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Sixth and Seventh Vidal Coefficients for the Parallel Hard-Cube Model" 

W1LUA~( G. IIOOvlmt AKD ANmmw G. DE Rocco 

Dcpart1llwl of Chemistr)" 1'1", Ulliv<'fsily IIf ,If fcbige"" A nn A rbor, Michigan 


(Received Septemher 8, 1961) 

A procedure for calculating virial coem,jents for parallel hard lines, squares, and cuhes is outlined, and 
t.he ~ixth and seventh vidal codlidcllts arc computed for these models. The essential step in lhe evaluation 
of the sl;tr inlcgr;ds lies in the recognition 01 the facL that only a few "subintc;;rals" contribute to each 
virial cocil",cienl, relalive to the total number of labeled slar integrals. Both the sixth and seventh vidal 
codlicicn is arc ncgative for hard cubes, a fact interesting from the point of view of phase transitions. 1\p­
proxi:naliol1s to tbe excess entropy arc given for squares and cubes. 

The p.occdure for the star integrals is extended to the calculation of approximations to the pair distribu­
lion function and the potential of the mean iorce. These functions are calculated through the fourth ap­
proximation ior hard lines, squares, and cubes. 

The topological graphs needed for the above ,investigations, together with the values of the related 
integrals in one dimension, are displayed. 

I. INTRODUCTION 

~~TATISTICAL mechanics correlates the observed 
..::::; macroscopic properties of a system with the in­
ferred microscopic properties of the system. The con, 
figurational in te~ral 

depends upon the intermolecular potential energy 
function ep(r) and is related to the macroscopic equa­
tion of state by 

(2) 

P, V, and T have their usual thermodynamic mean­
ings; N is the number of molecules; k is Boltzmann's 
constant; and q,,(rl' - -rN) is the total potential energy 
of the system, which we will assume can be written 

q,(rl"'CN) = 'L,CP,j(Cii). (3) 
i<i 

The correlation of macroscopic with microscopic 
variables implicit in (2) is not very useful because the 
configurationa: integral is ordinarily too difficult to 
evaluate, Ursdl and Mayer,! using a formalism heavily 
dependent on graph theory, were able to convert (1) 
into a form more useful from the point of view of the 
equation of state. Before giving these results we will 

t B:lSCQ on D. dis:iert:lt!on submitted in August, 1961, by William 
G. Hoover. in ilartiai iuitjilment of the requirements for the Ph.D. 
dcg-rt:c at 'The L7nivcrsity of ~lichigan. 

• Present address: Department of Chemistry, Duke University, 
Durha:n, ~orth Carolina. 

• H. D. Urscll, 1'roc. Cambridge Phil. Soc. 23, 685 (1927);
J. E. ;,faycr and M. G. Mayer. Statistical Meclwnics (John 
Wiley & Sons, Inc., New York, 1940). . 

make ;\ brief digression into the related theory of 
graphs.~ 

The graphs in which we arc interested consist of a 
number of points (representing molecules) and lines 
[a line connecting the molecules i and j represents the 
function exp( -cpdkT) -1]. If it is possible to 
trace a path of lines from any point in a graph to any 
other point in the graph the graph is called connected. 
If after removing a point from a connected graph, 
together with all of the lines adjacent to the missing 
point, the resulting graph is connected (no matter 
which point has been removed), the first gr<Lph is 
termed a slar. Evidently the set of connect<:d graph~ 
includes the set of stars. We wili denote the number of 
topologically different connected graphs of n unlabeled 
points by C(n) and the corresponding number for 
stars by S(n). By way of orientation we give3 in Table 
I C(n) and Sen) for n<8. The stars of less than eight 
points are listed in Appendix I. 

With any graph G, is associated a number gi, the 
number of topologically distinct ways in which the 
graph may be labeled. In Fig. 1 we display the six 
connected graphs of four points together with the g, 
(which we call the degeneracy of the graph) for each 
graph. 

The Ursell-Mayer formalism makes use of graph 
theory, finally obtaining the two Mayer equations 

:v 
P/kT= 2.':bnzn (4) 

n=l 

"D. KO:1ig, Tlieorie du Etldlicliw uud Uncildlichell Grapliet; 
(Chelsea Publishing Company, Xew York, 1950); C. Berge, 
Thcoric des 1,rap/lcs ci ses applications (Dunod, Paris, 1958) j 
R. J. Ridclc]J, dissertation, University of Michigan, 1951; G. W. 
Ford, dissertation, University of Michigan, 1954. 
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TABLE I. The numtwi oi tOj)oloh1cal1y different conncctcJ 
f;raphs C(/I) and star graphs S (11) ior ,,<So 

II: 2 3 .. 5 6 7 

C(n) : 2 6 21 112 853 

Sen) : 3 10 56 468 

and 

x 
p=.jVjV = Lllbr.z", (5) 

where z is the thermodynamic iugacity, divided by kT, 
and the bn arc cluster integrals over the coordinates of n 
molecules: 

(6) 

If the bn arc known, ::: can be eliminated between the 
two l\1ayer equations, giving the well-known virial 
equation of state 

Pjk T = p+B2P2+ Bsp3+Bt.p4+ B6p5+ Br,p6+ • • " (7) 

where Bn is the 11th virial coefficient. Born and Fuch:;4 
were able to show that only the star integrals contribute 
to the equation of state, getting finally, 

N l-n js(n)
PjkT=p+ L -I·P" L g,S,(n)drl" ·drn • (8) 

"=2 n. V i-I 

As we can see from Table I, the number of integrals 
necessary to the calculation of successive terms in (8) 
increases rapidly with n. Furthermore the integrals be­
come unmanageable, for realistic potentials, with ,I, 
greater than 2 or 3. In the following section we will 
introduce a potential which is particularly useful be­
cause the necessary star integrals arc easy to perform. 
Before going on, we stress the fact that the vi rial equa­
tion of state is useful only in the region where the 
convergence of the virial series is rapid, and that for the 
full equation of state an attack through the distribu­
tion functions or some other method is necessary. 

2. HARD~CUBE MODEL 

The hard-cube model was introduced by Geilikman,a 
who calculated B2 and B3 for a hard-cube gas. Zwanzig6 

FIG, 1. The connected 
graphs of iour points. 
The /;' indicate the num­
ber of ways each graph 
can be labeled. 

, ~1. Born and K. Fuchs, Proc. Roy. Soc. (London) AIo6. 391 
(1938). 

• B. T. Geilikman, Proc. Acad. Sci. U.S.S.R. 70, 25 (1950). 
oR. W. Zwanzig, J. Chern. Phys. 24, 855 (1956). 

pointed out q,e intimate connection oi the two- ;,.r.U 

three-ciimensional cases (squares and cubes) with the 
one-dimensional case (lines), and used the one.di­
mensional results of Riddcli and Uhlenbeck7 to G,icu­
late virial coelTtcicnts through B" for cubes. Tempe':c)"' 
has extended these calculations to gases of more tbn 
three dimensions. As noted in an earlier commUniGl­
tion,9 we have computed B6 for lines, squares, ar.d 
cubes and will here present the method of c~.lculation 
used together with our results for B1, the excess entrop)', 
the radial distribution function, and the potential of 
the mean force for such molecules. 

