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A procedure for calculating virial cocflicients for paralicl hard lines, squares, and cubes is outlined, and
the sixth and seventh virial cocflicients are computed {or these models, The essential step in the evaluation

of the star integrals lies in the recoguition of the [act that only a few “

subintegrals” contribute to cach

virial coelhcient, relative to the total number of labeled star integrals. Both the sixth and seventh virial
cocflicients are negative for hard cubes, a fact interesting from the point of view of phase transitions. Ap-
proximations to the excess entropy are given for squares and cubes,

The procedure {or the star integrals is extended to the calculation of approximations to the pair distribu-
tion function and the potential of the mean force. These functions are calculated through the fourth ap-

proximation for hard lines, squares, and cubes.

The topelogical graphs needed for the above.investigations, together with the values of the related

integrals in one dimension, are displayed.

I INTRODUCTION

ESTATISTICAL mechanics corrclates the observed

macroscopic properties of a system with the in-
ferred microscopic properties of the system. The con-
figurational integral

1
Ov= 1~

¥ expl— {0 xa) /T e odry (1)

depends upon the intermolecular potential energy
function ¢{r) and is related to the macroscopic equa-
tion of state by

PIT = (8 10Qx/0V) v 1. (2)

P, V, and T have their usual thermodynamic mean-
ings; AV is the number of molecules; £ is Boltzmann's
constant; and &(r;« -+ 1) is the total potential energy
of the system, which we will assume can be written

D(ry 1) = 2 i (Tig).- {3)
<q

The correlation of macroscopic with microscopic
variables implicit in {2} is not very useful because the
configurational integral is ordinarily too difhcult to
evaluate. Ursell and Mayer,! using a formalism heavily
dependent on graph theory, were able to convert (1)
into a form more useful from the point of view of the
equation of state. Before giving these results we will
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make a Dbrief digression into the related theory of
graphs.®

The graphs in which we are interested consist of a
number of poinis (representing molecules) and lines
[a line connccting the molecules 7 and 7 represents the
function fiy=exp(—¢y/kT)—11 If it is possible to
trace a path of lines from any point in a graph to any
other point in the graph the graph is called connccted.
If after removing a point from a connected graph,
together with all of the lines adjucent to the missing
point, the resulting graph is connected (no matter
which point has been removed), the first graph
termed a star. Lvidently the set of connected graphs
includes the sct of stars. We will denote the number of
topologically different connected graphs of # unlabeled
points by C(s) and the corresponding number for
stars by S{x). By way of orientation we give? in Table
1 C(s) and S(n) for #<8. The stars of less than eight
points are listed in Appendix L

With any graph G; is associated a number gy, the
number of topologically distinct ways in which the
graph may be labeled. In Fig. 1 we display the six
connected graphs of four points together with the g,
{which we call the degeneracy of the graph) for each
graph.

The Ursell-Mayer formalism makes use of graph
theory, finally obtaining the two Mayer equations

N
P/ET = ba" (4)
[ N

1. Rénig, Theorie der Endlichen und Unendlichen Grophen
{Chelsca Publishing Company, New York, 1930); C. Berge,
Théoric des graphes el ses applicsiions (Dunod, Paris, 1938);
R. J. Riddcil, dissertation, Unuversity of Michigan, 1951; G. W.
Tord, dissertation, University of Michigan, 1934,

4 R. J. Riddeli, reference 2.
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TaApLE 1. The number of to; potogically difierent connected
graphs C(n) and star graphs S{n) for n<8.

n; 2 3 4 5 b 7
Cind: i 2 4] 21 112 833
Sin): 1 1 3 10 56 468

and
N
p=N/V =3 ubn, {8

-

where z is the thermodynamic fugacity, divided by &7,
and the &, are cluster integrals over the coordinates of #
molecules:

£in)
ﬂ—--—*-f Zg.-C;(u)drw-drn. (6)
Ii the b, are known, = can be eliminated between the
two Mayer cquations, giving the well-known wirial
equation of state

P/RT =p~+Bop*+ Bip*+ Byo*+ Bep*-+ Bepb++++,  {7)

where Ba is the nth virial coefficient. Born and Fuchs*
were able to show that only the star integrals contribute
to the equation of state, getting finally,

Si{n)

> guSi(n)drye - +dr. (8)

P/RT = m
/ =g ?13Vp ol

As we can see from Table I, the number of integrals
necessary to the calculation of successive terms in (8)
increases rapidly with ». Furthermore the integrals be-
come unmanageable, for realistic potentials, with z
greater than 2 or 3. In the following section we will
introduce a potential which is particularly useful be-
cause the necessary star integrals are easy to perform.
Before going on, we stress the fact that the virial equa-
tion of state is useful only in the region where the
convergence of the virial series is rapid, and that for the
full equation of state an attack through the distribu-
tion functions or some other method is necessary.

2. HARD-CUBE MODEL

The hard-cube model was introduced by Geilikman,?
who calculated B2 and B; for a hard-cube gas, Zwanzig?

1 Fic, 1. The connected

1 ; graphs_of four points.

@ S D S S S The grindicate the num-

o 38 2 ber of ways each graph
can be labeled.

(1;\;\5) Born and K. Fuchs, Proc. Roy. Soc, (London) A166, 391
13T, Geilikman, Proc. Acad. Sel. U.S.8.R. 76, 25 (1950).
R, W. Zwanzig, J. Chem. Phys, 24, 855 {1956).
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pointed out the intimate connection of the two- and
three-dimensional cases {squares and cubes) with the
one-dimensional case {lines), and used the one-d
mensional results of Riddell and Uhlenbeck? to L:’Lu-
late virial cocfiicients through Bs for cubes. Temperiey®
has extended these calculations to gases of more than
three dimensions. As noted in an earlier communica-
tion, we have computed B; for lines, squares, and
cubes and will here present the method of calculation
used together with our results for By, the excess entropy,
the radial distribution function, and the potential of
the mean force for such molecules.

The hard-cube potential is illustrated in Fig. 2. The
least realistic property of this potential, which depends
upon the fixed Cartesian coordinate sysum is ihat the
molecules cannot rotate, behaving as if their momeats
of inertia were infinite. This feature, together with the
cubic, rather than spherical, symmetry is essential

—

Fic. 2, The hard-

* 3 cube potential. The
J ' 0 ..L molecular side length
is e,

(
uﬂw«n bum‘ﬂ <uw‘d

in establishing the one-, two-, and three-dimensional
correlation.

Let us consider a star integral contributing to one
of the virial coefficients through Eq. (8), for instance

f @ drl"’dr5=ffufnfufmfzafchnfufa.sfwdl’:'"drln

an integral which has not yet been evaluated analyti-
cally for hard spheres. Because an f function containing
the coordinates of two hard cubes, fi; {2y, ¥y, 5}, may
be written as the product fi{ay)fu{ya)fulzy), it is

clear that the complicated three-dimensional integral -

above may be factored into the product of three {equal}
one-dimensional integrals, and, as we shall sce, the
one-dimensional integrals are easily evaluated. This
property of fuctorization can also be used to advantage
in calculations of the pair distribution {unction. The
one-dimensional connection is also useful as a helpiul
check in calculations because the virial cocfficients,
cluster integrals,® radial distribution {unction,? and
thermodynamic properties of the hard-line gas are well
known.

TR.T Riddeli and G. E. Uhlenbeck, J. Chem. Phys. 21, 2056
\1933}
( 8 4. N. V. Temperley, Proc. Phys. Soc. {London) B70, 336

1957).

“\W. G. Hoover and A. G. DeRocco, J. Chem. Phys. 34, 1059
(1961).

101, Tonks, Phys. Rev. 50, 955 (1936}.

