature.
The few simulations that have been carried out in this way are nicely consistent with the much

more expensive atomistic simulations.

IV.I Simulation of Heat Flows

IV.1.1 Fourier’s Law

Heat obeys the diffusion equation too, with an effective diffusion coefficient called the

“thermal diffusivity”. Fourier’s linear phenomenological law,
Q =—kVT,

relates the heat flux Q to the thermal conductivity x and the temperature gradient VT. Like
Newtonian viscosity, the basic equation defining conductivity is irreversible. @ is odd in velocity
and VT even. Fourier’s linear relation leads to the diffusion equation if it is assumed that the
conductivity x is a constant and if the temperature increase in the material is proportional to
the rate at which it gains heat, —V - Q. Then the thermal diffusivity Dz is the ratio of « to the

constant-pressure heat capacity, per unit mass, Cp, times the mass density:

(8T/8t) = DrV3T; Dr = &/(pCp).
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It is often convenient to solve heat-flow or diffusion problems using a Green’s function
solution (a Gaussian which spreads as the square root of the time) or a Fourier series. The
Gaussian solution of the diffusion equation was displayed in Section G.2 of this Chapter. If we
follow the Fourier series approach we express the temperature at any time ¢ in terms of the Fourier
amplitudes Ag(t), so that

T(r,t) =) Ap(t) e*™.

Then the diffuslon equation gives a simple exponential decay for each amplitude.

Ay(t) = e ¥ D7t g, (£ =0).

This relation gives useful order-of-magnitude estimates for the time required for thermal
equilibration. Just as in the case of ordinary diffusive and viscous flows, the phenomenologi-
cal coefficient—here Dr—is of order [centimeters?/ seconds] for gases, and some five orders of

magnitude smaller for insulating solids and liquids.

IV 1.2 Irreversible Thermodynamics

The mixing caused by diffusion and the viscous dissipation caused by stirring are easy to
visualize. Mechanical work is converted into heat. The dissipation caused by heat flow is not so
closely linked to physical experience, but, from thermodynamics, the work which can be obtained
from a given quantity of heat depends upon the temperature, so that as heat is transferred from
a hot to a cold body the capacity to do work is diminished. The dissipation or “lost work” is
expressed in terms of the rate of change of the thermodynamic entropy S where $ is (dQ/dt)/T
for a reversible heat-transfer process. Bear with the circumstance that Q, in thermodynamics, is

an amount of heat, as opposed to the fluz of heat.

Consider the case of a two-dimensional bar mentioned in Section D of this Chapter, shown

in Figure 23, connected to two ideal-gas heat reservoirs at its ends, at temperatures Ty and Tc.

| dx !

Qdy
Ty Te

(@]
=
<
&
(7.1

Qdx
Ty-Te Figure IV.23
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As the hot reservoir transfers heat to the bar, at a rate Qdy, the reservoir loses and the
bar gains entropy at a rate Qdy/Tx. A cooler reservoir at the other end gains entropy Qdy/Tc.
The sum of the two rates for the bar, one at the hot end and one at the cold end, is negative!
But in the steady state it is clear that the bar’s entropy must instead be constant. This can only

be the case if the entropy gain and loss, at the ends of the bar,

Sends = Qdy [(1/TH) - (l/TC)] 4

is supplemented by an irreversible entropy production,

Sintarnal - (Q dy/T) [(T/TC) - (T/TH)] = _(Qdy/T) (1/T)< dT/dID> dzx.

so that the total steady rate of entropy change is zero:

Sbar = Sends + Sinternal = 0.

In the “linear” regime where Fourier’s law holds, we can expand the high and low tem-
peratures about the average value and replace the temperature gradient with —Q/x with the

result

Tsinternal = QZV/(K‘T)

This result resembles those for diffusion and viscosity. In all three cases the rate at which

(free) energy is converted into (lost) heat varies as the square of the corresponding flux.