The hard-cube potential is illustrated in Fig. 2. The 
least realistic property of this potential, which dep<.:nc:; 
upon the fixed Cartesian coordinate system, is that the 
molecules cannot rotate, behaving as if their mom(:l1ts 
of inertia were infinite. This feature, together with the 
cubic, rather than spherical, symmetry is essential 

FIG. 2. The hard­
cube potential. The 
molecular side length 
is <T. 

in estabiishing the one-, two-, and three-dimensional 
correlation. 

Let us consider a star integral contributing to one 
of the virial coefficients through Eq. (8), for instance 

an integral which has not yet been evaluated analyti ­
cally for hard spheres. Because anf function containing 
the coordinates of two hard cubes, f,j(Xih Yii> :::,j) , may 
be written as the product !;J(Xii)!ij(Yi,)Jd;;ij) , it is 
clear that the compliGlted three-dimensionid in tegral 
above may be factored into the product of three (equal) 
one-dimensional integrals, and, as we shall sec, tlw 
one-dimensional integrals are easily evaluated. This 
property of factorization can also be used to advantage 
in calculations of the pair distribution function. The 
one-dimensional connection is also useful as a helpful 
check in calculations because the virial coefflcicn ts,lO 
cluster integrals,ll radial distribution function,12 and 
thermodynamic properties of the hard-line gas arc well 
known. 

7 R. J. Riddell and G. E. Uhlenbeck, J. Chern. Phys. 21, 2056 
'19-3) . . 

\ ,~.I. ·N. V. Temperley, Proc. Phys. Sor. (London) 1370, 5.36 


(1?~~:·G. Hoover and A. G. DeRocco, J. Chern. Phys. 34, 1059 
(1961). 

10 L. Tonks, Phys. Rev. 50, 955 (1936). 
11 R. J. Riddell, reference 2. . 
it Z. W. Salsbuq:;, R. W. Zwanzlg, and J. G. Kirkwood, J. 

Chem. Phys.21, 1098 (1953). 

3' 

Ad 
r;::'

COCLll(i 

~ 

This 
keepi,:, 
respeCt 
the sil 
that :!, 
wher< 

. h 
Wlt.l fI 

Eq. ([ 

i 
, ~ 

I,. 
f, 

t 
j 

t, 
t\ 

J 
{ 

wi 
r 

integf 
Let I•

! 
r 

I
Beca! 

lo~~l 
ongil' 
dime! 

! 

,, 
I 

I 

i, 	 wher 

star. 
can i 

a gi\ 
taint 
the j 

for ( 
sym: 
only 
nurn 
120 
side 
654: 

jiP JiI'+» J t ,. f.-::r :w;; ..... ;iii;: J $ t ,41 'i 

------------------------------------------------------------.~-.,.~--



V I j( I ALe 0 E F FIe lEN T S FOR T II E H A i{ D . CUD E MOD E L 31';'3 

'~\ :..:-­

liCl­

;u;d 

lion 
JPy, 
1 \):" 

l'hc 

the 

:::nts 
the 

onc 
mcc 

'Tne 
~)l*ul 

anG
, 

well 

2Q56 

536 

1059 

1, J. 

3. CALCULATION OF VnUAL COEFFICIENTS 

As we sec from Eqs. (7) and (8), thc nth virial 
coctIicicnt Bn is given by 

(9) 

This iorm applies in one, two, and three dimensions, 
keepinf': in mind that d. represents dx, dxily, and dx,1ydz, 
respeclively, in these cases. For convenience we assign 
the sign Of each contribuling star integral to the gi for 
that star, ~o Ih:n nil integrals arc positive and 1,,=11", . 

where J is a star integral and we indicate dimensionality 
with a subscript. Using this convention we may write 
Eq. (9) for 11 2·· ·4: 

(10) 

(11) 

" 

-ljI B.= l3V (3 

Wewill now consider the evaluation of a typical star 
integral contributing to B6 to illustrate our methods, 

Let 

(13) 

Because the integral in (13) is independent of the 
location of molecule 1 for large V, we place 1 at the 
origin and cancel the factor of V-i, Specializing to one 
dimension, ' 

(molecule 1 at origin), 

where we have assigned an arbitrary labeling to the 
star. We now note that the integral indicated in (14) 
can be written as the sum of 61 = 720 integrals in which 
a given molecular ordering, from left to right, is main· 
tained, because there are 61 different ways of ordering 
the molecule~ on a iine. We could evaluate the integral 
ior each of thesc orderings, but because of the sixfold 
symmetry oi the integrand it is sufficient to consider 
only those ordciings in which the leftmost molecule is 
number 1, and then to multiply the results of these 
120 integrals by 6 to obtain I. We will therefore con­
sider orderings such as 123456 and 135246, but not 
654321 or 531642. If the integrand had no symmetry it 

FIG. 3. The f functions charac· 
tcri7.1n~ 'W} x, and y subintcgfals ~. 
arc in(licatcd as lines connecting 'ft 

the molecules. 

would be neccssary to considcr {:<lch of ti1e 720 {)nler. 
ll1gs. 

One could next list the 120 orderings, put in Emits 
of integration with the help of the restrictions imposcd 
by the ordering and by the 1 functions, and sct out to 
cvaluate the integrals. This is in fact the W<ly in which 
we originally attacked the prob;em. It soon becomes 

obvious, while carrying out this procedure, that many 
of the integrals obtained are identical in form and 
value. Altogether only 14 distinct kinds of intcgrals 
arc found, some occurring more often than olhers. 
\Ve will now describe these fourteen "sublntegrals" 
and show how to determine, from the form of the 
integrand of the star integral, how many times each 
occurs. 

Let us first consider those orderings in which the last 
molecule is number 2 or number 6 (so that 13·i:562 and 
123456 are included in this category). Because an 1 
function (112 or161) connects the first and last molecules 
:n these orderings it is clear that the upper limit of 
integration on the rightmost molecule is IT, the mage of 
the intermolecular force. Because of the restriction 
that the ordering from left to right be mainta.ined 
throughou t the integration, all of the molecules are 
between the first (which is at the origin) and th" last 
(which must be somewhere between the origin and v). 
Thus all of the restrictions imposed by the 1 functions 
are automatically satisfied, and the 1 functions may be 
removed from the integrand. Using 123456 as an 
example of this type of integral we have 

The use of w, x, y, z, and a as integration variables is 
convenient in deciding whether or not two different 
orderings give rise to the same subintegral. We uSc w 
to indicate the coordinate of the second molecule in 
the ordering, x for the third molecule, and so on. We 
will term an integral of the kind found in Eq. (15) a IT 

integral, ,because all of the upper limits of integration 
are IT. A (f integral will always res,..lt when an1 function 
in the integrand connects the first and last molecules 
in the ordering under consideration. 