HR. T Riddell, reference 2,

7, W, Salshurg, R. W, Zwanzig, and J. G. Kirkweod, J.
Chemi. Phys. 21, 1098 (1953).
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VIRIAL COLEFFICIENTS FOR

3. CALCULATION OF VIRIAL COEFFICIENTS

As we see from BEas. (7) and (8), the ath virial
cocificient B, is given by

1=

B | 3 g:Si(n)dxy» +d ¥ (9)
ntl

=i

Kin)

This form appiics in one, two, and three dimensions,
keeping in mind that dT represents dx, dady, and dadyds,
respectively, in these cases, For convenience we assign
the sign of cach contributing star integral to the g; for

that swar, =0 that all integrals are positive and L,=1)",

where [ is a star integral and we indicate dimensionality
with a subscript. Using this convention we may write
Eq. (9) forn = Z+e+4:

Bz'—':"; ‘——'"drldrg, (10)
|4 .
1
B[ Adneeein, ()
1
pm [0 6 N+ Rdneevine (1)

We will now consider the evaluation of a typical star
integral contributing to Be to illustrate our methods.
Let

1
]:'1;/ O drg' "(lrg. (13)

Because the integral in (13) is independent of the
location of molecule 1 for large V, we place 1 at the
origin and cancel the factor of V=% Specializing to one
dimension,

I= / Jufuafofus fro fadxpTaydxadusd s {14)

{molecule 1 at origin),

where we have assigned an arbitrary labeling to the
star. We now note that the integral indicated in (14;
can be written as the sum of 6!=720 integrals in which
a given molecular ordering, from left to right, is main-
tained, because there are 61 different ways of ordering
the molecules on a line, We could evaiuate the integral
for each of these orderings, but because of the sixfold
‘symmelry of the integrand it is suificient to consider
only those orderings in which the leftmost molecule is
number 1, and then to multiply the results of these
120 integrals by 6 to obtain {. We will therefore con-
sider orderings such as 123456 and 135246, but not
654321 or 531642, If the integrand had no symmetry it

THE

HARKD-CUBE MODEL

(o8]
s
&

I56. 3. The f {unctions charac-
terizing w, x, and y subintegrals  ti83ye £2E¥y geoiye
are indicated as lines connecting w x X
the molecules.,

would be necessary to consider cach of the 720 order-
ings. .

One could next list the 120 orderings, put in lmits
of integration with the help of the restrictions imposed
by the ordering and by the f functions, and set out to
evaluate the integrals. This is in fact the way in which
we originally attacked the problem. It soon becomes
obvious, while carrying out this procedure, that many
of the infegrals obtained are identical in form and
value. Altogether only 14 distinct kinds of integrals
are found, some occurring more often than others.
We will now describe these fourteen “subintesrals”
and show how to determine, from the form of the
integrand of the star integral, how many times each
oceurs,

Let us first consider those orderings in which the last
molecule is number 2 or number 6 (so that 134562 and
123456 arc included in this category). Because an f
function { fi; or fa) connects the first and last molecules
in these orderings it is clear that the upper limit of
integration on the rightmost molecule is o, the range of
the intermolecular force. Because of the restriction
that the ordering from left to right be maintained
throughout the integration, all of the molecules are
between the first {(which is at the origin) and the last
(which must be somewhere between the origin and o).
Thus all of the restrictions imposed by the f functions
are automatically satisfied, and the f functions may be
removed from the integrand. Using 123456 as an
example of this type of integral we have

123456 = f Frafunfon fosfuefordadesddeedacs

(D<:\cz<x3<x¢<xs<xg<cr)

=/a’w[ a’xf dyf dzf da=g%/51,
g w z v K

The use of w, x, v, 2, and @ as integration variables is
convenient in deciding whether or not two different
orderings give rise to the same subintegral. We use w
to indicate the coordinate of the second molecule in
the ordering, « for the third molecule, and so on. We
will term an integral of the kind found in Eqg. (15) a ¢
integral, because all of the upper limits of integration
are 0. A o integral will always result when an f function
in the integrand connects the first and last molecules
in the ordering under consideration.

Suppose we now consider an ordering in which
molecule 1 is connected by an f function to the next-to-

(15)
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Ordering

Diagram

ValueX

Subintegral Name Sia
123456 o o Q0 % fdw[dx/dy[dzf’da e 1
. [ w Fi ¥ E
. 5 g LA 4 7 x4 7410
124563 00 00 0 fdwfdxfdyfdzf do w 2
w ] w z ¥ 2 .
ﬂ ¢'+w
124653 odooo fdw dfdyf ww 3
e G420
126453 ? & O 0 © g ~jdw d/ dyf dzf da www 4
7] § w v 3
- ! . 'r+w
125634 o O owo g ) fdwfdxj dyf f da wx 5
: , 3 o1 7410 w0 I+
126435 G g P o g ? fdwf a’xf dyf dz] da uwx 7
i i o w 7z ¥ z .
i i o &1 -1 (o 142
126345 9 I 3o 0 fdwfdxf dyf & [ do wex 9
i) w & P F
wos § oo g s [ufufnf ul" 7
V y wy
OL—J ¢ w
& & e 740 +¥
126534 $oddold [ dw f dx f dy [ ds[ da ww 11
g-—————j : 0 @ b 7 v ’ ' g
/ & T I W 8 o U
126354 9 g Q gj (é! @ fdw/ dx[ dyf dzf da wxy 16
i Z [ w z ¢ v !
¢ 7 t T2
123564 ? Q E o ? E /dw/dxfdy/ d-zf da £ 3
0 w P v 2
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@ 14 q o 4T
/dw[dxfdy/ dzf da zx 6
o w = ¥ £

123654 ) M /
L 4 ;!
23645 ¢ o o J oo fd"/;dxfdy[ d.f da 2y 9
r——— /Vd fd j’“’ fﬂ Zfd*ﬂl
123465 5 0 o O (:i; & . ww xzd}’ ”d . da y n

jast molecule, but not to the last one. We know that
the upper Emits of the first four integration variables
are ¢, but the last upper limit depends upon the de-
tails of the ordering. If the last molecule is connected
to the sceond by an f function then the upper limit on
the rightmost integration would be ¢+w. Similarly,
other orderings will give rise to integration limits of
o+4x or o-+y. In Fig. 3 we indicate these possibilities
pictorially, showing the f functions {as lines) which
are used to determine the integration limits, The
following orderings typify these kinds of subintegrals:

12‘2’563m[fl?f?.zf?ﬁfdsfﬁéfﬁldxzdx(dxsdede

- fa " jw dx j:dy fu i f aa=2551 (16)

152463 = [ Jufufaufisfo fodusdrydadasdng

o a a4 ;
=fdwf dx[csyfa*zf da=3a451 (1)
] o 3 v ¥

156423 = [f12f23f34f45f55f61dxadxadx4’fx2dx3

7 & (4 4 ]
=fdw[ dxf dyf a’z/ da=4g/51, (18;
[ @ ] P} k3 .

We will term the three kinds of subintegrals appearing
in (16)-(18) as w, &, and y subintegrals, deriving the
name from the rightmost integration limit. It is easy

to see that a z subintegral couid not be obtained with
six molecules, because if the last molecule is connected
only to the next-to-last, the configuration could not be
derived from a star. Thus we have disposed of ali
possible cascs in which the first molecule is connected

.to the last, or to the next-to-last molecule.

One may go on to consider the other possibilitics.
In cach case the lower integration limits are deter-
mined by the ordering, and the upper integration limits
are determined by both the ordering and the f functions
in the integrand. Rather than describe the individual
cases, we list in Table II all of the possibilities found for
six molecules, together with the integration limits,
values, and names of the related subintegrals, and an
ordering giving each type of subintegral.

