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much O as the original phosphate. This value agrees well with the 25 per cent
value predicted by the proposed enzymatic sequence for thiosulfate oxidation.

The phosphate, arsenate, and 0" data do not exclude PADPS as an intermediate
in the oxidation of thiosulfate.  ITowever, the unique oceurrence of APS reductase in
high specific activity as weil as the low specifid aetivity of PAPS reductase suggest
that APS 1s the produet of sulfite oxidation and PAPS is probably not an inter-
mediate in the oxidation of thiosulfate.

Swummary.—Cell-free extracts of Thiobacillus thioparus that will oxidize thio-
sulfate have been prepared. The metabolism of sulfur-containing nucleotides in
these extraets has been investigated and high levels of the enzymes adenosine tri-
phosphate sulfurylase, adenosine diphosphate sulfurylase, and adenosine 5’-phos-
phosulfate reductase observed. Tfrom these observations a pathway of thiosulfate
oxidation is proposed that involves adenosine 5'-phosphosuliate as an intermediate.

-1 should like to express my appreciation to Dr. G. David Novelli for his advice

“and encouragement during the course of this investigation.
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ON THE INTERACTION OF COLLOIDAL PARTICLES
By Axprew G. DB Rocco axp WiLniam G, Hoover
DEPARTMENT OF CHEMISTRY, UNIVERSFM'Y OF MICHIGAN
Commanicaled by Robert C. Blilerfield, June 15, 1060

Iniroduction.-—"The theory of the stability of lyophobic colloidal systems has
focused attention on the interaction energy between colloidal particies. To
account for such phenomena as flocculation, for example, some long-range inter-
action 1s required, and following a suggestion of Kallmann and Willstatter,® Hama-
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kev? sl de Boer® investigated the character of the van der Waals (London) disper-
sion energy hetween colloidad particles:

the =ame problem had carlier been dis-
cussed by Bradley.

Hamaker treated spherieal colloidal particles assuming the
additivity of dispersion energies and showed that although the range of the atoniic
dixpersion energies wax of the order of atomie dimensions, the additivity of the dis-
persion energies led for colloidal particles to an interaction range of the order of
colloidal dimensions. The original interest tu spherical particles has continued® and
other figures have also been treated.
The problem s eaxily stated: one asswnes that the atoms are distributed
secording to o funetion, p, of position; the interaction of pairs of atoms is taken to
be represented by a pair potential ¢{r,), whove ry; is the distance separating atom
# from atom J and ¢{r,)) is taken most convenicutly as some inverse power poten-
til, ;7% the double-snm over both pavtieles {(additivity) which could be written
down amenable o machine computation, s heve veplaced by an integral over the
volumes of both particles assuming the fonetion p to be continuous; thus the total
interaction potentinl hetween a pair of colloidal particles can be written as

P = Sudie mog(r) doyles. n

>

In addition to spheres® ¢ % the mtegral of equation (1) has been done exactly
for the rasc of cireles,® 7 both in coplanar and sandwich-like eonfigurations,® and
for spherical shells,?

Other figures have been treated by approximate methods and one can mention
the case of certain rectangular parallelepipeds and ellipsoids treated by Vold'®
and of infinite plates by de Boer.®  Most recently Sparnaay'! has used the methods
of Bouwkamp (circular disks) to treat parallel and crossed eylinders; the elegant
Bouwkamp procedure is exact but in the former ease Sparnaay treats one cylinder
as infinite and in the second case both cylinders as infinite.

In all cases the problem reduces to the integral described by equation (1) for
which the London-van der Waals potential is written as

¢(r) = (=N)/r° {2
where X is 4 constant given in the first approximation by A = 3a?hv,/4 (o = polariz-
ability of the atom; kv, a characteristic energy correspouding to the chief specific
frequency v, taken from the dispersion spectrum of the atom); other forms have
been proposed for A by Slater and Kirkwood? and by Neugebauer?® which generally
iead to higher values than those computed from the guoted result. The choice
of 7% needs examnination in the ease that the particles are separated by a distance
comparahie to the magnitude of the London frequency, for then, as shown by Casi-
mir and Polder,** the finite time of propogation leads to an attenuation of the
energy from 7~ to r=7 at distances of the order of 10* &, viz., distances of the order
of colloidal size.

