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We study the precision dependence of equilibrium and nonequilibrium phase-space distribution functions for 
time-reversible dynamical systems simulated with finite, computational precision. The conservative and dissi- 
pative cases show different behavior, with substantially reduced period lengths in the dissipative case. The 
main effect of finite precision is to change the phase-space fraction occupied by the distributions. The conver- 
gence of thermodynamic averages is only slightly affected. We introduce and discuss a simple stochastic model 
which is nicely consistent with all of our numerical results. This model links the length of periodic orbits to the 
strange attractor’s correlation dimension. 
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I. INTRODUCTION 

“Double precision,” with approximately 14 decimal dig- 
its represented by 48 binary bits, is the usual choice in com- 
putation. Thus numerical simulations representing “continu- 
ous” dynamical systems actually take place on a finite 
computational grid of states. It is natural to consider and 
investigate the effect of this finite precision on the ergodicity 
of flows and on the convergence of time and phase averages 
as the small-mesh “continuum limit” is approached. Such 
an investigation is timely, because computers are just now 
becoming fast enough to make such studies possible. Today 
it is feasible to study billions of iterations of low- 
dimensional maps and flows, evaluating the influence of fi- 
nite precision on averages over the numerical evolutions. 

Theoretical treatments of chaotic dynamical systems 
sometimes focus on “periodic orbits” [l], trajectories with 
exact recurrence of an initial phase-space point. It is natural 
to consider and explore the time-periodic structures from 
finite-precision simulations by generating such periodic or- 
bits numerically. Evidently any deterministic algorithm must 
in principle result in a periodic orbit. As the computational 
precision is increased, the number and lengths of these peri- 
odic orbits determine the rate of numerical convergence to 
the continuum limit. An empirical finding, dating from the 
early days of computer simulation, is that 14 digits are 
enough. We consider the details here by studying the effect 
of reduced precision-from one to 14 decimal digits-for 
two kinds of representative systems, maps and flows. Both 
these system types are investigated here at and away from 
equilibrium. The actual systems considered are detailed in 
Secs. I1 and 111. Numerical results, followed by a straightfor- 
ward “stochastic model” consistent with them, make up 
Secs. IV through VI. A discussion section interpreting these 
results concludes the paper. 

11. GALTON BOARD 

The Galton board problem [2-81 follows the progress of a 
mass point with velocity (x,y)=p/m, driven by an external 

1063-65 1X/2000/62(5)/6275(7)/$15.00 PRE 62 

field E. The moving particle undergoes collisions with a pe- 
riodic (triangular-lattice) array of hard-disk scatterers. The 
disk diameter is u. Consider first the “equilibrium” conser- 
vative field-free case. Between hard-disk collisions the mass- 
point motion is a straight line: 

x r  ‘XO+tXO?, y r  =yo+yot .  (1) 

The nonequilibrium case, with the field on, is more inter- 
esting. Energy transfer, from the field to the mass point, 
makes it necessary to thermostat the motion to obtain a sta- 
tionary state. Between collisions the thermostated motion, 
with the “isothermal constraint” of fixed kinetic energy 
(fixed kinetic temperature, with p2=rnkr )  follows a tran- 
scendental trajectory. The motion equations follow from 
Gauss’s principle of least constraint [1,2,4]: 

Px 
(=E--. 

P2 
(3) 

The friction coefficient l is chosen to keep the kinetic energy 
(p2/2rn) constant. Any trajectory resulting from these non- 
equilibrium motion equations has an analytic solution [6]. 
But, in practice, it is simpler to generate the trajectories with 
fourth-order Runge-Kutta integration. The geometry of the 
Galton board is shown in Fig. 1. Figure 2 shows the distri- 
bution of collisions for a (relatively strong) field of E 
=4(p2/rnu) pointing in a direction parallel to a row of near- 
est neighbors. We adopt the usual special choice of the scat- 
terer density-$ the maximum possible density. The motion 
takes place in a three-dimensional constant-temperature 
phase space. The two-dimensional distribution shown in the 
figure is a Poincari section, with individual points corre- 
sponding to collisions, as detailed in Sec. IV. The Poincari 
section is multifractal, with a box-counting dimension of 
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FIG. 1. Unit cell of the periodic Galton board. The field E is 
parallel to a row of nearest neighbors. 