Let us now calculate the integral I of Eq. (14} in
terms of the subintegrals listed in Table II. We have
already shown that ail orderings with molecules 2 or §
in the last position give rise to ¢ integrals, We will
therefore list, in Table III, only those orderings in
which one of the molecules 3, 4, or 5 occupies the last
position. (By further use of symmetry we could avoid
consideration of half of these cases, but for complete-
ness cach of the 72 permutations is included in the
table.) Sorting these contributions to the integral by
type, adding in the ¢ integrals from 1+-+2 and 1--+6
orderings, and multiplying by six, we have [ expresse
in terms of the subintegrals. These totals are given in
Table IV, The total number of occurrences is, of course,
720. From the values of the subintegrals listed in Tabie
II we calculate the value of I. Adding all of the con-

tributions we find 7==2112¢%/51=88¢%/5. The value of

the integral in two dimensions is just (88¢%/5)%=
7744'%/25; the three-dimensional case gives (8§80%/5)%=

P
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Tanre 111 Subintegrals contributing to f O dry*+ «dre for 72 representative lincar orderings.

Ordering Type Ordering Type Ordering Type Ordering Type
124563 W 142563 [ 152463 x 162453 Wi
124653 A 1420683 ww 182643 wr . 162543 WK
125403 w 145263 w 184263 x 164253 wx
125643 unr 143623 W 154623 x 164523 x
126453 Y 146253 wiw 156243 wy 16524 xy
126343 W 146523 @ 156423 ¥ 165423 y
123564 : 132564 W 152364 w 162354 Wy
123634 X% 132634 W 152634 Wiy 162534 wxy

253064 x 1335264 w 153264 w 163254 wx
123634 wx 135624 w 153624 w 163524 x
126334 wry 136254 ww 156234 ww 165234 xx
126534 wwy 136524 w 156324 w 165324 x
123465 ¥ 132465 ¥ 142365 w 162345 WAy
123645 xy 132645 wy 142635 Wi 162435 wnrw
124365 z 134265 z 143265 w 163245 ww
124635 wx 134623 % 143625 w 163425 W
126345 wax 136245 wE 146235 ww 164235 wiv
126435 WX 136425 z 146325 w 164325 w

6814725%/125. In order to get the contributions of

(] O devrnin

to Be one must multiply these results by 60, the number
of topologically distinct ways in which the points of a
hexagon may be labeled.

In general, one iollows the above procedure for each
of the stars contributing to the B, of interest. One
might expect that no two different star integrals would
have the same representation in terms of subintegrals.
We find two pairs of seven-point graphs with identical
representations (numbers 380, 381 and 420, 421 in
Appendix I) however, so that the corresponding set of
subintegrals does not uniquely specify the star in
question. The values found for all stars of less than
eight points® are Hsted in Appendix 1.

Tante IV. Total subintegral contributions to / O drae s wdre,

Subintegrals 4 WoWW MWW WX WX wWix
OCCUTTences: 288 1200 72 24 36 12 12
Subintegrail wy wwy wxy ® %% Xy Y

QCCLTTENCES: 212 12 72 12 12 4

B These stars, together with all other graphs of less than eight
points may be found in *Dingrams of All Seven Point Graphs”
by I©. Harary and Do W. Crowe, Project R287, Horace H.
Rackham School of Graduate Studies, University of Michigan
(mimeographed; supplicd to the authors, with many corrections,
by G. W. l'ond}, 1953; a list of smaller graphs was prepared by
F. Iarary, also in 1953, F. Harary and R, Z. Norman plan to
include a complete list of these graphs in a book now in prepration,

A slight further simplification arises because some
pairs of subintegrals are equal, We note, for example,
that any ordering giving rise to an x subintegral
corresponds exactly to a ww subintegral on reversal
of the ordering. There are three other such pairs in
Table I www =y, wwr=wy, and wxx=xy. The values
of such pairs of subintegrals are clearly equal by sym-
metry. One would expect the number of such pairs to
approach half the total number of subintegrals for «
large, as the relative number of subintegrals with a
center of symmetry must decrease. In Table V we list
the number of subintegrals contributing to the nth
virial coefficient for #< 8. Each pair is counted as only
one subintegral in this table.

The number of different subintegrals increases
rapidly with #., Let us define I; as the number of
different subintegrals with one-letter names other than
7 (including w, %, ¥, »«+}; Ly as the number with two-
letter names; and L; as the number with three-letter
names, One can easily show, by considering diagrams
like those in Table II, that

" (n—3)

L1=ZI"~=

a3 1!

L=y =m0t (20)

nrd Ad 21

L=y <Y

n>5 n>d n> 3l

P 2 (19)

(21

We conjecture that the obvious generalization to L.
is valid for all .
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VIRIAL

We now hist, in Table VI, all of the subintegrals
eicountered in the evaluation of the first seven virial
cociicients, We nole that the kind of subintegral
represented by a given ordering follows from the upper
right-hand corner of the so-calied adjacency maurix
in which the ordering is preserved in the labeling of the
rows and columns, The adjacency matrix has ag=1 if
an [ function connects molecules ¢ and j, and ¢,;=0
otherwize, The relation of the subintegrals to the
adjacency matrix is very uscful for machine calcula-
tlons,

We have seen that in order to find the wvirial co-
cfficients one classifies cach contributing star in terms
of subinicgrals, obtains the value of the related star
integral, multiplics by the number of ways in which the
star may be labeled, and addy, finding B. by Eq. (9).
Although the procedure is suaightforward, a con-
siderable amount of labor is involved, and in the case
of B: which requires the evaluation of 468 integrals,
each integral being the sum of 7! subintegrals, the task
was given to an IBM 704 computer.

For the machine calculations, one reads each star
into the computer in the form of an adjacency matrix;
the machine then cxamines all of the orderings for each
star, finding the number of times each subintegral
contributes to the star integral in question. As the
values of the subintegrals are known the computer
can thea calculate B,

Two important means of checking the results for the
star integrals arc available. First, as we have noted,
all of the virial cocfficients in one dimension are known
to be 41 where ¢ is taken as unit length. Second, the
integral corresponding to an open ring (/\, (1, O,
+++3 I3 known exactiy¥:

L. (—2)* r= /sinx\"
I{nring) = .__,__f (——) dx
o

x

—1)r
=-(£——~:>—)“t[frz’*"‘1--ﬂ(n—~ 2yr b (n—1) (n—4)"/2
n—1

—n{n=-1) {n—2) (n—86)"V6~4---7, {22}

where v=1 and the first » terms are taken for fe,y

TapLe V. Number of distinct subintegrals contributing to By,

7 23 4 5 & 7
Sublintegrals: H 2 4 10 2
Equal pairs: o 0 0 1 4 16

CORYFICIENTS FOR THE HARD-CUBE MODEL

5147

Tapre VI Values and names of all subintegrals co

- b S
nirnulng

t0 Byoe By ;
n=2 n=3
Subintegral  Valuex 1! Subintegral  Value2!
c' 1 v i
n=d n=d
Subintegral ValuexX 3l Subintegral Value X 6!
v 1 4 1
@ 2 w 2
Wi X K
n=l W == y 4
Subintegral ValueX4! WU 3
o i Wy 5
W yi Wrox =ty 7
W X 3 WA = W3 9
W S xx 6
WAN =Xy 9
e WHEY = X 12
Subintegral ValueX 5! xrx=yy 10
) 1 WXXL= Y5 Y
w pA wwy 10
Wi X 3 WWWY =1W0ws k4
W=y 4 wWIy <
wx S WY = a3 21
WL = WY 7 XY = wWyy 16
WRL =y 9 WAXY = WYz 26
wwy 11 WRYY = XX3 26
wry 16 xyy 19
o 6 WEYY = Y5 33
WwWws 19
wnox3 30
WANE = UAwYs 0