Suppose we now consider an ordering it, which 
molecule 1 is connected by anf function to the next-to­

http:tcri7.1n
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Va;u.::X 
Ordering Diagram Subintcgral Name 5!/a-" 

Q123456 ! 0 & [dw[dX[dy[dz[da 1" Q 
o u} .t V z 

124563 0 0 [r[[[+w W 2V ~ y A odui '" dx r dy daII dz I 

, 
124653 [ r[r+W[+w wwq & 0 l odw w dx .. dy 11 dr; > da 3 

l Y 0 

126453 [ [ [TW [+w [W wur.u 4~ 0 L odw 10 dx.. dy dz. daIIV ? Q 
g 

125634 [[[[+wJ* wx 5~ odw IV dx .. dy 11 dz. da 

, 
l~ , 

12643S 0 l 0 ! [r[W[W[+' wwx 7?' odw III dx.. dy 1/ dz. da.fI 
" 

& ~ 0 [dwr dx[TWdyr+zdZ[+zda 9126345 wxx 
Ow.. 11 •? 0 ~ 

i 

132645 ~ U 1 [+w [+u wy 7[ r f? 0 odw to dx ~ dy II dz. da~ 

6, ? 1 [ r [W [+to126534 
II 

[+u 11i l odw dy dz. da.0 
til dx it 

wwy
8 

126354 0 b n U\) A [ r dx[+to [+rdz[+11da wxy: 16dw dy 
~ o W.:i: SJ, $'1 " 

123564 b' (I A [r[[[+z x 3y 0 j odw '" dx dy 11 dz. da:J; 

, 
r~ 
I 



i, t! 

0 J~ J' J~ J"+~ J'+~ 
12365{ 0 

~ 
0 0 9 

'I " odw w dx "dy II dz. da xx 6 .. 
~ '" JV jV Jd+" j"'+Ufodw w dx ~ dy 11 dz. da xy 91236·15 v 0 

q 

" dx dz j"'+11'"dw[ J'dyJ da 
123';65 (I0 0 0 0 

7_ 

A Jo to Z iI a 
L< 
f I! 

bst mOlecule, but not to the last one. \Ve know that 
the upper limits oi the first four integration variables 
are iT, out the last upper limit depends upon the cle­
tails oi the ordering. If the last molecule is connected 
to the second by an f iunction then the upper limit on 
the rightmost integration would be <1+w. Similarly, 
other orderings will give rise to integration limits ot 
o+x or <1+Y. In Fig. 3 we indicate these possibilities 
pictorially, showing the f functions (as lines) which 
are used to determine the integration limits. The 
following orderings typify these kinds of subintegrals: 

= 

q 
dw fadx jgdy f'"dz./"+11da=4(l°/5l. (18)Jo w :t ~ ~ , 

We will term the three kinds of subin tegrals appearing 
in (16)-(18) as w, x, and y subintegrals, deriving the 
name from the rightmost integration limit. It is easy 

to sec that a z subintegral cOelld not be obtained with 
six molecules, because if the 1,,$t molecule is connected 
only to the next-to-Iast, the configuration could not b(; 
derived from a star. Thus we have disposed oi all 
possible cases in which the first molecule is connected 

.to the last, or to the next-to-last molecule. 
One may go on to consider the other possibilitib. 

In each case the lower integration limits arc deter­
mined by the ordering, and the upper integration limits 
are det(;rmined by both the ordering ~nd the f iunction;; 
in the integrand. Rather than describe the individual 
cases, we list in Table II all of the possibilities found for 
six molecules, together with the integration limits, 
values, and names of the related 5ubintegrals, and an 
ordering giving each type of subintegraL 

Let us now calculate the integral I of Eq. (14) in 
terms of the subintegrals listed in Table II. We have 
a:ready shown that all orderings with molecu;es 2 or 6 
in the last position give rise to <1 integrals. We will 
therefore list, in Table III, only those orderings in 
which one of the molecules 3, 4, or 5 occupies the last 
position. (By iurther use of symmetry we could avoid 
consideration of half of these cases, but for compktc· 
ness each of the 72 permutations is included in th.:: 
table.) Sorting these contributions to the integral by 
type, adding in the (J integra:s from 1···2 and 1···6 
orderings, and multiplying by six, we have 1 expressed 
in terms ot the subintegrals. These totals are given in 
Table IV. The total number of occurrences is, oi course, 
720. From the values of the subinte6rals listed in Table 
II we calculate the value of I. Adding all oi tn.:: con­
tributions we find 1= 2112(ls/5 1= 88a-b/5. The value or 
the integral in two dimensiorls is just (880'5/5)2= 
774471°/25; the three-dimensional case gives (88a-b/5)<i = 
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We L; ~ 
TAHLZ Ill. Subintcgrals contributing to f 0 dr,· ··dr. for 72 representative linear orderings. cncound, 

cocfflcitj 
Onkrin;.: T,")c Ordering Type Ordering Type Ordering Type rcprc;-;cr.; 

righ l-ha[ 
• j 

12·\.'(", ~~' 142S(),\ 7U 	 1S2·1 (>3 x 1(,2153 'W'WX in wbid}
12·;(,53 i<"iO 1426:;3 ww 152M3 wx. 1625,13 ~vxx 

rows an{ 125~(J3 w 14;;263 w 154263 x 164253 ,{IX 

12S()-~3 'i.:"'o1.l 145623 W 15,1623 x 16-1523 x an f fur; 
12(,153 ;,-';'-", 146253 ww 156243 wy 165243 xy otherwiA .... I.1265..3 i~"'~"'~' 146523 w 	 15M23 y 165·\23 Y aujaccno, 
12,iSCrI .. 132564 w 152364 w 162354 ~.L-wy ttions. 
123654 xx 13265-1 W".o 152634 'iVW 1625,):. ';L'xy We hlI12SJ6-t x 135264 w 153264 w 163254 ,;.ux 
i 256-<·; '"ii'X 13562-1 w 153624 w 163524 x ci?ci~n,tsl 
12635" ,exy 136254 ww 156234 '1.U'dl 16523-1 xx 01 SUDlIll 

1265,,"* ;,-.t'Y 136524 w 156324 w 165324 x integral, I 
123·i()S y 1:\2'*65 y 	 142365 'if} 162345 ~"'r.L,...w 

star ma)1
I 

123(,45 xy 132M5 ;oy 142635 W"dI 162435 U;I"'.ll"'w AlthougH, 
12-1365 x 134265 x 	 143265 w 163245 'U1""dJ siderable I. 
124635 W,:'';; 134625 x 143625 w 163425 'iLl of B;, \\'l126345 '::L'.\"X 136245 UlX 	 146235 ,/lW 164235 'U ...W' 

each intci 126435 tc-..L'X 136425 x 146325 w 164325 ;v 	 i· 

was giverI 
For thl 

6814720-15/125. In order to get the contributions of A slight further simplification arises because some into the J 
pairs of subintegrals are equal. We note, for example, the mach! 