IV.1.3 Einstein Conductivity Model of Horrocks and McLaughlin

Horrocks and McLaughlin suggested that the heat conductivity could be estimated from
an Einstein model resembling Andrade’s model for viscosity just described in Section H. The idea
is the same. A particle oscillating at the Einstein frequency Vginstein Will transport heat from
its hotter to its cooler neighbors, through a microscopic area of order d2. If we use the classical
duLong-Petit heat capacity, 3k per atom, then the transfer of energy per unit time and area is
approximately —3kd (dT/dx) v/d®. For this to reproduce Fourier’s linear relation, @ = —x VT,

the conductivity k must be given by the relation

=3k VEinatein/d-
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This crude model is considerably better than might be expected. In Figure 24 simula-
tion data are displayed as points and curves, again using macroscopic parameters, volume and
temperature, to define a reduced transport coefficient. Again S° is the excess entropy. The
slope of the plot is somewhat greater than the prediction of 1/3 which follows from Horrocks
and McLaughlin’s model. The more sophisticated phonon scattering theory predicts that the
conductivity varies as 1/T. For dense fluids the conductivity is considerably closer to Horrocks

and McLaughlin’s temperature-independent relation.
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IV.1.4 Boltzmann Equation

An approximate Boltzmann equation can be written for the heat-flow problem. To do
so, consider an unperturbed distribution function that has density and temperature gradients

satisfying the constant-pressure relation

(dlnp/dz) + (d1nT/dz) = 0.

Unless the gradients balance in this way the resulting pressure gradient would generate sound or

shock waves to smooth out the force imbalance.

In the low-density Boltzmann-Equation regime, the unperturbed distribution has the form

fo= [P(Z)/m] e—mv? /(25T ()] [27rlcT(:I:)/m] —D/2.

The spatial gradient terms in the Boltzmann equation operate on both the density and the
temperature. But these variables are constrained to obey the constant-pressure ideal gas law, with
the product pT constant. The familiar procedure of expanding the solution of the relaxation-time

Boltzmann equation about f, leads to a perturbation expansion:

f=fot fir+.;

with

fi = = fox (dInT /dz) [(mv?/2kT) — (D/2) — 1)]

from which the conductivity can be estimated. In Boltzmann’s rigorous kinetic theory, in which
the dependence of collision time on velocity is correctly taken into account, the heat conductivity
is given, within about 1%, by the same cross section integral as is the shear viscosity. On the
other hand, the heat flux seems to be intrinsically more complicated than viscous momentum
flux, involving a higher moment of the velocity distribution and having a vanishing value at
equilibrium. Another example of this relative complexity is that there is no heat flux in a two-
body system with fixed center of mass. Symmetry requires that the two particles move oppositely
so that the net heat flow must vanish. Three particles are enough to generate a heat current,
as we will emphasize in the next section. But three particles lie outside the scope of the two-
particle Boltzmann-Equation description, which is concerned with the effect of uncorrelated binary
collisions. Thus the close connection found at low density between viscous flow and heat flow seems
to have no parallel for liquids. Viscous flows are most simply generated by moving boundaries
which incorporate the strain rate. Heat flows use instead an external force, first derived by Evans

and Gillan, to drive the heat current Q.
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IV.L5 Evans and Gillan’s Driving Force for Heat Flow

Evans and Gillan independently showed how to relate the dissipation from heat flow to an

external force in such a way as to reproduce the Green-Kubo heat conductivity,

w= /FT?) [ (Qul0)Qu(0) .

Their styles are very different. Gillan uses approximately 100 equations in his derivation; Evans
uses 3. But the results are essentially the same: to generate a heat current flowing in the z

direction, the additional force

MSE +VSPE, VEPE, VEPE)

Tz zy?
is added to the equations of motion. This force reproduces the Green-Kubo heat-flux autocorre-

lation formula for x and the thermodynamic dissipation 7'S = QIV/(kT).