E wxys 61

and Jfz.. Using this formula one finds ~-88/5 for the
integral over (&, and —5887/180 for the integral over
), in agreement with the values appearing in Ap-
vendix L

Our results for the virial coeflicients are given in
Table VII, together with By-«-B; as calculated by
carlier workers.®® The virial cocfficients are given first
in terms of the edge length ¢ as unit length, then in
units of By as unit volume., Both sets of units are
found in the lterature. In Table VIII we list the
cluster integrals and “irreducible cluster integrals,”
Bo=—{(n+1)B,/n, together with the known values
for hard spheres,®® and those derived from a speeial

1 The integral appearing in (22) is taken from a notebook be-
lenging to G. E. Ublenbeck, who kindiy lent it to the authors;
see F. T. Whittaker and G, N, Watson, Modern Analysis (Cam-
bridge University Press, London, 1958), 4th ed,, p. 123

¥ See J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Moleculer
Theory of Gases and Liguids (John Wiley & Sons, Inc., New York,
1954}, p. 157; Bs for hard spheres is known only approximately:
A. W. Rosenbluth and M. N. Rosenbluth, J. Chem. Phys. 22,
881 (1954),
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Tanie VIL Virial coefiicionts for hard lincs, squares, and cubes, First set of values is for o= 1. Sccond sct is for By=1.

Fin i By B 3, il 87
Lines 1 1 i i 1 i H
11 67 121 17827
Squares i 2 3 —_ — — —
3 i8 40 10800
34 488 —2039 - 169149119
Cubes 1 4§ 9 — — [— ——n
3 144 108 3888000
f53 Bg Bfl 84 B b Ba 37
Lines 1. 0000 1.0000 1.0000 1.0000 1.0000 1.600G 1. G000
Seuares 1.0000 1.6000 6.7506 0.4583 $.2326 0.0945 0.0258
10006 1.6000 0.5625 0.1771 0.0123 —0.0184 —(.0106

“Gaussian model used by Ford®™ in which it is assumed
that the / functions are Gaussian in form, These
numbers are all given in terms of By=unit volume,
It s interesting to see the fairly close numerical agree-
ment between the hard-cube and hard-sphere results,
as contrasted with the poorer agreement between
these and the Gaussian model.

The most interesting feature of these results is the
{act that B and B are negative for parallel hard cubes.
This is interesting from the point of view of phase

. iransitions because negative virial coefficients are
accessary to produce isotherms with flat portions or
van der Waals loops. As previously pointed out,® nega-
tive virial coeflicients for cubes do not impiy such
behavior for spheres, although these results are cer-
tainly suggestive. Alder and Wainwright? believe that
Bs and By are both positive for hard spheres, although

they cannot estimate the magnitudes of these co-
efficients precisely. In Figs. 4 and § we have plotted
the equation of state for hard parallel squares and
cubes, with scparate curves for six and seven virial
coeflicients to give an idea of the densities at which
these coefficients become Important in the two and
three-dimensional cases. The closest-packed volume
Vo is Neo? for hard squares, and Ne® for hard cubes.

Although the one-dimensional case is a solved prob-
lem, we think it is worthwhile to present the results of
an investigation to determine which subintegrals con-
tribute to the one-dimensional virial coefficients. Be-
cause cach contributing star integral is expressible in
terms of subintegrals, it is possible to calculate the
net contribution of each kind of subintegral to each
virial coefficient, We will illustrate this process for
By; the results for By+++ By are given in Table I,

TapLe VIIL Cluster integrais b, and irreducible cluster integrals By for five models. Unit volume is B,

b by by be bs \ by bs
Lines 1.0600 ~1,000 1,500 —2.667 ‘ 5,208 —10.800 23.343
Srjuares 1.000 --1.000 1.625 —-3.236 7.214 -~17.277 43.493
Cubes 1.0060 —1.000 1.71¢ —3.705 9.054 (23,971 67.087
Spheres 1.000 —1.000 1.688 -3.554
Gaussian 1.000 ~1.000 1.872 —4.522 12.554 -38.045 122,706
B Bz Bs B Bs Be
Tines — 2,000 —1.500 - 1.333 —~1.256 —1.200 —1.167
Squares =2.000 ~~1.125 -0.011 —0.293 —0.113 —0.030
Cubes -2.000 —~0.,844 0,236 -0.015 -+0.022 +0.012
Spheres —2.000 —0.938 —~0.383
Gaussian -2.000 —~0.,386 +0.167 -0.016 —0.046 +0.638

~ B G.W, Ford, dissertation, University of Michigan, 1954.

¥ B, J. Alder and T, E. Wainwright, J. Chem, Phys. 33, 1447 (1960).
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VIRIAL COEFFICIENTS FOR THE HARD-CUBE MODEL

iypes of stars contribute to B
n lerms of subintegrals,

I ]) =160+8uw, (23)
I(N)) = 2004, (24)
I1{(X) =24e. (25)

Taking the degeneracies into account one finds that
only the o subintegrals contribute to the encedi-
mensional By From Tuable TN we see that this Is true
for By B: We have not been able to prove this
relation generally or to find a parallel in two or more
dimensions; the following three facts are relevant
howuver,

(1) Riddcll® has shown that the net number of lines
in the stars of # points (calling lines negative for stars
with odd numbers of lines and positive for stars with
even numbers of lines) is —ai/2. This result, coupled
with the observation that each line in a star of # points
will give rise to 20 (»—2)!] ¢ subintegrals of value
1/(n—1) 1 cach, gives for the net value of all ¢ sub-
integrais contributing to a given By,

(—al/D 20—/ Tn—100) =al/(1—n). (26)

This is the reciprocal of the factor appearing in Eq.
{9), indicating that the ¢ subintegrals are just sufa-
clently numerous to give a virial coeficient of 41 in the
one-dimensicnal case. The other subintegrals must
therefore cancel out collectively, if not individually, .

(2) In one individual case, for each value of #>3,
it is possible to point out a subintegral which will give
a net one-dimensional contribution of zero. This is the
subintegral corresponding to the following kind of
diagram: &V, This corresponds to the w sub-

T { i 1 1] & # 1]
\*— Seven Yirkgh Cosfficients
‘? Q - 8ix ¥irlat Cosfficients -
|
[\
#
s ~ ™ o
S
SIX AND SEVEN VIRIAL COEFFICIERT
« - -
EQUATIONS OF STATE FOR :
. ™~ R
HARD SQUARES
o o -]
% * nF)
~
Qb
- e i
i w 2 3 £ & 7 [} B
VI et

F16. 4. Equation of state for bard spheres.

1 R, J. Riddell, reference 2, p. 96,

3149
¥ T " 7 T 1 T
A o L ~= Sl Virlal Couffitisats wd
e
=
g~ .
G
SIX AND SEVEM VIRIAL COLFFICIERT
w - EQUATIONS OF STATE FOR N
v ™ HARD CUDES ]
" - % = NPy -
N e -
Sevan Vidol Cosiilclents
[
- i ! H i i I H i
i iz a 4 8 7 144 i%

VIV, =

F16. 5. Equation of state for hard cubes,

integral for By, wx for By, wxy for Bs, and so on. Because

n—3 lines may be added to the diagram above, without -

changing the type of subintegral involved, the number
of times the subintegral will contribute to stars of
n-+m lines and # points Is just

n—3

"

and the number of contributions to stars of odd num-
bers of lines must equal that to stars of even numbers
of lines.

(3) One can easily show that the net number of ¢
subintegrals for the stars of # points Is the same,
except for a possible difference in sign, as the number
of ¢ subintegrals derived from the star corresponding
to an open ring, being Z=n!{x—2)1L This result indi-
cates the hopelessness of trying to find approximations
for the star integrals in order to sum the virial serics
exactly. The total contribution of all stars to B. {in
one, two, or three dimensions) is, for those potentials
which we are considering at least, of the order of
magnitude of the contribution of a single type of star,
and the error in an excellent approximation would
undoubtedly exceed this for large #.