gf o drz' , ,dr6 that any ordering giving rise to an x subintcgral star, find. 
corresponds exactly to a 'ww subintegral on rev.;rsal contn'butt 

.::::=::::'--=-----==:::.= 

' 

to Be one must multiply these results by 60, the number of the ordering. There are three other such pair,; in , values ofl 
I 

of topologically distinct ways in which the points of a Table II: 1.11iUUJ=y, 'Ur<.Vx=wy, and wxx=xy. The values ! " can then (i 
hexagon may be labeled. of such pairs of subintegrals are clearly equal by sym­ T\:o i~ 

In general, one fo::ows the above procedure for each metry. One would expect the number of such pairs to star Integ 
of the stars contributing to the B" of interest. One approach half the total number of sub integrals for II all of the I 
might expect that no two different star integrals would large, as the relative number of subint.;grals with a to be +11 
have the sa::ne representation in terms of subintegrals. center of symmetry must decrease. In Table V we list integral q 
We find two pairs of seven-point graphs with identical the number of subintegrals contributing to the 11th ••• ) 

• 

IS kr:
I 

representations (n\,;.mbers 380, 381 and 420, 421 in viria1 coefficient for n<8. Each pair is counted as only 
Appendix I) however, so that the corresponding set of one subintegral in this table. 1(11, ring) 
subin tegrals docs not uniquely specify the star in The number of different subintegrals increases 
question. The values found for all stars of less than rapidly with n. Let us define Ll as the number oi 
eight pointsl3 are iisted in Appendix I. 	 different subintegrals with one-letter names other than =-­

(7 (n-1(including 'lV, x, y, ••• ); L2 as the number with two­ ,,TAllLE IV. Total subintcgni contributions to f Odr2" -dre. letter names; and L3 as the number with three-letter 
.... -	 names. One can casily show, by considering diagrams ~--~--

Suhintegral: 	 like those in 'fa.ble II, that where (J = 

occurrences: 28~ 120 72 2'* 36 12 12 " (n-3)
L1= 2:1=--, (19) TAllLE V. ~ 

,,>3 1!Subintegml: "ii.'Y -"r.t.y '"J)XY X xx :ty y 

occurrcnCl~S: :2 12 12 72 12 12 24 r. n (n-4) (n-1) 
~=2:[2:1J= ') , (20) 

Suhintcgrals,,>4 n>3 ~l 
l' Thc,e stars, together with aii other graphs oi less than eight Equal pairs:

pnints mi\y be found in "Dia;;-rams of AU Seven I'oint Graphs" n n n (n-5) (1)-1) (tt)!q F. lIar"ry and D. W. Crowc, Projcct R2S7, Horace H. L3= L(2:1L1J) 	 (21)Rackham Sclwol of Graduate Studies, University of :Michigan 

(mi'l1col;mphcd; supplied to the authors, with many corrections, n>. ,,>4 ..>3 31 


1< The intc 
by G. W. FortI), 1953; a list of smaller graphs was prepared by long-ing to GWe conjecture that the obvious generalization to L"F. IIaro.ry, .. Iso in 1953. F. Harary und R. Z. Norman plan to see E. T. W}
induuc a complete list of these graphs in!1 book now in prepration. is valid for a1l1~. bridge Univc 
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\\' c ;lOW bl, in Table VI, ail oi the subintegrals TABLE VI. Values and r,amcs of all subintc;;rals cor,lr:buting 
to B,· ..B1• •

CilC,)\l;Hci'cd in the evaluation of the iirst seVell virial 
OJc:Yicil'il :'s. We noll' that the kind of subin lcgral 
rcp,c;sC'l\[cd by a givcn ordering follows from the upper 
right"hand corner of the so-called adjaccncy matrix 
in which the ordering i" preserved in the labeling of the 
rows ami columns. The adjacency matrix has aij= 1 if 
an j function connects molecules i and }, and a,j=O 
otherwise. The relation of the subintegrals to the 
adjacency matrix is very useful for machine calcula­
tions. 

We have ~1;en tbat in order to find the vi rial co­
ciiicienb one clas,;ilics each contributing star in terms 
oi ;;ubintcgrab, obtains the \'alue of the related star 
integral, multiplies by the number of ways in which the 
star may be labdcd, and adds, linding 13" by Eq. (9). 
Although the procedure is straightforward, a con­
~idcrablc amount of labor is inyolved, and in the case 
oi B" \yhich requires the evaluation of 468 integrals, 
each integral being the sum of 7! subintcgrals, the task 
was given to an IB::\I 70-10 computer. 

For the ,machine calculations, one reads each star 
into the computer in the form of an adjacency matrix; 
the machine then examines all of the orderings for each 

linding the number of times each subintegral 
contributes to the star integral 1n question. As the 
values of the subintegrals are known the computer 
can then calculate 13 n , 

Two important means of checking the results for the 
star integrals arc available. First, as we have noted, 
all of the virial coeff.cients in one dimension arc known 
to be +1 where <7 is taken as unit length. Second, the 
integral corresponding to an open ring (l:::" 0. 0, 
••• ) is knoown exactly14: 

., ( - 2) "fro (SinX)"l(n nng) dx= - ­ -
7r 0 X 

(-1)"
=---[nt>-l-n(n-2)n-l+n(n-l) (n-4) ,,-1/2 

(n-I)! , 

-n(n-l) (11,-2) (n-6),,-1/6+-·· J, (22) 

where <7 = 1 and the first n terms are taken for 12,,-1 

TABLE V. Xumbcr of distinct subintegrals contributing to Bn. 

2 3 4 5 6 7 

Subintcgra1s; 2 4 10 26 


Equal pairs: o o o 4 16 


n=2 

Subintcgral ValucXl! 

" 
n=4 

Subintcgral ValucX31 


t1 1 


W 2 


n=S 
Subintegral ValueX4! 

(f 

W 2 
urdJ" = x 3 

WX 5 

11'" 6 

Su bintegral ValucX51 

t1 1 

w 2 
'W'UJ=X J 
'.uww=y 4 

wx 5 

WdlX=wy 7 
wxx=xy 9 

unuy 11 
wxy 16 

xx 6 

tI=3 

Subintegra: ValucX2! 