Hamaker? has also shown that even in the case where the colloidal parsicles are
immersed in a fluld with which they mteract strongly, the net foree between the
colloidal particles remains attractive for identieal particles. This theorem is
proved under the assumption that the interaction energy is decomposable into an
energy independent of the orientation of the fluid molecules and a usually neglected
term depending upen fluid orientation. The modification of the de Boer-Hamaker
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theorem neeessary when the latter term 8 included will he diseussed in o separate
communication,’”  The question of the specificity of the I,ondrm -van der Waals
imternetion has received a good deal of attention lately, mostly by Jehle and co-
workers,

We will treat in this comumunication the integral of equation (1) for several eases
similar to some previously deseribed with approximate caleulations.  Our rectungu-
lar figures are general and our method exact; however, we shall not treat the case of
“erassed configurations.  We shall diseuss and compare our results for the short-
range approximation; it is clear that in the long-range approximation all our results
tend towards 8 as is casily shown by appropriate Taylor expansions.

——
. e s
a
TG, 0 Fia. 2

Caleulations.—Case 1. Rods.  Imaghie two colinear thin rods of length a sepa-
rated by a distance d (Iig. 1), In this case and the one that follows we shall treat
the attractive energy according to equation (2) and the repulsion by a potential
proportional to 7~ both energies chosen to satisfy the Lennard-Jones potential

R E ey

Henge A = 2ere® where — ¢ is the value of ¢ at the equilibrium interatomic distance

r%.  Next we define
1
K== ff s dVdV,

» |
Ky == ff T dVidV, )

fb* == ?'0121{1-2 — 2:"061‘:3 (‘-f))

in order that

where for convenicnce we sct p? = 1 and use the reduced povential % = &/

The integrations indicated for Ky and Ky arve casily completed upon picking a
point x; in one rod, integrating the mteraction of this point with the other rod and
finally integrating X, over the length of the first rod (the differential volumes are
in this case one-dimensional).  We obtain

f , d + 2a — x oy 1 {Ml__i______l_*,__ _";% B .
Tl Bl TETR\E T U T @) ©

d+ 26 — X 1 1 1 )
= &y = : -~ .
Ky f -0 f o—x dr =1 (afm d+ 20 d+ a)“’) @)

1t is obvious that rods of unequal lengths may be easily treated by changing the
limits oi integration in equations {6) and (7). The potenma,l reduces to eguation
(3) for large d, but for d € a we find approximately

701‘2 TGG
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Psoc,
showing that as long as d << a we have an interaction which is two orders Jower than
the interatomie potentiad and which is in addition wdependent of the lengths of
the rods,

It is also pc)\\‘ihl(\ to consider the equilibrium separation of the rods by solving
(OD*/0dy = O for dy to oblain dy 22 0.781 75: I other words, the cquilibrium mter-
rod ima«m ¢ 15 a little over three-quarters of the equilibrium interatomie distance,
and this effeet is cortainly due to the additivity of the energy.

We next treat thin rods which are aligned and separated by a distance 4 (Iig. 2).
As before we choose a point in one rod, find its cnergy of interaction with the second
rod and then integrate the chosen point over the first rod to obtain the total po-
tentinl.  Again note that in what follows rods of unequal lengths ¢an be treated
by appropriate changes in the limits of integration.

Ky and Ky become:

a -5 dx 1 1 3a a
Ky —«f (ft;f To d2)3 = i 4%d2<a2 Ty + ?&tfm"l-d—y {9)

o - & dx 187 1
Iip = f (IT f ol —
(2 F a0 64040 4043 + ad)!

1

3 21 _ 21 83a
S0d4(d* + a*)®  320a8%(d* + @) 128a3(d® + oY)

tan—1 <. (10)
128411 d

It i= interesting to notice the influence of the repulsive potential in this case as
compared to the colinear case; the effect is not unexpecied since the repulsion falls
off more rapidly than does the attraction with increasing distance.