DBc=2.00. an information dimension of DI= 1.54, and a 
correlation dimension of Dc= 1.43. See [3] and [lo] for defi- 
nitions of all these fractal dimensions. 

111. TIME-REVERSIBLE DISSIPATIVE SHEAR MAP 

The second model we consider here is a time-reversible 
dissipative ergodic map M. This dissipative shear map was 
developed [5] to mimic the time-reversible compressible 
phase-space flows of nonequilibrium many-body systems. 
The map M maps a point ( x , y )  in the periodic unit square, 
centered at the origin with ( -  0.5<x< + 0.5) and ( -  0.5 
<y<+O.5), onto the “next” point ( x ’ , y ’ )  in the same 1 
X 1 square. The map M can be written as a combination of 
two area-preserving incompressible shear maps X and Y and 
a compressible dissipative map P: 

M= XYPYX. (4) 

X and Y are shear maps with unit strain (the combination 
XY is the so-called cat map [lo]): 

X: ( x ’  = x  + y ;  y ’ = y ) ,  (5) 

Y:(x‘ = x ;  y ’ = x + y ) .  (6) 

’ 0  XI2 x 
01 

RG. 2 .  Distribution of collision points for the periodic Galton 
board at E = 4 ( p 2 / m a )  and $ of the maximum scatterer density. 

t 

-m ‘ +m 
FIG. 3.  The map P maps the x coordinate of a point ( x , y )  with 

x>O onto its proportional mirror image in a mirror placed at n. 
Similar operations are carried out for negative x, as shown in the 
figure, and for the y coordinate. 

Periodic boundary conditions ensure that the images gener- 
ated by X and Y, and indicated above by primes, lie in the 
unit square. The map P, for “proportional,” corresponds to a 
reflection of both the x and y coordinates in “mirrors” 
placed at the locations ? m  on both the n and y axes. The 
reflection operation is illustrated in Fig. 3 for reflection of the 
positive x coordinate. Such a coordinate is mapped onto the 
next coordinate x ’ :  

and 

Analogous operations are carried out for negative x coordi- 
nates and for y coordinates. For the special value m = a the 
map P is incompressible and preserves area exactly, 
d x ‘ d y ‘ = d x d y .  For all other choices of m there are coexist- 
ing expanding and contracting regions. As a result, the com- 
bined map M=XYPYX produces a multifractal phase-space 
probability distribution with an information dimension 
strictly less than 2. 

Both the shears and the reflections are time-reversible op- 
erations. This means that the “time-reversed” point ( x ‘ ,  
- y ‘ )  maps into the reversed initial point ( x , - y ) ,  so that the 
y coordinate plays the role of a momentum. Because the 
composite map M is simultaneously ergodic, mixing, and 
time reversible it has all the properties of typical nonequilib- 
rium systems except for the “flow property” of obeying a 
set of ordinary differential equations. Point distributions 
{ x , y }  generated with the map M for different values of 
Am= 4 --m are shown in Fig. 4. 

IV. FINITE-PRECISION DISTRIBUTIONS 
FORTHEGALTONBOARD 

In the Galton board, collisions of the moving particle with 
the scatterers can be described with two angles a and p. As 
shown in Fig. 1, the angle a specifies the point where the 
particle hits the scatterer and p is the angle the outgoing 
velocity makes with the normal at the collision point. The 
phase-space flow generated by the equations of motion [6] 
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FIG. 4. Point distributions generated with the shear map M for a - m = 0.01 (upper left), A m  = 0.05 (upper right), A m  Am 
=0.10 (lower left), and Am=0.15 (lower right). 

maps a collision point (a,sinp) forward to a new one 
(a‘ ,  sin p’). We artificially reduced the precision of the com- 
putation by dividing the ( a ,  sin p) plane into N = n X n equal 
rectangular cells. Trajectories were generated by randomly 
selecting one of the cells and taking that cell’s center as the 
initial point (a,sinp).  Then, (a,sinp) is mapped to a new 
collision point (a’ ,sin p’), defining the cell from which the 
next center point is selected for further mapping. This pro- 
cedure is schematically illustrated in Fig. 5. In an n X n array 
of N cells each choice of an initial point eventually results in 
a subsequent periodic orbit of length less than or equal to 
N = n 2 .  