" 
1!-7 

Su bin tcgraJ ValucX6! 

t1 

":i l 2 

{lrtV=X .3 
'Urd"Z.ox= y -1 
'U,..df'dl....:J= ;;:; 5 

"ill;\: 5 

AAox=a'y i 

'UJ'iCi"'d,l.\:=WZ 9 

.1:X 6 

wxx=xy 9 

·W1iJX.\:=XZ 12 
xxx=yy 10 

'iL'XXX=yz ' ..'0 

wwy 10 

Wd'Wy ='wwz 1~ 

wxy 14 

un{I;\)' =U'x,z 21 

xXY""WJY 16 

wxxy=wyz 26 

'oJrd'YY = xx. 2(, 

xYY 1 ') 

'iI.'xyy=xy;;. 35 
'Ur~!i'Z iY 
'U"wXZ 30 

'Zoxxz=W'""wyz ';0 

wxyz 61 

and 12n. Using this formula one finds +88/5 ior the 
integral over 0, and -5887/180 for the integral ovc:;r
0, in agreement with the values appearing in Ap­
pendix 1. 

Our results for the virial coeillcients arc giwn m 
Table VII, together with Blo 0 ·B. as calcubtcd by 
earlier workers.b.6 The virial coefficients arc given flr~t 
in terms of the edge length (J as unit length, the:1 in 
units of Bz as unit volume. Both scts of units ;,rc 
found in the 1i teraturc. In Table VIII we li~t ~h(; 
cluster integrals and "irreducible cluster intcgr;Jl:i," 
f3n = (It+ 1) Bn/n, together with the known valucs 
for hard spheres,!" and those derived from a special 

) 
15 Sec J. O. Hirschfelder, C. F. Curtiss, and R. D. Bird, .1[olu,,:.:;r 

H The integral appearing in (22) is taken from a notebook be­ Theory of Gases and Liql,ids (John Wiley & Sons, Inc., XCI\' York 
longing to G. E. Uhlcnbeck, who kindly lent it to the authors; 1954), p. 157; B. for hard spheres is known only approximatelY; 

'" sec E. T. Whittaker and G. N. Watson, Modern Analysis (Cam­ A. W. Rosenbluth and M. N. R.osenbluth, J. Chem. Phys. 22, 
bridge University Prcss, London, 1958), 4th ed., p. 123. 881 (1954), 
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T,\!:j,);; VII. Virjai cocf(,cicnls lor hard lines, squares, and cubes. First set of valucs is for et"'" 1. Scconc.i sct is ior B,,,,, l. Three 	dif 
" ._'"'::::-=:.:::...:=.::.::.~-::::::;-':::·..:::..::.:.:::~·:::7::::-~-=~.:=::=-

])1 B, B, B, B. B. BI 

Lines ~ 

11 67 121 17827 
S'lUarc5 2 :l 

:l 18 40 10800 

Cubeo 4 9 
34 455 -2039 -169149119

--'- ­.3 144 108 3888000 

B, Bz B, B, B. Bo B, 
Lines 1. GOOO 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Squan:s 1,O()OO 1.0000 0.7500 0.4583 0.2326 0.0945 0.0258 

Cube$ i . (j(KJ() 1. OO{)() 0.5625 0.1771 0.012.3 -0.0184 -0.0106 

"G;l\.l~"ian" mo(jd \l"<.:d by Fore]!'; in which it is assumed they cannot estimate the magnitudes of these co­
that the f functions (ire Gaussian in form. These efficients precisely. In Figs. 4 and 5 we have plotted 
number~ arc all given in terms of B2~unit volume. the equation of state for hard paralic; squares and 
IL is inlcn:~ting to sce the iairly close numerical agree­ cubes, with separate curves for six and seven vidal 
mel'lL between the hard-cube and hard-sphere results, coefficients to give an idea of the densities at which 
as con lfasted with the poorer agreement between these coefficients become important in the two and 
these and the Gaussian modeL three-dimensional cases. The closest, packed volume 

The most interesting feature of these results is the VG is N (J2 for hard squares, and N (1'3 for hard cubes. 
fact that BG and lh are negative for parallel hard cubes. Although the one-dimensional case is a solved prob­
This is interesting from the point of view of phase lem, we think it is worthwhile to present the results of 
transitions because negative vi rial coefficients are an investigation to determine which subintcgrals con­
ilcccssary to produce isotherms with flat portions or tribute to the one-dimensional virial coefficients. Be­
van der '\\'aais loops. As previously pointed ont,S nega­ cause each contributing star integral is expressible in. 
tive virial coel1icients for cubes do not implY such terms of subintegrals, it is possible to calculate the 
bcnayjor for spheres, although these results are cer­ net contribution of each kind of subintcgral to each 
tainly suggestive. Alder and Wainwright17 believe that :virial coefficient. We wiil illustrate this process for 
Ba and B7 are both positive for hard spheres, although B,; the results for B2 •• ·B7 are given in Table IX. 

T AIlLE VIII. Cluster integrals bfi and irreducible cluster integrals {J" for five models. Unit volume is Bt. 

Lines 

Squares 

Cubes 

Silhcrcs 

Gam.sian 

h, 

1.000 

1.000 

1.000 

1.000 

1.000 

b. 

-1.000 

-1.000 

-1.000 

-1.000 

-1.000 

b, 

1.500 

1.625 

1. 719 

1.688 

1.872 

b, 

-2.667 

-3.236 

-3.705 

-3.554 

-4.522 

b. 

5.208 

7.214 

9.054 

12.554 

116 

-10.800 

-17,277 

-23.971 

-38.045 

111 

23.343 

43.493 

67.087 

122.706 

I-incs 

Squa.res 

Cuhes 

Spheres 

Gaus<an 

fj, 

-2.000 

-2.0q0 

-2,000 

-2.000 

-2.000 

{J2 

-1.500 

-1.125 

-0.844 

-0.938 

-0.386 

{J. 

-1.3.33 

-0.611 

-0.236 

-0.383 

+0.167 

{J. 

-1.250 

-0.291 

-0.015 

-0.016 

{J. 

-1.200 

-0.113 

+0.022 

-0.046 

{h 

-1.167 

-0.030 

+0.012 

+0.035 

---~--

" G. W. Ford, dissertation, University of Michigan, 1954. 
11 B. 1. Alder and T. E. Wa.inwright, J. Chern. Phys.33, 1441 (1960). 
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11 R. J. RiddeU, reference 2, p. 96. 
U For a derivation see T. L. Hill, Slatiotical M uilallics 

(McGraw-Hili Book Company. Inc., New York., 1956), p. 221. 
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Three different tYilcS of stars contribute to Bt : 

0, [SJ, and l8J. In ~erms oi subintegrals, 

1(C]) = 16o+Sw, (23) 

l(lSJ) =20<1+4w, (24) 

1([gj) =24<1. (251 

Taking the degeneracies into account one fmds that 
only the (J s\ll)intei~r;!ls contribute to the ol1('-<li· 

ll\(,ll"iollai Ii.,. Fr()111 T:lhie IX we S('t' that this is true 

i()r H~·· .j;';! We have not been ;.blc to prove this 
relation gcncraily or to lind a parallel in two or more 
dimensions; the following three facts arc relevant 
however. 