This nonequilibrium force is the basis for an efficient simulation method generating con-
ductivities using periodic boundary conditions. A variety of solid and fluid systems, ranging from

several hundred Lennard-Jones particles down to three hard disks, have been studied.

The heat flow problem is unique in that it provides the only known mechanical problem in
which Gauss’ Principle of Least Constraint, described in Section D of Chapter I, predicts tncorrect
results. If that principle is used to constrain the heat flux to a constant value, equations of motion
slightly different from those of Evans and Gillan result. In the Gauss’ Principle version it is the
complete pressure P, not just the potential part P¢, which couples to the external field A. It is
possible to show that this produces erroneous results, in conflict with the Green- Kubo expression
for heat conductivity. The numerical consequences of this error have been shown to be small, of
order 10% or less. This case is unique. The other nonequilibrium methods we have outlined, for
diffusion and viscosity as well as heat flow, all can be shown to reproduce the exact Green-Kubo

linear-response results.
IV.1.6 Results

The conductivities found for fluids are displayed in Figure 24 in the simple way suggested
by the Horrocks and McLaughlin model. In that model the conductivity is proportional to the
Einstein frequency. The Einstein model can be used to estimate thermodynamic properties too,

from the approximate partition function
e~ ABinstein/(NKT) [kT/(hI/Einstein)]s = ¢ 3T(S/NR),

This partition function suggests that the entropy per particle varies as —3kInvgipstein, 0 that
a semilogarithmic plot of logarithm (conductivity) versus entropy should be a straight line, with
slope one-third. Although the best slope for such a line is actually about 0.4 rather than 0.33,
the basic idea is an extremely useful one. There is an excellent correlation between the computer

simulation results for a wide range of force laws linking the conductivity to the entropy.

P
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Heat flow requires three particles and, for a finite conductivity, a mechanism for dissipation.
This dissipation is the scattering of energy traveiling in the z direction into the y direction. The
simplest system meeting both requirements is three hard disks. There is no difficulty in solving
the isothermal or isoenergetic equations of motion for three disks. The main surprise is that the
pressure and heat flux in such a system differ for the two kinds of mechanics. The fluxes are
somewhat greater in the isokinetic case. This difference, between the isokinetic and isoenergetic

fluxes, emphasizes the point that hard disks and spheres only exist as idealizations.

The resulting heat conductivities for the three particles lie well below those expected for
a large system at the same density and temperature. But the conductivities vary nearly linearly
with the logarithm of the driving force ) over the 32—fold range of values studied. See Figure
25. This logarithmic behavior is predicted by the mode-coupling hydrodynamic theory. It is
surprising to find the same dependence in a very small system with only a three-dimensional
velocity space, six velocity components less two for the center of mass and one for the energy
conditions. This result, and similar results for viscous flows and for three-dimensional flows,
suggest that the nonlinear behavior of systems far from equilibrium can probably be understood

qualitatively on the basis of very small system results.
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The Evans-Gillan method for generating heat flows without temperature gradients is de-
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V. Future Work

A decade ago Mansoori and Canfield suggested perturbation methods which led to quanti-
tative solutions of equilibrium problems for simple dense fluids. Now, methods are being developed
to simplify the treatment of nonequilibrium problems. There already exist efficient trustworthy
molecular dynamics algorithms for simulating diffusive, viscous, and conducting flows as well as
flows coupling pairs of these phenomena. All of these schemes are consistent with the Green-
Kubo linear response theory, and all of these schemes produce reasonable nonequilibrium flows,
although none of them has been proven valid in the nonlinear regime. Much work remains to be

done in articulating the “well-posed problems” needed to justify the nonequilibrium methods.

From the standpoint of applications to materials science and engineering the slow progress
in solving the quantum many-body problem guarantees that inverse power potentials, as well
as combinations such as the Lennard-Jones 6-12, and exponential-six potentials, and the more

intricate semi-theoretical models will dominate molecular dynamics simulations, for the forseeable

future.