Using the virial coefficients in Table VII one can
caleulate approximations to the thermodynamic prop-
erties of hard square and hard cube gases. Ior such
gases the entropy in excess of the ideal gas value is
given by®

o8

N N
—=In(2 Bap™) =2 Bup™Y/ (n—1).  (27)

¥ For a derivation see T, L. Hill, Statistical Mechanics
{McGraw-Hill Book Company, Inc, New York, 1956), p. 221.
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Tanyy IXN. Subintegral contributions to the one«dimensional virial cocfficients.

B, Contributions £ 1/21

By ContributionsX1/4! B; Contributions X 1/5!
Lines @ Lines ¢ W Lines 7 w xtww wx
1 -1 4 2 1 3 -5 -3 3 -
5 - -5 -l 4} 42 16 10 2
Total -1 6 1 Y 7 ~70 -19 -10 -1
8 36 7 2 0
9 ~9 -1 0 G
I, Contributions X 1/3! Totals -2 0 10 1 0 o !
Lincs a Totals -G 0 0 0
3 -1
Total —1 N
B, Contributions X 1/61
Lines o w W YW W »x wytwwe  sy+wsx wwy wry
6 24 10 12 4 3 i 2 2 1 1
1 —~336 —127 -132 - 46 28 -9 -22 ~12 - -3
8 . 1304 437 398 134 67 26 48 20 8 3
9 -2121 —622 —492 - 148 -G8 -6 —40 -2 -5 -1
10 1798 465 302 72 34 G 14 2 i 0
11 —-979 -218 - 108 -18 -G -1 -2 0 4] ")
12 364 60 22 2 1 0 0 0 0 0
i3 —91 -12 -2 0 1] 0 0 0 0 0
14 14 1 0 0 0 0 0 o 0 0
15 -1 1] 0 4] 0 0 0 0 0 O
Totals —24 o 4] 0 0 0 1] 1] 0 0
B, Contributions X 1/7!
Lines T w x4y yrwww . wwww wx Wy-wuwr  wrwwuws Xz
7 —120 —42 —60 —36 —12 -13 -~ 14 —d -
8 2880 978 1268 700 252 249 . 260 9 171
9 - 20070 — 6328 — 7704 — 3054 —~1442 —1363 —1364 —~516 —943
10 63610 10642 21128 10062 3560 3375 3174 1150 2313
11 — 113641 —33243 — 32448 —14124 - 4630 —4756 - 4086 —1346 —-3023
12 133040 36900 32256 12538 3633 4372 3316 950 2386
i3 - 113620 - 29702 — 22856 —7738 — 1968 — 2841 - 1834 —438 — 1249
14 74510 18137 12018 3436 728 1339 702 132 445
15 - 38305 —8520 —4720 -~ 1092 - 182 —453 —~ 3180 —~24 - 105
16 15472 3058 1338 238 28 108 28 2 i3
17 — 4345 —816 -272 —~32 -2 —~15 -2 0 —1
18 1140 153 34 2 v 1 ] 0 t]
19 —190 —-18 -2 O 0 0 0 0 o]
20 20 1 0 0 Q 0 ] 0 1]
21 -1 O G 4] 0 0 ¢] 0 0
Totals —120 0 ] 0 0 0 0 0 0
Lines Xy -+wxx LB YT XXX FEwLXX wuwry WWE Wy way wxawwry  xey-tuwyy
7 - 10 -4 —i —4 - -0 -1 -4 -2
8 162 72 62 50 75 82 3 42 36
9 —742 -314 —-322 - 180 —363 -322 -—132 - 130 —-138
10 1538 586 730 282 762 574 243 190 254
11 - 1744 - 570 ~798 —220 — 862 -850 —243 ~152 -222
12 1204 320 454 90 592 310 145 70 98
13 — 538 -110 —-146 20 - 264 - 108 -53 —~18 —-22
14 154 22 26 2 16 22 11 2 2
13 -20 -2 -2 Y] —13 -2 -1 0 4]
16 2 0 0 O i 0 0 0 0
Totals 0 0 g ¢ G 0 0 G 0
Lines Wwys-wiky wxgwwyy wyy XYEwxyy wwws Wz WAEG+wiwys wrys
7 -2 -2 -1 -2 ~1 0 -2 -1
3 24 13 10 14 4 - 6 12 4
9 -70 -58 -35 32 —54 - —-22 —26 )
10 88 84 32 32 91 31 26 4
1 —~54 - 58 -~35 —14 —78 21 -12 -1
12 i6 18 10 2 36 7 2 0
13 —2 -2 -1 0 -4 -l 0 0
14 0 0 0 0 i 0 0 0
Totals 0 .0 0 1] 0 Q 0 R
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VIRIAL COETFFICIENTS

We have used 0 027) o caleulate excess entropics for
hard seunres and hard cubes. The results are displayed
in Figs. 6 and 7. On the hard-cube plot we have in-

cluded the molccular dynamical results of Alder and
for hard spheres of diameter o, recaleu-

H

Wainwright!
lated for Voo wNe?/6. Tt is interesting to note that at
low densities the excess entropy depends upon the
miagnitude of the excluded volume Vo and the results
for cubes and spheres are approximately cqual. At
higher densities, where the geometry of the interacting
moleruies broomes important, large differences occur,
Al of the vaiues for the excess entropy are negative,
as one would expect, because the excluded volume of
the molecules makes some configurations inaccessible
for cubes and spheres which are accessible for ideal gas
molecuies,

4. CALCULATION OF THE RADIAL DISTRIBUTION

FUNCTION

The Urscli-Mayer development of the pressure in
powers of z may be generalized™ to the calculation of
pair, triplet, and higher distribution functions. To
find, for example, the pair distribution function, one
places two molecules at 1 and 1y and integrates over
all of the other molecules to get the probability of the
conflguration as a function of 1; and re. Using #2{ry)
to represent the pair distribution function, we have

1 <I>(r1~ . rN)
— | exp— drge »+dry
(N=2)! BT
#a T2} = . (28)
1 S(rireTw)
— | exp——————n ity ey
N1 kT
B siien Vilar Caicunts ! i '
1 Yysi Viriot Costricienrs
4 N
x
Ve -
SiX AND SEVEN VIRIAL COEFFICIENT
EXCESS ENTROPIES FOR
i, N -
- HARD SQUARES
1 5 No)
@
o

13 2 25 3 VN
F16. 6. Excess entropy for hard spheres,

® J. E. Mayer and E. W, Montroll, J. Chem. Phys. 9, 2 (1941);
see also J. de Bocr, Repts. Progr. Phys. 12, 305 (1949},

FOR THE HARD-CUBE MODEL 3.5
i i i ¢ i )
. Seven Virial Costficlanly :
u Pesh Vielsl Coefficlents i
| ok -
-
< ;
.lf‘P ‘i
SIX AND SEVEN VIRIAL COEFFICIENT
L3 nd -~
EXCESS ENTROPIES FOR
HARD CUBES
)
[ -]
o v, v 4%
Hard Sphars
Oole of Alder
and Woinetighi:oss
o t i 4
H 15 2 3 4 0
L7 Mousnns od

1'16. 7. Excess entropy for hard cubes.

The radial distribution function g{ry) is just the rutio
of the number of molecules separated by a distance
T2 in the gas of interest to the number of molecules
separated by iz in an ideal gas at the same density.
That is, g{x1) =#z (real gas) /n. (ideal gas).