In analogy with the previous example we compute the potential for d < a to get

. rol? . _.a 'y 4
O o 58gh (63 ¢tan—? 5) ~ o (3 ¢ tan—! ;Z> (1D

showing that the interaction is down only one order from the interatomic potential
and becomes proportional to the length of the rod. I we approximate tan™ a/d
by /2, we obtain for d, the value dy o2 0,547 rg; thus the decrease in intermolecular
distance from the interatomic distance rg is in this case approximately one fourth
that found for colinear rods. The quantity 7, is related to the so-called van der
Waals radius of the atoms in question, and one implication of the above results is
that aggregates of atoms tend to come to equilibrium distances which are closer
than their “free-atom” coutact radili. These remarks depend for their complete
validity on the constancy of the function p. It is obvious that for elose approach
p no longer remaing constant and we may take these vesults, therefore, as qualita-
tive and deseribing a mathematical problem with no obvious physical counterpart.

We also notice that in the lowest limit Kq o~ d~° in exact keeping with Sparnaay’s'
resuit for infinite thin cylinders. The factor of pi occurring in previous results
stems {rom their implicit expansion of the arctangent term which appears in the
exact answer. ‘

Case 2. Reclangles: We shall ealculate here, and in the cases to follow, only K,
since, as will soon be seen, the calculation of Ky is prohibitively tedious; and in

Ay ——— NI i AR W

B

PRSI — Ne—

”

i ¢ T A O O

3

— OO —
g

| A Oy A s

} e A S i St e e AT e o

Vor. 40, 100 {

any ease for colloidai
interaction in the mal
Consider two coplas
tance d (Fig. 3y, Itis
A /

Aﬁ = J

where oy and ¥y, are t'h‘

reetangles. The enc
proportional to

|
|
and the towal potent:

of ti 1@ second rectau{
ormed in the follg

Ke-_*'j{

We define

Hi

3

and write the final a

: |
When dissmall cl

showing an wversc
of the adjacent side
Analogous to th
tangies (Fig. 4).
respect to the seeo
the first rectangle

—Trangts

] b
Kgxf dy;f




e

[N

[

YoL. 46, 1960 CHEMISTRY: DE ROCCO AND HQOVER 1061
8
oo
—igr] b
b & o
o a a
16, 3 Fic. 4

any ense {or colloidal systems it is more appropriate to consider the double-layer
interaction in the manner of Hamaker when the total potential is required.

Consider two coplanar, parallel rectangles of sides @ and b and separated by & dis-
taneed (Fig. 3). It iselear from the previous cases that

i ad bd d+2fz--—:m] &~ ¥ dy
= K , 2 e (
= fem [ e e @

where oy and 1 are the coordinates of a point chosen in either one of the interacting
rectangles. The energy of iuteraction of this peint and the second rectangle is
proportional to

d 4+ 26 — 2 b — b2t g2y -
d4+a — 1 dr‘f*m 3/1 (3'2'7'3/)) 3€3U

and the total potential is found by integrating this quantity over the coordinates
of the second rectangle to give equation (12). The integrations are more easily
performed in the following equivalent fashion:

Ko = frde JEFl2mda Sl dy So 0% («f + y)—tdy. {12a)
We define
d d b b
e R -3 PR -l o
. H{d) = ‘8(?,2 + lﬁb"‘t n + ] , tan 3 (13)

and write the final answer for K as
' Ko = H(d) + H(d + 2a) — 2H(d + a): (14)

When d s small compared to the shorter dimension of the rectangle, then we get:

wls
1&@ f](d) o - ;Zil“ (15)
showing an niverse cubie dependence on d and s linear dependence on b, the length
of the adjacent sides.