In problems involving homogeneous flows, without boundaries, the nonequilibrium algo-
rithms have reduced number-dependence in the results. But there are many important problems
involving physical gradients, such as shock and detonation waves in which all the field variables
cover a range of values. For such inhomogeneous systems larger and faster simulations are neces-
sary. Because individual processors are reaching limiting speeds, improvements are being mainly
obtained by combining many processors in parallel. Simulations with millions of particles will
soon be a reality. Likewise, the possibility of storing and processing billions of numbers makes it
possible to characterize distribution functions in quantum problems and nonequilibrium problems,

areas now made difficult simply by the requirements on storage capacity.

The flexibility in simulations will make it possible to follow the flow of relatively com-
plicated molecules in channels, to solve problems involving friction and wear, potential energy
surfaces with chemical reactions, and quantum mechanics. In the quantum case it is not yet clear
how to proceed in problems for which no Hamiltonian is available. It is for this reason that the
Nosé Hamiltonian thermostats will prove particularly useful. When these thermostats are ap-
plied to quantum systems even present computer capacity is sufficient to treat two- or three-body

problems, such as those discussed in Sections D and F of Chapter IV.

Recent developments in the theory of dynamical systems have revealed shortcomings in
the traditional theoretical approach to statistical mechanics, which ignores the mixing effect of
periodic boundaries as well as the Kolmogorov entropy associated with Lyapunov instability. The
language and computational techniques borrowed from nonlinear dynamics will aid the develop-
ment of the nonequilibrium theory. An old approach which also promises to gain from the new
techniques is the dynamical response method developed by Gianni lacucci, Giovanni Ciccotti,
and Jan McDonald.
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Thus we anticipate that the mysteries of entropy far from equilibrium, the problem which
motivated Boltzmann, will soon be effectively laid to rest by quantitative siraulations. The work
that Boltzmann began is accelerating now and shows no sign of reaching limits on its ability to
stimulate the development of the sound physical theory necessary to the analysis and control of

physical processes far from equilibrium.

Bibliography for Chapter V.

For a look ahead there is no better source than the Proceedings of recent conferences.
See “Nonlinear Fluid Behavior”, the Proceedings of the Boulder, Colorado 1982 Conference,
published in Physica 118A, 1 (1983) and the Proceedings of the Lago di Como 1985 Enrico
Fermi International Summer School, “Molecular Dynamics Simulation of Statistical-Mechanical

Systems”, soon to be published by North-Holland Publishing Company and the Italian Physical

Society.