The sampling of all possible trajectories can be made ex- 
haustive for n less than a few thousand. These coarse-mesh 
results establish the presence of occasional “fixed points” 
(center points that map into the same cell) together with a 
relatively large attractive periodic orbit. In some cases there 
are additional smaller periodic orbits too, but generally a 

FIG. 5.  To artificially reduce the precision of the computation 
we partition phase space into N equal cells and identify all points in 
a cell with the cell’s center. Starting from a point no the mapping is 
camed out with full precision, producing the point xi (open circle), 
which is then mapped onto the center x, of its box (full circle). 
Iteration of this procedure yields deterministic finite-precision tra- 
jectories. 

I I 
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n 
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FIG. 6. Average transient length (circles) and average period 
length (squares) for the periodic Galton board for E = 0 . 0 p 2 / m u  
(top) and E = 4.0p2/mu (bottom) as a function of the number n of 
cells per side. The two-dimensional (a,sin P, collision space is di- 
vided into a total of N = n 2  cells. The average total length of a 
trajectory is the sum of the average transient and the average period. 
The straight lines have slopes Dc/2= 1.000 (top panel) and D,/2 
= 0.715 (lower panel). 

unique largest periodic orbit is obtained from most of the n2 
initial points. This largest orbit contains only a small fraction 
of the total cells. Table 1 lists the number of filled cells 
eventually obtained in the stationary state resulting from the 
repeated iteration of the smaller maps for both the conserva- 
tive (field-free) and dissipative versions of the Galton board. 
These results were obtained with exhaustive sampling and 
suggest that a negligible fraction of the cells is occupied in 
the steady state, with that fraction strongly dependent on the 
extent of dissipation associated with the area change. 

Considerably larger grids, with n up to a few million ( N  
= n 2 =  l O I 4 ) ,  can be investigated effectively by choosing for 
iteration an ensemble of several initial points at random. For 
each initial point the map is iterated until the trajectory even- 
tually hits a cell that has been visited earlier. For each tra- 
jectory we determine the “length” (number of collisions) of 
the transient r, before the system reaches the periodic orbit 
as well as the length of the period rp . Figure 6 shows aver- 
age transient and orbit lengths as a function of the number n 
of cells per side. The same lengths are listed in Table I. In 
each simulation we tested at least 1000 initial conditions 
selected uniformly from the collision space (a,sin p). In the 
equilibrium case, with E = 0.0p2/mu, both the period and the 
transient lengths scale roughly linearly with n = NIn, but 
large deviations from this scaling law can be observed. We 
studied finite-precision orbits also in the stadium billiard [9] 
and found the same scaling law. Far from equilibrium, at E 
=4 .0p2 /mu,  the transient and period lengths are again 
roughly equal but scale approximately with Both at 
equilibrium and far from equilibrium we typically found 
fewer than ten different periodic orbits. From one to four 
orbits attract most of the initial conditions. 

These results indicate that trajectories in dissipative sys- 
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TABLE 1. Average transient lengths and average period lengths 
for the Galton board at E=O.Op*/ma and E=4.0p2/ma. Each 
number is an average over at least 1000 initial conditions. The last 
two columns contain the number of cells occupied in the stationary 
state for E=0.0p2/mu and E=4.0p2/mu. 

n 7 A O )  T D ( 0 )  7A4) 7J4) N(O)  N(4) 

2 0.0 2.0 0.0 2.0 
4 0.6 2.0 2.1 2.0 
8 1 .o 3.8 2.2 3.3 
16 2.3 6.7 5.9 5.9 
32 11.7 34.4 4.2 29.3 
64 15.6 15.9 10.3 46.0 
128 52.6 20.5 18.1 44.1 
256 126.3 97.2 48.0 69.9 
512 168.8 311.5 111.2 30.7 
1024 394.6 1915.4 150.9 50.3 
2048 851.5 1015.0 203.0 257.3 
4096 1591.5 4606.3 201.9 437.2 
8192 5004.8 6699.0 577.6 399.6 
16384 8277.5 5828.9 905.3 684.0 
32768 22692.7 60374.1 839.7 2297.3 
65536 43449.4 27850.8 1040.6 23966.2 
131072 57687.3 104454.0 2239.1 2713.3 
262144 232650.0 47829.4 3706.3 5403.8 
524288 140072.0 300310.0 8101.3 7239.4 
1048576 578914.0 85361.7 34237.1 3141.5 
2097152 715255.0 5127410.0 29527.9 41280.3 
4194304 1560570.0 1157840.0 36654.0 55457.1 
8388608 2996410.0 10137800.0 93331.7 47429.2 