In order to convert Eq. (28) for . into a series in g,
one introduces the modified cluster integrals b.*(ri2):

expl~¢ (1) /kT] rCoimh
pL d’(lzz)/ _]f T fCit 1)
H ] .

bn*( 1‘12) =

Xdry o+ dTap,  (29)

where the C*(rn--1) are graphs of #--1 points, which
would become (or remain) connected if the line linking
molecules 1 and 2 were added. With the help of these
modified cluster integrals one shows that

N}

1 Ts) = 31 *Qn s/ Qw-

L

(30)
Using the fact that 2==Qun_;/Qx with the expansion of z
in powers of p from inversion of Eq. (5),
z=p+ (= 2b2) p*+ (8bs?— 3bs) p°

o (= 40+ 30byby— 4be) o8
(224051 — 252bg2 b+ 488,y + 27 b2~ 5bg) pb -+ 0+,
we find

#z(T1z) =sz;*+P3(252*_451*52)

(31)

4 {3by*— 12b*by— 6b,* by=- 206, %b2)
+‘05(4b4*— 2453*&'2‘%“?2\!}2*622"‘ 18{7?2"%3
725y %bbs— 1125, b3 — 8by%by) - -+, (32)

{The coeficient of the p* term in Eq. (32) is
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lncorrectly in at least two references. ] On expanding
the coulicients of cach power of p in terms of
cxpl =& (1) /AT ] and the f functions, a large amount
oi canceliation occurs, leaving

*“Rz‘CXP["‘M"H)/‘;’T]{Q!%‘P*/ AN L)
o1 [ @M +4R + X+ R drdr

/0 [(6 Q1 +6 1 +12 0 +12 Q)

0 ] F0 Y+ w2 R FIN T2 R
F12C 128 +6 9 6N +6 71 +3 H
+F3IQ+12R +6R +6FH +6 A IR

1
465G + D )dradrifira-iﬂ“j, (33)

where the coefficients prefixed to each graph indicate
how many times the graph occurs in the full expansion,
[In Eq. (33) we indicate molecules 1 and 2 by O O.]

The integrals in (33) are closely related to the
integrals for the virial cocfficients. We see that all
graphs which become stars when the line corresponding
to /12 is added will appear in the expansion of #z. The
evaluation of the integrals is, as with the star integrals,
straightforward. Again the one-dimensional integrals
are simply related to the two- and three-dimensional
integrals. If the value of a one-dimensional integral
over a ‘‘doubly rooted” graph appearing in (33}
7{x), where P s a polynomial, then in three dimen-
sions the corresponding integral is P{x) P(y) P(z).
Because of the symmeury of the hard-cubes model,
only the absolute values of =, y, and z will enter into
the values of the integrals. We will delete the absclute
value siyns on all coordinates so that our equations,
as written, will apply only to the region 0<%, ¥, 2.

Before illustrating the procedure by cvaluating one
integral, let us dist the principal complications which
make the distribution function problem harder than
the virial coeflicient problem {or hard
and cul

lines, sruares,

34,
{1} More types of graphs must be considered. To
compute the afth virial coefiicient one evaluates 10

v ey b
Lyes ol aibleg ’nh\

: The corresponding term in the pair
distribution function involves 24 types of integrals.

{2) Two kinds of molccules, not just one, are in-
voived In distribution function calculations, the fixed

¥ ], de Boer, reference 20, p. 340; J. Q. Hirschielder of o,
reference 15, pu 147,
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molecules, 1 and 2 in the pair case, and other
molecules, whose coordinates are the integration varia-
bles. Thus, many different kinds of linear orderings are

possible. Tor five molecules the orderings 1 eew,
loZeo, lools, looel, ollea, olo2e, olce?,
eelZe, velel, and 00012 must all be considered:
cach of these possibilities gives rise to its own sct of
subintegrals.

(3) The polynomial in rip==7, which is the value of
an integral over a doubly rooted graph, has a different
form for difierent ranges of 7. In general, different
polynomials apply in cach of the regions 0<r<l,
1<r<2, +++, where we are sciting o= 1,

(4) More ingenuity is required in sctting up the
integration limits. It is no longer possible in cL Cases
to write the integration limits by casual inspection.

Because of these difficulties we have caleulated the
pair distribution function through the fourth approxi-
mation enly, including all terms appearing in Eq. (33).
In principle one could evaluate any such integral in a
straightforward way; in practice the labor involved
soon becomes prohibitive,

We will now consider one example in detail to ilhu-
strate our methods. Let us take the one-dimensional
integral

I= [ M dagdzyday, (34)

which contributes to the fourth approximation to the
pair distribution function. Because 1 and 2 are fixed,
we need consider only 5!/2 linear orderings, assuming
that 1 is to the left of 2. We notice by symmetry that
some of the classes of orderings must be equal, These
are 120690 and oeol2, lo2ee and eele?, losle
and elew?, ael2e and el2eo. Further, the integral
must vanish for > 2 by inspection of (34).

In Table X we give the subintegrals for each of the
60 orderings contributing to {34) in the ranges 0<r <1,
and 1<r<2, finally adding these contributions to
obtain I, Diagrams indicating which / {functions are
used to set the integration limits are included with each
kind of ordering. To find the total contribution of 7 to
the pair distribution function we multiply the final
total in Table X by 46, plus because the number of
lines is even, and 6 because the doubly rooted graph

can be labeled in six different ways. Procecding in this’

way oneé can evaluate all of the integrals contributing
to g, gz, and gs, where the radial distribution function
is given by

g(xr ¥, 5 o) =7‘2/P2*GXPE"¢(35: ¥ 3)/;3T]

XO+ogit+oatofptr -] (38)

e
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315

‘ 4 ‘Taspe X, Subintegrals contributing to f £><l drydrdrs.

| Ordering Diagram Integral for 0<r <1 Integral for 1<<r<2

{

eenll=12¢ee:
- . \ . ¢ 10 z
e of i 34512 ‘ é oo % 2/ dw/ dxf dy Vanishes
eTent 5 35412 1 } r—1 o —1

43512 0 w x
43312 o 0 O 4 f dw [ ax f day Vanishes

> the : 53412 A
CaRCs i 54312
. i_ ‘
i the : Totals: {(6—12r-+6r%) /6 0
Jroxi- ‘
(33). ! ¢elel=1elee:
lina
olved : m . 0 .

34152 ‘ o / dw f dx f d Vanishes
ilu- u o —1 Jel 4 :
ional ‘ :

‘ » G z

} 35142 €2 g Cc G 2) f(iwf dx| dy Vanishes
o i 1] ol w—'lrv
(31) ] \

o { 43152

3t ; 53142 3 G &

45132 @ O © 4 dwf dx| dy Vanishes

54132 1] =1 o1

. Totals: , (187~ 277%-+91%) /6 t]

i

N a0120A=-‘ ellee:

KE‘;Q 2 ‘3 5 O % i G z ’
<i, | 34125 o9 / dw| dxf dy Vanishes
3 to ( # ol ~1
are ‘
cach N S o & 16 " '
7o : 54123 U [ dw / dx | dy Vanishes
];;a‘i ; 14 -], 3
rof )
aph } 431235
35124 4 Lo g
,L.“b g 53124 © 0C 4 [ dw ] dx / dy Vanishes -
Jng Ao ¢ r w—1 w—i
. ] 45123 : .
1011 ;
Totals: (8—21r+182=54)/6  ©
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Table X {coniinued)
Ordering Diagram Integrai for 0<r<1

Integral for i<r<?2

13542
14352

14332
15342
15432

Totals:

olele:

31425

51423

31524
41325
41523
51324

Tolals:

O

4fdwj dxf}dy
¢ Jo I

(18r2—151%) /6

(67%) /6

fdw[dxfdy

g W x

Efdw]dx dy
1] w F7

3[dwjdxfdy
[1] w z

7 i
/ dw fo dx | dy
0 w—1

T

(1]
v 1
]dwfdxfdy
o G ’