(1) Riddell 's has shown that the net number of lines 
in the stars of 11 points (c;:l1!ing lines negative for stars 
with odd numbers of lines and positive for stars with 
even numbers of lines) is -n!j2. This result, coupled 
with the observation that each line in a star of n points 
will give risc to 2[(11- 2) IJ (1 subintegrals of value 
1/(1I-1)! each, gives for the net value of all r1 sub­
integrals contributing to a given B r., 

nl/2) {2C(n-2) !Jj (1/Cn-1J!) =n1/(1-n). (26) 

This is the reciprocal of the factor appearing in Eq. 
(9) indicating that the <1 subintegrals arc just suffi­
ciently numerous to give a virial coefficient of +1 in the 
one-dimensional case. The other subintegrals must 
therefore cancel out collectively, if not individually. 

(2) In one individual case, for each value of n>3" 
it is possible to point out a subintegral which will give 
a net one-dimensional contribution of zero. This is the 
subintegral corresponding to the following kind of 
diagram: '1:!':.:!:? This corresponds to the w sub-

SIX AND SEVEN V1RIAL COEFFICIENT 

EQUATlOtiS OF STATE FOil 

IIAIlO SOUAflES 

IV,' N~; 

,
'J 

j 
I.Il Z l) '" Ii .,. iO 15 

'Wv.-
FrG. 4. Equation of state for hard spheres. 

I 
SIX AND SEVEN VIRIA" CO;;FfiCI;:h'l" 

£OUATIONS OF Sf ATE (OR j
HARI) CUOES 

T 10 

! 
... 

N 

!II-, 
­

l5 2 3 4 6 

VlV._ 

FIG. S. Equation of state for hard cubes. 

integral for B.) wx for Bo, wxy for B6, and so 011. 13ccJ.usc 
n-3lines may be added to the diagram above, without· 
changing the type of subintegral involved, the number 
of times the subintegral will contribute to stars of 
n+m lines and n points is just 

and the number of contributions to stars of odd num­
bers of lines must equal that to stars of even numbers 
of lines. 

(3) One can easily show that the net number ot (f 

subintegrals for the stars of 1t points is the sJ.me, 
except for a possible difference in sign, as the number 
ot (f subintegrals derived from the star corresponding 
to an open ring, being ±n!(n-2) !. This result indi­
cates the hopelessness of trying to find approximations 
for the star integrals in order to sum the virial series 
exactly. The total contribution of all stars to B" (in 
one, two, or three dimensions) is, for those potentials 
which we are considering at least, of the order of 
magnitude of the contribution of a single type of star, 
and the error in an excellent approximation would 
undoubtedly exceed this for large ft. 

Using the virial coefi1cients in Table VII one can 
calculate approximations to the thermodynamic prop­
erties of hard square and hard cube gases. For such 
gases the entropy in excess of the ideal gas value is 
given by19 

(27) 
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TAnI..: IX. Subintcgral contrihutions to the onc-dimensional virial cocfftcients. We have \ 

n, Cm,\ rihu\ion,X 1/21 

Lincs (7 

-1 

Tolal -1 

B, Contributions X 1/31 

B. Contributions X 1/41 

Lines q w 

4 2 1 
.) -5 -1 
6 1 0 

Totals -2 0 

Lines 

5 
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10 

B. ContributionsXl/5! 
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-6 -3 -2 
42 16 10 
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Lines 
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Lines 

7 
8 

IT 

2·t 
-336 
1304 

-2121 
li98 

-9i9 
364 

-91 
14 

-1 

-24 

()' 

-120 
2SHO 

'iU x+~v~o 

10 12 
-127 -132 

43i 398 
-622 -492 

465 302 
-218 -108 

66 22 
-12 -2 

1 0 
0 0 

0 0 

x+ur.vw 

-42 -60 
978 1268 

y+wurw wx 

4 3 
-46 -28 

134 67 
-148 -68 

72 34 
-18 -9 

2 1 
0 0 
0 0 
0 0 

0 0 

B1 ContributionsX1/7! 

Y+WWdl s+wwww 
-36 -12 
700 252 

xx wy+ww.~ xy+w,~x 'W.oy 

1 2 2 
-9 -22 -12 -s 
26 48 20 8 

-26 -40 -12 -5 
9 14 2 1 

-1 -2 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 

wy+wu>x Wz+wur<!!x'lUX 

-13 -14 -4 
249 260 94 

"'xy 

-3 
.\ 

-1 
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configura tj 

9 
10 
11 
12 
13 
14 
15 
16 
17 

-20070 
63610 

-IUlj,,1 
1330-10 

-113(>20 
74510 

-38305 
15472 

-4845 

-6528 
19M2 

-332i3 
36900 

-29702 
18137 

-8520 
3058 

-816 

-7704 
21128 

-324,*8 
32256 

-22856 
12018 

-4720 
1358 

-272 

-3954 
10062 

-14124 
12538 

-7738 
3436 

-1092 
238 

-32 

-1442. 
3560 

-4650 
3688 

-1968 
728 

-182 
28 

-2 

-1363 
3375 

-4756 
4372 

-2841 
1339 

-453 
105 

-15 

-1-364 
3174 

-4086 
3316 

-1834 
702 

-180 
28 

-2 

-516 
1150 

-1346 
950 

-438 
132 

-24 
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7 
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24 
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-2 
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0 
0 
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-1 
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14 
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14 
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0 
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11 
12 

-70 
88 

-54 
16 

-58 
84 
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18 

-35 
52 

-35 
10 

-32 
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-14 
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-54 
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31 

-21 
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-6 
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Totals 0 0 0 0 0 Q 0 0 "" J. E..:\f 
, see also J. ( 
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to calculale cxcc~s entropies for 
hard ."'(\1:1[,,' ;ilid h;,rd cubes. The resulls arc cEspbyed 
III () ;,;;d 7. On elic hard-cube plot we have in­
c~uded the rn()ic(ular dynan1ical rcsuils of j\lder and 
\Yain\';ri~hLl7 for h~li(i ~:phcrcs of diau1cter (1, recalcu­
hted for V,:: It is interesting to note that at 
low dCll,itic:, 1he eXcess entropy depends upon the 
m;\i~l1itudc of the cxciuckd volume Vo and the results 

for cubes and spllCn:s arc approximately equal. At 
higher dellc,llics, where the geometry of the interacting 
molccu:o;:; bccome:,; il11portant, large diiicrences occur. 
All o[ the values for the excess entropy are negative, 
as one wouid expect, because the excluded volume of 
the rnoln:ule,; makes wmc configurations inaccessible 
for cube','; and sjlht:rc;,; which are accessible for ideal gas 
mr)] '~Cil: t:" 

... CALCULI,nON OF THE RADIAL DISTRIBUTION 
FUNCTION 

Tbe Ur~ell-:\iayer development of the pressure in 
powers of ::; may be generalized~o to the calculation of 
pair, triplet, and higher distribution functions. To 
find, for example, the pair distribution function, one 
places two molecules at fl and r2 and integrates over 
ail of the other molecules to get the probability of the 
conflguration as a function of rl and r2. Using n2( rl1) 
to represent the pair distribution function, we have 

SIX AND S('V£N VIRIAL COefFICIENT 

EXCESS ENTROPIES FOR 

HARO SQUARES 

l,~ 2 

I 
~ 
I 

VlV._ 

FIG. 6. Excess entropy for hard spheres. 