Analogous to the case of rods we will next treat the case of parallel aligned rec-
tangles (Fig. 4).  Again choosing a point (x, y) and calculating its potential with
respect to the second rectangle, we then integrate = and y over the coordinates of
the fitst rectangle to obtam Ky:

Ko = JodpJ2n " dyfode f20 2 @+ + d) = de
b - ua 3¢ a
- -1 —
fo= [lan [ e

! ! *
Ayt + a 4<y2+dﬂ>(a2+y2+dz>} |
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« (;;d«:zae >t b < ad'*‘«i-ﬁab'l)x
c\zo@ + ) M @ e T \adia + o n

a i b K
tan™! —————— — ——fan~! -~

L4 )
@ by g T T g T e (16)

For the special case of d small relative to both dimensions of the interacting
rectangles we have

% ab (; b Ty 1a> md)
Vg o - | tan T - an~i-- ) = s
’ di \" 7 b ‘7’{1‘4 a7

It is elear now that the pattern involves a power dependence (at close distances)
which is always one higher for the ease where the figures are aligned, than that
for which they are purallel. This s due to the fact that the aligned configuration
tends to emphasize the repuisive part of the potential relative to the atiractive pary
in aecordanee with distance and additivity,

Case 3. Parallelepipeds:  Owr treatment of parallelepipeds overlaps the papers
of Vold® and Sparnaay,'t however, both previous workers did only the first two
miegrations exactly; after completing the first two, Vold specialized to identieal
partieles and then expanded the integrand in o power series retaining only the firsg
terny.  The subsequent computations vetain validity for particles of mean diameter
small compured to their length and separated by distances also small compared
to their length.,  Vold remarks that the method is applicable to higher order terms
and could be extended with some effort. ,

We shall describe the interaction of two aligned right parallelepipeds of dimen-
sions & X b X ¢ separated by a distance d (Ifig. 5). By our standard recipe we

write
f d+ ¢ — zi f b= f re — o dtd&{@@i{% 18
L“!‘C-‘Il f "LX <$2+J2+22}3 ( )

The first four integrations have already been done i eonnection with the previous

problem aud result in equation (16).  Intreducing equation (16) and. completing
the ifth integration we arrive at,

Td 42— b 1 { i
f dzy L — tan~l - + by fan =t - — — —

d4 o ~un z 2 {) z 42
b+ @) b " )} 2 |
T 2a% AN an T 23(a? + byt tan T
R I N
( 3ats - 329 tan 72—:‘_(1_2?; +
2b? . "

—1 ~ '

3ai@ + i N @ B T S+ 6
?)2
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Collecting all terms and noting that all the functions are odd, we rewnte the hrmts
of mteg,mtlon on the final integral to obtain

d 4 Ze.d a 1 a b 1 & 1
K¢ = it 1 — e —
6 ‘f;+c‘d+c{z<42+4a>tan +<4z2+4b>mn -+

z Bz
(@2 4+ 6992 2 b ,
Ba?h? tan (m?:;wb@uz + (& + af)i (é;;’ - g::‘*) X
, , . ) )
tan™! ————— LIRU VL (L I . SR
‘ an (2* + 2)112 + (2% + b (6zbg 323) an @ 1 oy (20)
Finally
¢ dtged ] (24 2ad + 2% 4’ 2t — gt _a
»Aﬁ:[d+c.d+c‘zm< 2+ 2%a? + 2 >+( daz )tan1;+
<z2 -— b2> . 1-1 2(a? + b2 tan—t z N
ibz 241 > + Gah? (ag + b2)1”
1 i
({{;a + {‘az> bz* + a?)'? tan~? 2—2—;—;‘7}.—”2 o+

i 1 a
o 5 i e o
(Bz’ b ”2> a(z® + b)Y tan—? @ T o ] (21

It is of interest to consider the case of equation (21) when d is small. It then
hecomes possible to compress equation (21) to the result

wab
Koo~ — — (22
12d® (22)
which s identical to the well-known result for parallel plates and to the case de-
seribed by Vold as equation (8a). By suitable manipulation, Vold’s equation (5)
is ulso recoverable wherein the approximations become clear.