C 0 y wl
f dwf dxf dy
~1 1] ¥

(24r—4214+197) /6

1 0 1
/ dw / dx [w dy
-} g r

1 o
f dw fw dx f dy
=l r—1 Wi
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1 w r
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o] 0 L

1 1 r
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L w E
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L
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Table X {(continued)

Ordering Contribution to I for 0<r<1 Contribution to I for 1 <r <2
seell (6—12r+672) /6 0
200w (6—12r46r%) /6 0
eelel (18, —27r*4+972)/6 0
leleowo (18r--277+97) /6 0
egile (8—21r--18r1 =51} /6 0
eiles (8—21r+18r2—57%) /6 0
eleal (18r2—15¢7) /6 (12-12r-+3/%) /6
lecle (182 —157)/6 (12—1274-3:%) /6
looo? (6r)/6 (12—6r)/6
olo2e - (247 —42r2-4-197) /6 (8—12r+6r2—7) /6
Tolal=1: (28 —67r—12¢24-31%) /6 (44—42r+12r1 - /6

The doubly rooted graphs of »n points contribute to
gn-z- All of the graphs contributing to g1 - - g, together
with their values in one dimension are listed in Ap-
pendix 11,

Because the radial distribution function has cubic
rather than spherical symmeiry, the locations of
maxima and minima in the function depend upon
direction as well as distance from the origin. In Table
XI we have wabulated gi+«+g; as calculated from the
data in Appendix II for hard lines, squares, and cubes
with ¢=1. For squares we have tabulated these func-
tions along the line x=0(JJ), as well as along
x=y(QC); for cubes we have tabulated grrovg
along the lines x=y=0; =0, y=2; and x=y=3, This
serves to point out the angle dependence of the “radial”
distribution function for these molecules.

It is worthwhile to list some of the ways in which
these results can be checked. All but the first of the
six checks listed could be applied to potentials other
than.the special cases with which we have been con-
cerned.

(1) One may compare the one-dimensional radial
distribution function with the well-known cxact re-
sult'®:

exp(8/ET) g(r) == > 6+ (r— ) (o/ (1= p ) H(r— k) E2

Xexp {—(r—k) (o/L1=p D)}/ (A=1) 1, (36)

where 6*(r—&) =1 for »>% and 0 for r<k. Expanding
the first few terms of (36) in powers of p we find that
for 0<r<2, pi=2=—r, g=3(71—6r+r?), p:=%(34—

39r412r2—r%); for 2<r <3, g1 =0, g2=1(—9-+6r—#%),

§=1(—98+87r—24r+25); for 3<r<d, 7,=0, g2=0,
2:=5(64—48r+12r*~1%), in agreement with the re-
sults we obtain using Appendix I

{2) Setting =0 in the cxpression for any doubly
rooted graph integral gives the value of the corre-
sponding star integral. For cxample, <1 becomes
N on setting =0, and the value of

/Ndf&'ffgdfs

reduces to the proper value, 14/3, for r =0,
{3) The integral of the value of any doubly rooted
graph from O to 1 will be equal to one-hali the value

of the corresponding star integral. For example,

fs ld{ / Ndr;,a’ndn]

gives 29/8, while from Appendix I the value of the
corresponding star integral over <] is 29/4,

(4) In somec cases doubly rooted graph integrals
may be derived by inspection from simpler integrals,
For example,

/ Wy drsdndr(,m[/ A dr;j;.

" {5) The radial distribution function must satisfy
the Ornstein-Zernicke relation,?

ET(0p/3P)pr= 1+pf:dl‘£g{l‘} -1].

4 7. de Boer, reference 20, p. 364,
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Tanie XL g1, g2, and g for hard lines, squares, and cubes,
Lincs Squares Cubes
[—— [mn DE &3 f::ﬁ 3;4;
d 0(0,d) gld, ) £00,0,4) 00, d,4d) §iid, d,d}
1.0 2.,0000 1.0000 4.0000 2.0000 5
1,10 1.8000 0.8100 3.0600 1.6200
1.20 1.6000 0.6100 3.2000 1.2800
1,30 LT 1,4000 0.4900 2.8000 (0,9300
1.40 (. 6000 1.2000 (. 3600 2.4000 0.7200
1.50 0. 5] 1.0000 0.2500 2.0000 0. 5000
.00 G, 40 0. 8000 0, 1600 1. 6000 0.3200
1.70 0, 00y 0, 6000 0.0900 1, 2060 0. 1800 0.0270
180G . 000 (. 1000 O, 010 (), KGO0 0, 0800 O, 008G
1.0 (3, 100 {3, 2000 0.0100 (3. 000 0,200 [TRETHE)
2400 0, (00 0.0000 0.0000 0, 0000 0.0006 0.(nK)
d g2 (d) £00,d) g:{d, d) £(0,0,4d) £(0,4d,4,) 2l d, d)
1.00 1,000 3.5000 . 5000 12.5000 2.0000 —~1.25%)
1.10 0. 8030 2.8200 0. 1480 10.0800 0.7721 RN
1.20 G, 63% 2. 1800 —0.1156 7.8200 ~0.1420 —1.a4tT
1.30 0, 4450 1.3800 -0.3020 5.7200 ~0.7859 —1.3204
1.40 0. 2800 1.0200 —-0.4216 3.7800 —1.2000 — 1. 148
1.30 0,120 0.5000 —0. 4844 2.0000 ~1.4219 = (), 0336
1.60 — (3, 0200 0.0200 -0, 4996 0.3800 —1.4860
1,70 ~{, 1550 —{,4200 ~0.4760 ~1.0800 -~1,4239
1.&0 —{, 2800 —0.8200 -~0,4216 —2.3800 —1.2640
1.%0 ~— {1 JuE0 —1.,1800 —0. 3440 - 3.5200 —1.0319 —{. 2191
2.00 .30 -1, 5000 -0, 2300 -4, 5000 —0.7500 -0, 125
2.10 — {4050 —1.2130 —0.1640 —3.6450 —0.4921 - 0,0
2,20 -3, 3200 —0.9600 —0.1024 —2.8800 —0.3072 —0.
2.30 ~1{}, 2430 -0,7350 —Q.0600 —2.2030 -, 1801 {3, 0347
2.40 =}, 1800 — (1. 5400 —-0.0324 -~ 1.6200 -(0,0072 ==, {x)3
2.50 —-0.1230 —0.3750 —0.,0156 —~1.125 ~0.0469 —{.G020
2.60 — (. 0800 —.2400 -0.0064 —(,7200 ~0,0192 — QL kRIS
2.70 -~ 0.0450 —0.1350 —0.0020 —0,4050 —0.00061 ~0.07401
2,80 -—0.0200 -0, 0000 ~0.0004 —(.1800 -0.0012 w3, (KKRY
2.90 —-(.0050 -(,0150 -—0.0000 -—0.0450 —0,0001 — 0. G
3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
d 21(d} 200, d) n{d, d} 2:{0,0,d} 20, d, d} id, d,d)
1.00 1.0000 5.5556 -{.3333 32.4444 0.0550 —-3.4522
1.10 0.7148 3.9876 —0.5663 23,3804 -1,0834 —-1.1308
1.20 0.4587 2.6116 —~0.06344 15.6124 —1.3301 0.7241
1,30 0,2305 1.4196 —0,5855" 9.0765 —(.9846 2.0718
1.40 0.0293 0.4036 —().4599 3.7083 —0.2011 283
1.50 —Q.1458 —0. 4444 —0.26012 —~0.3356 0.5538 3.2463
1.60 —0.2060 —1.1324 -0, 1065 -~3.7796 1.4071 3,232
1.70 —0.4222 ~1,6684 0.0729 —6.0276 2.1335 2.9403
1.80 —0.5233 -2.0604 0.2312 «7.3636 2,7217 2.4907
1.90 —0.6063 —2.316 0.35372 —7.8310 3.0702 1.9775
2.00 —0, 6667 ~2.4444 (. 4444 —~7.5550 3.1852 14313
2.10 —(.4363 —1,4361 0.4752 T -3.,2853 3.0400 1,080
2.20 —~0.2440 —(. 6043 0.4319 0. 1802 2.7193 0.7186
2.30 —0.0877 0.0606 0.3966 2.8891 2.2390 0,4063
2.40 0.0347 . 0.5689 0.320% 4£.8901 1.8289 0.2879
2.50 0.1250 0.9306 0.2526 6.2315 1.388%6 0.1637
2.060 0.1833 1.1356 G.1848 6.9618 1.0001 0.103%
2.70 0.2177 1.2339 0.1267 7.1264 0.06807 0,087
2.80 0.2240 1.2356 0.0816 0.7828 0.4360 0.023v
2,90 0.20063% 1.1106 0.0491 3.970+ 0,262 0.0109
3.00 0.1667 0.3839 0.0278 4.7407 0. 1481 0.0046
3167 0.1213 0,6480 0.0148 3.4360 0.0787 0.0015
3.20 0.0853 0.4351 0.0073 2,4273 0.0388 [ER0
3.30 0.0572 0. 3049 0.0033 1.6261 0.0174 0,00402
3,40 0,0360 0,1920 0.0013 1.0240 0.0069 0.06001
3.50 0.0208 0.1111 0.0004 0,5920 0.0023 0,000
3.60 0.0107 0.0569 (.0001 0.3034 0.0006 0.0000
3.70 0.0045 0.0240 0.0000 0.1280 0.0001 0.0000
3.8 €.0013 0.0071 0.0006 0.0379 0.0000 0.5000
3.90- 0.0002 0.0009 0.00G0 0.0047 0.0000 0.0000
4.00 0.0000 0.0000 0.0000 0.0000 0.0006 0.06000