,. J. E. ~faycr and E, W. Montroll, J. Chern. Phys. 9. 2 (1941); 
see also J. de Boer, Repts. Progr. Phys. 12,305 (1949). 

tJ 
SIX AND SEVEN 

EXCESS 

o 

;., I 

~ I 


.11> I 
• I 

+ 
VIRIAL COEffICIC:NT 

ENTRO~ES FOR '1 

H~RO CUSESJ I
...j 

Hot" Sphere-f Ovitt fit Aida' 

OM Wofn.rlght'loo 

I.~ 

i 

FIG. 7. Excess entropy for hard cubes . 

The radial distribution function g(r12) is just the r;,tio 
of the number of molecules separated by a distance 
f12 in the gas of interest to the number of molecules 
separated by fl2 in an ideal gas at the same density. 
That is, g( r12) =nz (real gas) /112 (ideal gas). 

In order to convert Eq. (28) for n2 into a series in z, 
one introduces the modified cluster integrals b.*( f12) : 

exp[-rf>(rI2)/kTJJc.(n+1l
L: giC.*(n+l)

nt i-l. 

Xdra' • ·dr"+l> (29) 

where the Ct(n+l) are graphs of n+1 points, which 
would become (or remain) connected ii the line linking 
molecules 1 and 2 were added. With the help of these 
modified cluster integrals one shows that 

N-J 

1t2(rJ2) L:n/;r/'QN-n-l/QN. (30) 

Using the fact that Z=QN-,-I/QN with the expansion of z 
in powers of p from inversion of Eq. (5), 

2z =p+ ( - 2bz)p~+ (8b2 - 3b.) p3 

+( -40b23+30b2b3-4b4)p4 

4+ (224b 2 - 252b22b3+48bzb4+27b32-5b.)p~+ • •• , (31) 

we find 

n2(r12) =p2b~*+p3(2bz*-4bl*b2) 

2+~4(3ba*-12b2*b2-6bl*ba1-20bl*b2 ) 

+p;(4/;,*- 24b3*b2+72b2*bl-18b2*ba 

+72b1*b~b3-1l2bl*bl- 8b1*b,) +.. '. (32) 

[The coefficient of the p' term in Eq. (32) is given 
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incorrect ly in at least two rcfercnces.21J On expanding 
the codicients of each power of p in terms of 
exp[-¢(r,~)/kTJ and the f functions, a large amount 
oi cancclhtion occurs, leaving 

+ (p'/2) J(2 n +41'q + !Xl + ti<l )dradr• 

+12 f: +12 tl +6 7i +6 'TV +6 f1 +3 * 
+3 ~ + 12 +6 ItJ +6 17J +6 @ +3 'til 

l 
+6 f/) + 'Pi )d r 3dr,dr&+-" J (33) 

where the coefficients prefixed to each graph indicate 
how many times the graph occurs in the fuU expansion. 
[In Eq. (33) we indicate molecules 1 and 2 by OO.J 

The integrals in (33) arc closely related to the 
int('grals for the virial coelIicients. We see that all 
graphs which become stars when the line corresponding 
to fl~ is added will appear in the expansion of 112. The 
evaluation oi the integrals is, a~ with the star integrals, 
straightforward. Again the one-dimensional integrals 
,ire simply related to the two- and three-dimensional 
integrals. If the value of a one-dimensional integral 
over a "doubly rooted" graph appearing in (33) is 
P(x), \\herc P is a polynomial, then in three dimen­
sions the corresponding integral is P(x) P(y) P(z}. 
BecZlu:,e of the symmetry oi the hard-cubes model, 
only the ab"olute values of x, y, and z will enter into 
the values oi the integrals. We will delete the absolute 
value ~igns on all coordinates so that our equations, 
as written., will apply only to the region O<x, y, z. 

Ikiorc iilusl rating the procedure by evaluating one 
ill\,'g,';ll, let us list lln~ principal complications which 
m:tk,' t ll<~ .lIst ['il1\1(IOll fUliction prohlem hankr than 
lil.: \,11'1,11 c(,cihci,'nt proilkm for hard lines, squares, 

(i) :-lorc type:; of graphs must be considered, To 
compute the :ifth v:rial coclIicient one evaluates 10 
ty;)C~ oi inLc;~rals. The corrcspor.ding term in the pair 
di~tribulion function involves 24 types of integrals. 

(2) Two kinds of molecules, not just one, are in­
volved in distribution function calculations, the fixed 

1I J. d~ Hoer, reference 20, p. 34{); J. O. Hirschfelder el al. 
rdefence 15, p. 147. ' 

molecules, 1 and 2 in the pair case, and the c;~h(:r 
moleculcs, whose coordinates are the intcnr",<:o" \.C -:'ib ~ Ll..4 d ... ( "" 

bles. Thus, many different kinds of linear o-d.::r;r~.; 0->1. • ,('\". u; ~ t::: 

possible. For five molecules the orderings 12" Q 0, 

10200, lQ'i/2o, 11'002, ,,1200 01020 "log') 

OQ121O), Qo1 ..2, and 00012 mus; all be c~nsidcrc(i; 
each of these possibilities gives rise to its own :;ct of 
subin tegrals. 

(3) The polynomial in 112=1, which is the value of 
an integral over a doubly rooted graph, has a d:,;ercn, 
form for ditTercnt rangcs of r. In general, (1lit.::rent 
polynomials apply in each of the regions 0 <r <1, 
1<r<2, "', where we are setting (Jc= 1. 

(4) More ingenuity is required in setting up the 
integration limits. It is no longer possible in all cases 
to write the integration limits by casua; inspection. 

Because of these difficulties we have calcula~ed the 
pair distribution function through the fourth approxi­
mation only, including all terms appearing in Eq. (33). 
In principle one could evaluate any such integral in a 
straightforward way; in practice the labor involved 

,soon becomes prohibitive. ! 

We will now consider one example in detail to illu­
strate our methods. Let us take the one-dimensional 
integral 

(34) 
\ 
.> 

which contributes to the fourth approximation to the 
pair distribution function. Because 1 and 2 are fixed, 
we need consider only 51/2 linear orderings, assumin;; 
that 1 is to the left of 2. We notice by symmetry that 
some of the classes of orderings must be equaL These 
are 12oCOQ and 00012, lQ2Q\1I and .01.2,1 ••2" 
and 01002, Qo12Q and 01200. Further, the integral 
must vanish for r> 2 by inspection of (34). 