INDEX
Adiabatic Sound Waves . ... ..u.eietouniitiiiiitietit it itiiatt ittt ettt 60
Andrade’s Viscosity Model ................... et iaeataaaeaaa s 118,122
APDeEll’s Cart L.t e e ie i, 23
Barrier Jumping vie Lagrange’s Mechanics ... ...ttt 13
BiIll Ashurst ..o e i, 92
Bird’s ApproXimation .. ...ueeeeeneeeietetee et taeaae e e i e anaeaa 75
Boltzmann Equation .......oiniiiiiitiiii ettt ittt et e e 72
Boltzmann Equation for Diffusion .........cocoiiiiiiiiiiiiiiii it iiiiiienennns 103,104,111
Boltzmann Equation for Heat Flow ........cocvviiiiiiiiiiinnin... et 128
Boltzmann Equation for Viscosity ................... Y 119
Bouncing Ball and Lyapunov Instability ...... ...ttt e ianinanen 8,9
Canonical Probability Density ......c.iiiiiiiiiii ittt iiieiaanaeanans 17,29
L0754 .73 = Pt 107
Coexisting Phases . ...t e it i e e 69
Comoving Frame ...................... ettt ettt e e eeieeaeaeaea 47
Compressible Flow of Phase-Space Probability ................. e et aeaaaas 29
Conductivity for Fluids ... ..ot i i i i ettt ettt et ieai e eaaas 129
Conductivity for Three Hard Disks ... ittt iaeaaen 100,130
Constraint Forces ... ...ttt it i it it e ettt e 92
Continuity Equation of Continuum Mechanics .........ooieiieneiiet i iiinarinienanns 48
Continuum Mechanics for Shockwaves ... ... o i e 82
197635315 o) B0 N 11703 o 2 94
Constant-Temperature (Gaussian) Mechanics ........ ..o 26
Constant-Temperature (Nosé) Mechanics ..........c.oooiiiiiiinn.... e 19
Corresponding States for Heat Conductivity .......coiiiiiiiiiiiiiiiiiiiiiiiiiennneia. 127
Corresponding States for ViSCoSItY «..uveinaiienieinereeenereaiateeaereeaneraneananes 121
Crack Heallmg . .ooioiieiii i e et e i ettt e et e ataen e aanaeaananan 88
Crack Inertia .. ...uonoo i e e e i 88
Damped Oscillators . ..oouiiiiiiiii it ettt ettt et et 28
Diatomic Constraint Force ........iiiiiiiiii ittt it ettt et aaeaanaaanas 24
Differential Control ..ottt ittt ettt et et 94,99
Diffusion Coefficient for Two Hard Disks ... .. .o ittt iiiaaianns 104
Diffusion Equation Solution from Fourier Series ...... ..o iiiiiiiiiiiiiiiiiiiiiaian. 125
B JEE) Co TN T o 09 o A 89
Dislocations in Solid Plasticity ........cccooieiiiiaiit. i tteeeieeiieataeaeaaaeaaas 122
Displacement Coordinates for Elasticity Calculations ...........c.ciiiiiiiiiiiiiiiiiaanant 57
DrIVING FOTCeS ..ttt ittt ittt it it et e ettt e et ta e 92
Einstein Conductivity Model of Horrocks and McLaughlin ............cooooiiiiiiiiaon. 126




135

Einstein Viscosity Model of Andrade ..........ciiiiiiiimiii e e, 118
Elastic Constants ...ttt ittt e et et e et e it et 59
Bt eIty o et 114
Elastic Strains . .uvinuiinnie ittt ittt ittt it ettt et e et aaa., 57
Energy Equation of Continuum Mechanics ....... ... i i i, 52
Enskog’s Viscosity Model ..o e e e 118
Entropic Variables ...... ..o e e 43
Equation of Motion of Coﬁtinuum Mechanics .....ooeiieiiiiii it i 50
B Lo § T3 12 P 4,45
Eulerian Coordinates .........ieiiuiiieiiiiiiitorieiineiettieterereraeiarararnenanennnnn 47
Evans-Gillan Heat-Current Driving Force ...........ioiiiiiniiiiiiiieaiiininn.. 98,129
Eyring’s Viscosity Model ... oo i e e 122
Feedback ... .o e 94
Fermi-Pasta-Ulam One-Dimensional Chain ............coiiiii i, 35
Fick’s First and Second Laws of Diffusion .........ciiiiiiiiiiiiii it 108
First Law of Thermodynamics ......uuiiiniiiieeiiiie ittt eii e ieeaaaneeannns 52
Force Law for Rare Gases ....iuiuiuinnotonentntea e et ettt it e et aaanss 72
Fourier Heat Conduction and Thermal Diffusivity ......oovviiriiiiiii i 124
Fractals .« .ot e e e 106
Fragmentation SImulation ........ciiniiiiiiiiiiiiiiiiii it ea ittt 84
Free Volume and Chemical Potential ...... .. .. . i i, 45
Friction Coefficient ¢ .. ..ouiuiuiiii i e 31,45
Future Developments .. ... i e i e e e 132
Galton Board .. ... e e e 102
Gauss’ Mechanics ... . i e 22
Gauss’ Principle ... i et 22,24
Gauss’ Principle Failure for Heat Flow . ... i ittt 129
Generalized (Phase-Space) Continuity Equation ...........c.oiiiiiiiiiiii ..., 27
Gibbs’ Variational Principle ... ... i e i 69
Grady-Glenn Model for Fragmentation ......c.oouuiiiiiiiiiiiiiiiiiii it iaaiennen, 83
Gravitational Forces and the Thermodynamic Limit ........ ... i, 11
L5 1 1
Green-Kubo Linear-Response Theory ........ioiiiiiiiiiiiiieiiiiieiiiieaaneinnanns 98,101
Hamilton’s Mechanics . ... ... . i i i e i i et 16
Harmonic Oscillator ... ... . i e ittt e 19
Heat Conducting Chain .........iieoiuiiii i it iaiaeaannn, e 97
Heat Conductivity for Three Hard Disks ...cooiiiiiiiininiiii i iiiiiiiieeaaeinn,s 100,130
Heat-Current Driving Force ....... ..ot ittt it e aaiananans 99
Heat Flux Vector ... e et e ettt ettt et e eeananeanns 52