4 
8 

32 
80 
96 
276 
320 
388 
1836 
7032 
5240 
9152 

30092 

4 
4 
16 
16 
96 
94 
116 
102 
216 
338 
1046 
1682 
1836 

tems in which the phase-space density collapses onto a mul- 
ti fractal attractor are shorter than trajectories in conservative 
systems. More specifically, the exponent y describing the 
scaling of period lengths, rp- n 7, decreases with increasing 
departure from equilibrium. 

V. FINITE-PRECISION DISTRIBUTIONS 
FOR THE SHEAR MAP 

The results presented in the previous section suggest that 
there exists a relation between the scaling of periodic orbit 
lengths and the multifractal properties of the system. To 
study this relation more systematically we carried out a more 
detailed finite-precision analysis on the dissipative shear map 
[5]. This map is computationally less complex than the Gal- 
ton board and thus allows a more thorough investigation. 
Period lengths up to more than one billion can be investi- 
gated. Figure 7 shows the length rp of the longest periodic 
orbits as a function of the number n of cells per side for three 
different mirror positions: { A m }  = {0.00,0.08,0.16}. The fin- 
est grid for Am = 0.16 contains N -  8 X loz8 cells. For Am 
=O.OO the map is conservative, with all its fractal dimen- 
sions equal to the full phase-space dimension of D = 2 .  The 
dynamics is dissipative, with overall contraction, for Am 
= 0.08 and Am = 0.16, leading to information and correlation 
dimensions substantially smaller than the full phase-space 
dimension. Just as in the case of the Galton board an increase 
in the applied nonequilibrium perturbation lowers these frac- 
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FIG. 7. Length of the longest periodic orbit for the shear map M 
as a function of the number n of cells per side for Am=0.00  
(circles), Am=0.08 (squares), and Am=0.16 (diamonds). Lines are 
linear fits to the simulation results. The larger gray symbols denote 
periodic orbits found without artificially reducing the precision with 
single precision arithmetic (23 bits) and double precision arithmetic 
(48 bits) 

tal dimensions. The results shown in Fig. 7 indicate that the 
maximum period length is approximately equal to rp-ny, 
where the scaling exponent y decreases with increasing dis- 
sipation. 

The period lengths we found for the shear map M and 
presented in Fig. 7 suggested that it should be possible to 
find periodic orbits even without any artificial reduction of 
the precision. This is true. We have observed such periodic 
orbits for both single precision, 23 bits, corresponding to 
8.3X lo6 cells per side, and double precision, 48 bits, corre- 
sponding to 2.8X 1014 cells per side. In Fig. 7 the lengths of 
these orbits are indicated by large gray symbols. The peri- 
odic orbits with conventional single and double precision 
have lengths following exactly the same scaling relation as 
the periodic orbits generated with artificially reduced preci- 
sion. This observation indicates that our method of reducing 
the precision faithfully represents the truncation of floating 
point numbers that occurs naturally in computer programs. 

To study the dependence of the scaling exponent y on the 
parameter Am we have fitted straight lines to plots of In rp 
versus Inn for different values of Am.  The corresponding 
scaling exponents y are obtained from the slopes of these 
lines. Figure 8 shows the scaling exponent y along with 
Dc/2  as a function of Am.  The correlation dimension D c  has 
been determined by box counting using double precision 
arithmetic [lo]. Clearly, the relation y= Dc/2 holds over the 

1.1 , I 

Am 

FIG. 8. Scaling exponent y and half the correlation dimension 
Dc/2 for the shear map M as a function of the parameter A m .  
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whole range of A m .  Thus, the correlation dimension of the 
underlying attractor is very simply related to the length oj 
typical periodic orbits caused by the finite precision of the 
computation. We show how this comes about in the follow- 
ing section. 