We complete these caleulations by deseribing skew parallelepipeds of square:

cross-section (Mg, 6). The details of this calculation are tedious and we shall

restrict ourselves 1o presenting only a sketeh of procedure.
Again we select 2 random point (in one parallelepiped) of coordinates {(xz;, ¥,
z) and consider its interaction with the second parallelepiped; this result is then

1663
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imegrated over she fust parallelepiped.  Using a more convenient order of integra-
tion we have '
- L[4+ 26~ d + 20 -
Ko = [l do JEF 2 de [0 dyn JEF 22, dy X
Jodan [ de(a® 4+ 2 + 2% (23)

From the previous problem we know the firss four integrations; thus,

[¢+2ad SA 2,
¢ : 3 ety + oY
Ko = f‘ﬂ_ - % tan— ¥ 4 <~._._.“i’:{:.._.~l_> %
d+ad+o 3T x dz4(c? + )2
y 20y 4+ cxt | _ ¢
(¢* + zH)V? + dzi(z? + YR tan~! W de dz,- (24)

By analogy with equation (21) we have for the term in d (there are also terms in
d 4+ aand d + 2a):

tan—!

peesed 1 d* + 3 1/ fl) d
Ke(d) = O P e L AT (N IFVRRG
o L¢+“'(‘+08nc2+d2+xz+g\d z an a:+

(62 + dz)a/zx _ o C(d2 + xz)lm 1 1
e N G ran T T 12 @)

B ¢ die* + =22 /1 1 B d ’ i

tan—! @+ + 2 e + o tan™? @+ (25)

The total value of K ean be written down but our interest actually is drawn to
the form taken by equation (25) when d is small; calling d* = +/2 d, the distance of
closest approach, we get the simple result

wc

Koz o (26)

which shows the interesting result that the power dependence is down by a factor of
one from equation (22) and agrees with the case of spheres at close separations.
It is to be presumed that the configuration intermediate between equations (22)

and (26) will depend on d~**, where d is the closest distance of approach {cf. Vold,
Fig. 1¢).

* Notiee that for y = o this equation hecomes equivalent to equation (§).
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MOUSE MACROPHAGES AS HOST CE‘LLS FORTHE MOUSE HEPATITIS
VIRUS AND THE GENLETIC BASIS OF THEIR SUSCEPTIBILITY*

By . B. Banc avp Axyg Wanwick

DEPARTMENT OF PATHOBIOLOGY, JOHNS HOPKINS UNIVERSITY,
SCHOOL OF HYGIENE AND PUBLIC HEALTH

Communicated by Bentley Glass, June 20, 1960

Mueh of the mystery of pathogenesis of animal virus disease les in the
realmn of specificity of virus effect ou cell type and in the differing effect of a given
virus on  different hosts. Tissue culture, despite its great contributions to
other aspeets of eytopathology, has not so far furnished significant clues to these
basic problems. We have vecently found that an acute virus disease of mice,
mouse hepatifis,® 2 has a selective destructive effeet for cells derived from the
reticulo-endothelial system (macrophages) and that the apparent genetic difference
in susceplibility of dilferent strains of mice is reflected in the behavior of macro-
phages from these strains in tissue culture. Tests of hybrids resulting from
erosses belween resistant and susceptible strains indicate that susceptibility is
inherited and that genetie segregation of susceptibility and resistance occurs in
the I and backeross generations,

Malerials and Methods—The macrophages were obtained by explanting frag-
ments of liver from newhorn (1-3 days old) mice into roller tubes either direectly
onto the glass or onto a reconstituted collagen substrate.® * The collagen was pre-
pared according to the method of Bhrmann and Gey by extraction of 0.1 per cent
acetic acid, dialysis against distilled water, and reconstitution to an agar-like slant
with ammonium hydroxide vapors.  The supernatant medium, except in otherwise
specified cases; consisted of 60 per cent Gey’s balanced salt solution, 10 per cent
chick embryo exiract (50 per cent), and 30 per cent horse serum (obtained from
Microbiologieal Associates), with 0.004 per cent phenol red, 100 units of penieillin,
and 10 micrograms of streptomyein. In some experiments, as designated in the
text, chicken serum or a combination of chicken serum and horse serum was used.
The chicken serum was obtained from White Leghorns kept for routine bleeding
in our laboratory.  The cultures were incubated in a roller drum and maintained
in this manner ot 37°C throughout the experiments,

The cultures were inoculated with the virus three to four days following ex-
plantation.  The nedium was renewed every two to three days until the end 'of
the particular experiment.  Supernatant fluids were frozen at —40°C and reserved
for titration in mice. The cells were observed directly in the roller tube and their
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