136

Heat Theorem ..ottt ittt ettt tanetasatttaeeriateeantareanasearonnaannes 54,59
Helsenberg Picture ...ttt ittt e et e ettt e e e e aa et aaaanaan 47
Holonomic Constralnts .......uiueinneiiiieiiriii it itia et iitenataneceranaenness 13
Homogeneous Deformation .......c.o.ioiiiiiiiiiiiiiiiii i iiiiiiettneaniteraranen. 57
Hugoniot ...........ooitl. Rt 80
TN ormation Theor Y ettt ittt it cateaeeteiaaaaeaaanaeeaanaerneaaneenanneaneanas 44
Information Theory Pitfall .. ...ciiiiii it ittt et iteetaannnncenne 105
Integral Control . .....i it ittt ir it ettt et eeeaniaeraineaanaraataaanaaan 96,99
Interface Between Fluid and Solid ....... ..o e i 92
B0 o3 €31 oY 1 1 A 73,110
Irreversible Thermodynamics of Heat Flow ... ..., e 125
Isokinetic Canonical Distribution .........ociuii i i i et 29
Isothermal Constraint Forces .........o.iiiiiiiii ittt 94
Isothermal Molecular Dynamics ....euu ittt ittt iaiaeteeiesnnaannnns 94
Jaynes’ Information Theory . ....ueiuiieiei ettt e et eeaeeennaaneannnes 44,105
Jaynes-Zubarev Distribution Functions .........coiiiiiiiiiiiiiiiiniiitieiiiirianeanns 101
B oY 11 T 0 U 1
Kolmogorov-Arnold-Moser TOrl ... ...uiiuiinenri et ittt i it it ateaaaaaaanans 35
Lagrange Multiplier .. ... vinuiiiiiii ittt ittt it et et aereaneennereannannes 25
Lagrange’s Mechanics .. ..ouut ittt ettt ettt e et ety 13
Lagrangian (Comoving) Coordinates .........c.euviuteunerntomimieiieenneeinenaeaeennn. 47
Lamé Elastic Constants ... .....uuetetuot ettt ea ettt aeaaaans 115
Langevin Equation . ... i i e e e 95
Lattice-Coordinates Virial Theorem ... ... ..ottt iieaaaanans 56
Least Action Imtegral . .....iuoieiii ittt ittt ettt e et ea i eanean 14
Limit Cycles {Rayleigh and van der Pol Equations) .........cooeeiuiiiiiiiiiinienen. .. 96
Liouville EQUation ... ..oinii ittt ittt et ittt aa e et 31
Loschmidt ObJection ... .uu ittt ittt ittt e ieeaatee et easneaaneeanenannnenannn 4
Lyapunov Instability .. ..ot i e et e i 6
Mayers’ Expansion of Dense Gas Partition Function ......... ... i, 62
Mean-Squared-Displacement Divergence in Two Dimensions .............coeeieiieiianin, 63
Mechanical Variables .. ... ..ottt e et ettt 43
Melting of Hard Hyperspheres .. ...ciueeiiitiiiiiin i eaeteeeteenaoaeeeteraneenenanenennn 65
Melting of Two Hard Disks .....ooiniiiiiiiiii ittt et et cieanenaes 65,66
Mesoscopic Dynamics of Dislocation Motion ........c.uiiiioiiiiiiiiiiiiiiiiiiiaaiieanns 124
Mixing in Phase Space from Periodic Boundaries ......... ... i, 34
Newtonian Molecular Dynamics .......oitiiiiiiii it ittt it ieaiieaaanns 72
Newton’s Mechanics .. ... ittt e e e et iee e e s 1