VI. STOCHASTIC MODEL 

The main result of the two preceding sections is that 
finite-precision arithmetic leads to periodic orbits with length 
~ ~ = n y ,  where the scaling exponent y is unity at equilibrium 
and varies with Dc/2 as the system is driven away from 
equilibrium. Typically, the transient that occurs before the 
system settles into a periodic orbit has about the same length 
as does the periodic orbit. Furthermore, most initial condi- 
tions converge to a small number of periodic orbits. All these 
results can be rationalized with a simple stochastic model, as 
explained below. 

We recently came across earlier relevant work of Gre- 
bogi, Ott, and Yorke [12] and Lanford [13]. Grebogi, Ott, 
and Yorke’s article contains most of the results obtained here 
for the stochastic model described in this section. Despite 
this duplication, we believe that the results given here, in our 
own paper, are significant and interesting in their own right. 
In particular, the old ideas turn out to be nicely consistent 
with the much more detailed and realistic statistical- 
mechanical models we could study using present-day com- 
puting machines. 

As a very crude caricature of the systems we have studied 
so far, consider a system that can reside in any of N cells. We 
imagine a dynamics for this system such that at each discrete 
time the system jumps randomly to one of the N cells. For 
simplicity, we first consider the case of uniform probability. 
In this case the probability of jumping into cell i is always 
p i =  UN. Imagine now that this “stochastic” system starts in 
a certain cell and performs random jumps until it again hits a 
cell visited earlier. At the moment this occurs that cell, and 
that cell alone, has been visited twice, and for the first time. 
Because we want to use this stochastic model to understand 
deterministic dynamics we assume that once the system re- 
visits any cell it is subsequently trapped in a periodic orbit of 
length rp .  Thus, the total number of cells visited, starting 
from a certain initial condition, is T ~ =  rp+ r, , where 7, is 
the length of the transient before the system first visits a cell 
belonging to the periodic orbit. This mechanism is indicated 
schematically in Fig. 9. 

We can calculate the probability P( re ,N) of a trajectory 
with total length rc in a system of N cells by requiring that 
the trajectory does not recross itself during the first 7e- 1 
steps, but hits a cell that has already been visited on step T~ : 

This problem is akin to the “birthday problem,” discussed, 
for instance, in [l 11, which consists of calculating the prob- 
ability that at least two of a group of people have the same 
birthday. For large N relation (8) can be used to derive a 
differential equation for P( re , N) whose solution is 

n u  n 

. U 

FIG. 9. In the stochastic model we imagine that the system 
performs random jumps between N cells. Once one of the cells is 
revisited, the system settles onto a periodic orbit. The trajectory 
shown in the figure starting in the upper left comer has a transient 
length of 2, a period length of 3, and a total length of 5. 

P(re,N)=-exp N re i -- 3 (10) 

The average and the variance of the trajectory lengths are as 
follows: 

Next, we calculate the distribution of transient and period 
lengths. A trajectory of total length 7e can contribute to all 
period lengths from 1 to re . Because all intersection points 
have equal probabilities we can obtain the distribution of 
large-N period lengths 7p by integration over all total trajec- 
tory lengths from rp to N (or to infinity for very large N): 

The average and the variance of the period length are 

( rp )=  E, 

The distribution of transients is identical to the distribution 
of periods in the stochastic model. Thus, the stochastic 
model succeeds in reproducing the square root scaling laws 
for period and transient lengths found numerically for the 
Galton board and the shear map M in equilibrium. This sug- 
gests that scaling with fi is a consequence of the statistics 
of the mapping and that the details of the dynamics are of 
minor importance for the scaling. 

The stochastic model can also be used to understand the 
fact that most initial conditions converge onto a small num- 
ber of periodic orbits. Imagine having generated a trajectory 
with total length of approximately fi in the stochastic 
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model. Now calculate the probability of generating another 
trajectory of length fi differing from the first one at every 
point (for otherwise they would lead to the same periodic 
orbit). This probability is obtained by multiplying the prob- 
ability of missing all the cells belonging to the first trajectory 
at all fi steps of the second trajectory: 

Similarly, the probability of generating a third trajectory of 
length fi different from the two previous ones at all points 
is l/e2. Thus, the probability of finding more than a few 
completely different trajectories of length fi decreases ex- 
ponentially fast. 