"
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(6) From the virial theorem one may derive, for
hard cubes, the equation PV/NkT =1-+4pg(surface),
where g(surface) is the average value of g{x, 3, 5, p)
on the surface of a cube of twice unit side length, This
relation can be checked as can the analogous results for
lines and squares. :

To conclude this section on the radial distribution
function let us examine the potential of the mean force®
for hard lines, squares, and cubes. This potential,
¥(ryg),is given by

g(rgz)&"exp[-‘\l’(rm)/}%'f‘], (37)
and is the potential energy of the average force on
molecule 2 along 11, with molecule 1 (for convenience)
at the origin. In Figs. 8-10 we have plotted W/kT for
hard lines, squares, and cubes at a volume of 3V,

‘ T 1 (]
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Tx6. 9. Potential of the mean force for hard squares.

K J. de Boer, reference 20, p. 338.
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using the radial distribution {function data from
Table XTI in Eq. (37). Because g(#) is known exactly
for hard lines [Ea. (36)], we include Yexae/kT ior
comparison with W{gi-« g5} /AT in Fig. 8. We o not’
mean to imply, by using V=3V, for lines, squares,
and cubes, that Yexeer will be equally close to W (g« - g3)
in each case. It might, for example, be better to use
equal values of pY» for comparison, where # is the
number of dimensions. As in the case of hard spheres,®
we see that the mean force for lines, squares, and
cubes is attractive for some values of the scparation
and number density. Again, the results for squares
and cubes are strongly dependent upon angle as well as
distance.

5. CONCLUSION AND REMARKS

The foregoing calculations for hard lines, squares,
and cubes are interesting in illustrating the dificulties
involved in using the exact cluster treatment of the
configurational integral. The facts that (1) some virial
coefficients are negative for hard cubes, and (2)
that only a single kind of subintegral contributes o
Bys <+ By for hard lines, arc both interesting and stimu-
lating, because the physical basis of these results is
not understood. The techniques used here are rather

Tasre XIL Bz and B for triangles, squares, ¢quilateral hexa-
ons, and circles. First set of values is for Vem N, Second set is
or By=x1l,

O

VAN

0 O

By 3.0000  2.0000  2.0000  2.0000
2, 7.0000  3.0000 3.1 3.1280
B L0000 10000  L.00O  1.0000
B, 0.7778  0.7500  0.7778  0.7520+

50,7820 (4/3) = (V3 /).
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¢ of value in suggesting treat-
moents for more complicated potentials. Finally, the
jarge amount of numerical data available from this
investigation will permit rather exacting tests for any
approximate theory of the configurational integral
problem.

NETUDIRIONE DO S SO
RIIEY falized but Ry

hat for other simple paralicl molecules
the integrations are more difficult, In Table XII we
list for comparison By and B; for parallel triangles,
squares, equilateral hexagons, and circles,™ ™ first in
units of Vo/V, then in units of By It is interesting to
see that in the lntter units By Is the same for triangles
and :*c\‘;igom A system which is particularly easy to
study {from the point of view of the virial equation of
state s a mixture (two-dimensional) of hard lines,
some puinting vast-west and the rest north-south;
for such a system one 1inds that Bg is positive, By is
zero, and s negative.

We note here

Notes added i proof. Tt is clear that the equation
of state for the two-dimensional mixture of hard lines
{north-south, cast-west) is identical with the equation
of state for a corresponding mixture of hard parallel red
and grcensqmrcs,sud thatdrr=0, dee=0,and ¢re=¢
(hard parallel squares). The nonvanishing star integrals
for north-south and cast-west lines of length L are
identical to the corresponding star integrals for squares
of side length L/2.

Upon examination, it is found that most of the
integrals vanish, and applying the expressions of
Mayer® for the virial coefficients of mixtures, one
finds for the case of an cquimolar mixture, using the
appropriate entries in our Appendix I, the results:
By=1/4, B;=0, By=—1/48, By=—1/192, where unit
arca is LA (2) We have noticed that the nef number of
points of degree ms£n—1 is zero for the stars of <8
points. The degree of a point is simply the number of
points to which it is directly linked by lines. [Refer

to Egs. {23), (24), and (25) and the remarks that
follow ).
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APPENDIX I

Graphs and Integral Values for All Stars of Less than
Eight Points

In this appendix we list ail of the stars contributing
to the first seven virial cocfficients, together with the
values of the onc-dimensional integrals. The sturs arc
numbered serially for cach value of #, the number of
points, and ordered according to (1) number of points,
{2} number of lines, and (3) value of the one-dimen-
sional integral. These values are derived from the
following form of the integral

— 1)1
(n 1) /S s(ydrys e dr.

This form is chosen so as to make all values appear as
integers.

Three numbers are associated with each star: frsi,
the serial index; second, g, the number of ways in which
a star may be labeled, positive if the number of lines
is even, negative if odd; third, the value of the integral,
which is always taken as positive.
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APPENDIX 1I

Doubly Rooted Graphs and Integral Values for Less
than Six Poeints

In this appendix we list all of the doubly rooted

graphs contributing to the first four approximations to
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the radial distribulion function, together with the
values of the one-dimensional integrals. The graphs are
numbered serially for cach value of #, the number of
points, and ordered according to (1) number of points,
(2) number of lines, and (3) value of the one-dimen-
sional integral. These values are derived from the
following form of the integral

(n—2) IfS,«*(n)dr;* codrn.

This form is chosen so as to make all coelficients appear
as integers.

Beeause the value of the integral is a function of
ris=7, it is necessary to tabulate the values separately
for 0<r<C1, 1<r<2, -+, where we have assigned ¢
the value unity. The other numbers associated with
cach graph are the serial index and g, the number of
ways the graph may be labeled with the root points
being 1 and 2. Although the integral values for 0<r<1
do not contribute to the one-dimensional radial dis-
tribution function, these values are needed for the
distribution functions in two or more dimensions, and
are included for that reason.
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