coman his A BRS San )

g




T e T e B e e e T Mt M S Bt it P, P Wt . B i . o Mttt .o e, PPttt sttt Wi, Wl i e e, At s,

137
Nonlinear Diffusion Coefficient from Molecular Dynamics .............c.coiiiiiiiieaa... 113
Nonlinear Nonholonomic Constraints «.......ueueeiiiieriiiit i aiiieaianenannn. 23
Nonlinear Response Theory . .......oooiiiiii ittt it t i aieieaaanns 101
Nosé Hamilbomian . ...eeiuiiiiiiiiii ittt ittt ittt aaeaaaantennaeananennns 20
NOSE Ideal Gas ...uutinteiiiiii ittt ettt ettt et eiaetaateaaneteaneaanasaaaneesnsnans 32
Nosé Mechanics Derivations ... ... ...iuiiioi it i it et et eaaas 31
Nosé Osclllator .. ...t ettt et e et e, 20
Nosé’s Mechanics . ..ot e i et e e e 16,27
Number-Dependence ... ....uiiuiunititiiiiitienirtttettiteii et iatintanaatataaanass 62
One-Dimensional Chain .. ... ... i i ittt et eaae e 66
Periodic Boundary Conditions ........iuuiiiroiiiiiiiiii i ineiiiane e riiaaanaanns 10,63
Phase Diagram for Hard Spheres ... ccoiieiiiiiniiiiiii ittt ittt anaannnns 68
Phase-SPace MIKITLE .t ctiutnutan e e taneenataneestaanaaneseanneeeessasaneansesancnans 34
Phonon Scattering Theory of Heat Conductivity ......coooiiiiiiiiiiiiiiiiiiiienan.. 127
Phonons in a Three-Particle Chain ......c.iieiiiiiiiii i it i 98
Plane Couette Flow ...t i i i et ettt ettt et aia i aaaens 115
g 73 5 17 2 114
Poincaré Section for Nosé Oscillator .........oeiiiiiiiiiiii it ittt ieianans 35
0 o T N 99
Pressure Tensor «.oe vt i e i i i et i e 50,58
Pressure Tensor Symmietry . ..ottt ittt a e naeiaetarennnteaaanaanaaeraens 51
Principle of Least Constraint .. ....c.oouriiiiiiiiiirn it iei it iea e eataenenerananins 22
Probability Density in N-Body System .......c.ivieiiniiiiiiiiiiii i iiiiannaaeaanns. 27
Proportional Control .. ... ... i e e 95,99
Puncture Plot ... e e ettt e it e e 35
Radiation Damage Simulations ......c.eiiiiiiiiiiiiiiiiiiiie i iiiiiiiiiieiaianaaieaaaes 39
Rankine-Hugoniot EQUation ......oeeiiiniiiiiiiiiiiiiiiatianrreiearnaraaneacaneanns 80
Rayleigh Line for Shockwave States .....o.viiniiiiiiiiiiii i i eiieaas 80
Rayleigh’s Equation for Nonlinear Oscillations ........ ... o ittt 95
Relaxation-Time Boltzmann Equation .........oiiiiiiiiiiiiiiiiiiiinieann... 74,111,119,128
Reevers bty .o e et e i e et e, 4
Reversibility Paradox ... ..ot e e et 35,73
Reynolds Number ...ttt e et ittt at e enannaenns 117
Rigid Diatomic Molecule using Gauss’ Principle ....... ... ..ol 24
Rigor Mortis School of Continuum Mechanics .........ooiiiiiiiiaiiiiiiiiiiiiii, 115
Rigor Mortis School of Statistical Mechanics ........ .o i i 6
Rigorous Kinetic Theory . ...uuuuiuiiiiiiii it i ittt it e i tanes 128
Rosenfeld Relation for Viscosity .....c.oiiiiiiriiiiiiiiiiiiiiiiniiiititiannaaeaaaeranans 121
FST 1T DU 1 T=0:S ol g T8 120 o -SSP 47