The stochastic model described so far is based on the 
assumption that each cell has the same probability of being 
visited at each time step: pi= 1/N for all i. This assumption 
is justified for ergodic systems in equilibrium at constant 
energy, in which the available phase space is covered uni- 
formly. Far from equilibrium, however, phase-space distribu- 
tions have a multifractal structure. To take such highly non- 
uniform distributions into account we generalize the 
stochastic model to include the case where the probability p i  
of visiting a certain cell i can vary from cell to cell. 

With a nonuniform distribution of probabilities periodic 
orbits and transients become shorter because recurrence be- 
comes more likely in the cells with a large pi. We have 
found numerically that in the stochastic model the distribu- 
tions of total trajectory lengths and period lengths are 

and 

where S = E i p ? .  The distribution of transient lengths is again 
identical to the distribution of period lengths. Thus, the dis- 
tributions for the nonuniform model can be obtained from 
the distributions for the uniform model simply by replacing 
the number of cells N with US. 

According to the distributions (1 7) and (1 8) average pe- 
riod, transient, and trajectory lengths scale with 

( T ) W ’ R .  (19) 

To obtain a scaling law for r as a function of the precision, 
or, equivalently, as a function of the total number of cells N, 
we have to consider how S itself scales with the precision. 
From dynamical systems theory we know that for small cell 
sizes S the probability of finding two points in the same 
phase-space cell scales as a power of the cell size, S ~ E ~ C ,  
where E is the cell size and Dc is the correlation dimension 
of the underlying attractor [3,10]. Expressing the cell size E 
as a function of the number of cells N and the dimensionality 
D of phase space, EEN-’’~, we finally obtain 

In equilibrium Dc= D and the period length scales with a. 
Far from equilibrium it is the correlation dimension Dc that 
determines the lengths of both the transients and the periodic 
orbits. Thus, the stochastic model reproduces the scaling 
laws found both at equilibrium and far from it. 

VII. DISCUSSION AND CONCLUSIONS 

The results of our study show that computational repre- 
sentations of conservative and dissipative systems are differ- 
ent. Conservative maps or dynamical systems exhibit a long 
(= fi) transient period ending in a periodic orbit of about 
the same length (= a). This behavior closely resembles the 
quantum “pseudochaos” described by Chirikov [14]. Quan- 
tum chaotic systems mimic classical behavior up to a “break 
time” at which they are confined to discrete quantum states, 
whose classical analog is a periodic orbit. Thus the conser- 
vative systems we have studied show a long chaotic transient 
with a length increasing as the square root of the number of 
phase-space states. 

Dissipative systems, on the other hand, have trajectories 
with transients and orbits of length =NDCnD. Thus, the dis- 
sipative systems show a large basin of attraction with = N  
states that leads very rapidly to a single periodic orbit. This 
orbit is the analog of the Sinai-Ruelle-Bowen states [l] and 
ergodic time-reversible strange attractors [2,3] which carica- 
ture and characterize nonequilibrium systems. 

Our primary theoretical advance has been to relate the 
length of periodic orbits to the correlation dimension of the 
underlying distribution function. Further, deterministic sys- 
tems evolving on a finite grid of states caused by finite com- 
puter precision cannot be ergodic. In fact, for a typical tra- 
jectory the fraction of covered cells in phase space is of the 
order of N-(’-DCnD). Our research raises some interesting 
questions as corollaries. Is it really worthwhile to consider a 
formal periodic-orbit theory of distributions when the com- 
putational work suggests strongly that these orbits have no 
operational meaning? Chaotic systems can be characterized 
only by computation. Thus, a theory based on these findings, 
rather than hypothetical continuous periodic orbits, is desir- 
able. Conservative systems have their own puzzling proper- 
ties. The gradual increase of the transient evolution, as mesh 
size decreases or as the number of degrees of freedom in- 
creases, guarantees that the small-mesh limiting orbit is 
(only) a transient. On the other hand, any computer simula- 
tion, even one running on a large machine for the age of the 
universe, is limited to the exploration of relatively short 
“transients.” 
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