138

Second Law of Thermodynamics . ....eueeuiueuiuiniitiaieieiiniiiiiainiiiaeeniieninn. 4,37
Shear Deformation ... ... ...t i it ettt e 85
Shear Thinning for Two Hard Disks ......coiiiiiiiiiiiiiii it i ittt eannannnn 106
Shockwave Kurtosls ...ttt ittt ittt ittt ittt ittt iei et eanaaenanenaes 82
Shockwave Profile ... . i i e 78
Shockwave SImulation .........oiiiiiiniiiii it i i it ettt ittt it 77
Shockwave Width ... ... i i it et e e 81
SierpInskl S PONge . ot e 107
Stable Motiom ...ttt e e et 7
State Variables ... ... i e 42
Steady-State Atmosphere from Boltzmann’s Equation ...........cooiiiiiiiiiiiiniianan.. 111
Strain-Rate Tensor .. ...ttt it ittt ittt 114,115
Stress Concentration ... ..ot i e i et et 87
Symmetry of Pressure Tensor ..ottt eii ittt iretieaiateaaeterotranataanenaaenn 51
B3 o5 - Vo 27,43
Temperature-Dependent Hamiltonian of Nosé ....... .. oo iiiiiiiiiiiiiiniiienann. 19
Temperature of a Many-Body System .....uiniiieiiiiiiiiiiiiiii ittt ieiiaanenaans 26
Thermodynamic Limit ... oo i i e e e 12,117
Three-Particle Harmonic Chain ......c.iieiiiiiiiiiiiiiiiiiiieiiiieeaiiiennenennaanns 67,97
Time-Dependent Perturbation Theory ........ccoooiuiiiiiiiiiiiiiii it iaaaanns 60
THOE REVEISAL -« v e eeee et e e e e e e e e e e e e e e e 5,19
Time Scaling 0f INOSE . ..ottt ettt et et et et eaaaans 21
Toda Potential for Ideal Gas ERergy «...oueeniietitinii ittt cie i aeaaaeas 32
Triangular-Lattice Frequency Distribution .........oiiiiiiiiiiern ittt iiiiaaiieenanas 86
Triatomic Molecule with Two Holonomic Constraints ........ooeiiiiiiiiiiiiiiiinin. 14
Triple Point Simulation .. ... et it ittt et sttt 69
Two-Particle Relaxation-Time Boltzmann Equation ........c.c.oiiiiiiiiiiiiiiiiiiiiiiaat, 74
Uncertainty Principle .. ...ttt ettt et e et eeanaaaaaaans 9
Unstable Motion . ... e e 8,9
van der Pol’s Equation from Rayleigh’s Equation ........ ..o, 95
Verlet (Stdrmer) Algorithim .....u.iiiiiiiiiii i e e 3
Virial Theoremn . ..ottt ittt et et e et e e 2,54
BT T Te) E- Y1 7Tl AU 61
Y T =3 114,121,122
Viscosity for Two DisKS . .oviniititi ittt ittt it etaaaetaneanennresasaacacans 65
Viscous Hysteresis ...ouuuiiniiiiiiiiiiii ittt ittt e it 116
Vortex Shedding - . un .t ittt e e e 75
0 T A N 1 V-1 o AU § I3

Zermelo-Poincaré Objection .........coociiiiiiiiiiiiainn, TP 4