In Table X we give the subintegrals for each of the 
60 orderings contributing to (34) in the ranges 0<r< 1, 
and 1<r< 2, finally adding these contributions to 
obtain I. Diagrams indicating which f functions arc , 
used to set the integration limits arc indude<l with each 

, 

kind of ordering. To find the lotal COlllriliutioll of 1 to 
the pair distrihution function we multip:y the [mal 
total in Table X by +6, plus because the number of 
lines is even, and 6 because the doubly rooted graph 
can be bbeled in six difierent ways. Proceeding in this 
way one can evaluate all of the integrals contributing 
to gl, g2, and ga, where the radial distribution function 
is given by 

g(x,'1, z, p) =IZJp2=exp[-</J(x,'1, z) /kTJ 

i 

4351~ 
45312, 
53412; 
5431i 

i 
\ 

Totals: ~. 
l 

\ 

43152\ 
531·±2i 
45l32~ 

r::,'\ 

9912.= ,I 

!
tc 

34125[ 

I 
5.t1zJ 

I 
-l:312St 
351241 
.5312~1 
45123\ 

t 

Totals: II 
I 

--_._---------------_.-.-._------_.........-...-------_....--.,-......----.-­
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TAIlLE X. Subintcgrals contributing LoJr><l d1ad1,d1•. 
;lfC 

) ,?,-, 

<', Ordering 	 Diagram Integral for 0<,< 1 Integral for 1<1<2l (, ..:) 

'it"tcd; 
:-.ct of 

I • 
i~{C or ,liS 12 2jO dwjW dxl'" dy .,";"rrcnt r-l ,,-1 -1

I 3S,1l2 
r'i.'~·('n t 

,[3512 

45312 
 4jO dwjW dxj'" dy 

r-l r-1 r-lf1 the 	 53,H2 
5,*312 

d the Totals: 	 (6-12r+6r2)/6 
""irOX1­

1 in a 
olved 

34152 2>? £ 9 0 [dW[ dxlxdY 
, iiJu­ o r-1 -i 
,ional 

35142 	 b 0 2> f dwf:ldXJ~idY~ ~ 
(34) 

4.3152 
) t' 53142 

451.32 	 boo 0 2> 
54132 

Totals: (18r-27r2+9r1)/6 

: the 
? 5 

'<1, 34125 ~ 

0; to 


0 ~ tdWf:ldXJ~dY 
arc , 

J to 54123 	 ? 6 ~0 ~ 
tdWi~ldXf:ldy 

.liiai 

r of 

43125
Jph 
3512.J:this 
53124

:ing 	 4j1dwjQ ~xjZ dy 
45123 . r 1I}-1 w-i. 


.ion 


Totais: 	 (8-211+ 18r-Sr1) /6 

Vanishes 

Vanishes 

o 

Vanishes 

Vanishes 

Vanishes 

o 

Vanishes 

Vanishes 

Vanishes < 

o 



I 
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l 
r 

Table X (Col1tillued) 
::::=-:-..:.=..:::-==-'-.::.-~..::--:::....-

Ordering Diagram Integrai for 0<r<1 Integral for 1 <r<2 
::{: 

I 

-1
1 

.1 ••2=1 ••2.: 
•~"l 
12" Cl6 o. 4 0 

31452 ~ f dw~wdxl~ld~ [ dwJ"dxfldY 001 ~ f . 
r-I 0 , • 

~~ 
'J> h2o[, 
fQ 0 b 6 QQ1Z

f 

1
31542 ! ~. [dWJWdxfO d~ [dW[ dxfo d~ t o 0 _I r-1 r--1 w-l .12 O)~ 

; .18"4U52 t ~ 
41532 ,i 140)"1_.4

51342 ~ 0 0 0 2> 4[dwJWdx[ d~ Vanishes 
o 0 ,.....151432 h°I 

Totals: (18,2-15r)/6 (12-12r+3r2)/6 
0102 

To":1 
1•••2: ! 

..6 0 0 /
I 

The i 
13452 ~ 9 fdwfdX[dY [ dwJlDdx[dy gn-2. f 

with ir-l 0 "' 

pendi~ 
RCi 

rathc{? 0 b 6 
13542 ~ 2~rdWfdX{dy 21~ldwfdX{dy l ....14352 ( maxiJ 

[, b ? 0 ~ di"'114532 XI v,' 

15342 ~ 3[dW[dX[dY 3[ dW[dX[dY data r
15432 o 1D .. r-l '" S with. 

i tions t,Totals: (6r3)/6 (12-6,)/6 x=ya 
.1.2.: 

i 

aJon~~" 
f servc 

~ 0 0 distrij
31425 ~ ~ f dw[_ldXlw+idy [dw[ dx[ldy ! 

i 

I It 
r-1 w-l 'I 

> t~esel 
I 

SIX eli ~ ? Q 2> o 1 than I?51423 Vanishesl_ldw fdX! dy cerne] 
(1 

distri!31524 
sultl~:41325 b 0 0 0 ~ 1 

41523 [ dwJ'dxl lD

+ dy Vanishes , I..51324 r-l 0 r exp(~ 

Totals: (24r-42r2+ 19r3) /6 (8-12r+6,2- r )/6 

when 
the fl 
for C 

I '" 
I 391+ 

l------..;--------_-_-___ ........-........_...........-.....------,.-... 
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Table X (continued) 

Ordering Contribution to r for 0<1'<1 Contribution to I for 1<r<2 

~1 o21t 

Tolal=I: 

I 

J ..I 

12r+61'2 )/6 

(6-121'+61'2)/6 

(18r-27r2+9r)/6 

(181'-27r2+9r)/6 

(8- 211'+ 18r2-5r) /6 

(8- 211'+ 181'2-5r) /6 

(18rL 15r)/6 

(18r2 -15,a) /6 

(6r)/6 

(241'-421'2+ 19r) /6 
(28-6r-121'2+3r)/6 

o 
o 
o 
o 
o 
o 
(12-121'+31'2)/6 

(12-12r+3r2)/6 

(12-61')/6 

(8-12r+6r2-r)/6 

(44 - 42r+ 12rL r3) /6 
-_ ..._.================================ 


The doubJy rooted graphs of n points contribute to 
gn~2. All of the graphs contributing to gl··· ga, together 
wiLh their values in one dimension are listed in Ap­
pendix II. 

Because the radial distribution function has cubic 
rather Lhan spherical symmetry, the locations of 
maxinlZ< and minima in the function depend upon 
direction as weil as distance from the origin. In Table 
XI we have tabulated gl··· g3 as calculated from the 
data in Appendix II for hard lines, sCiuares, and cubes 
with (l~ 1. For squares we have tabulated these func­
tions along the line x=O(OO), as well as along 
x=)'( 00); for cubes we have tabulated g!." g. 
along the lines x=y=O; y=zi and x=y=z. This 
serves to point out the angle dependence of the "radial" 
distribution function for these molecules. 

It is worthwhile to list some of the ways in which 
these results can be checked. All but the first of the 
six checks listed could be applied to potentials other 
tb.n the speciai cases with which we have been con­
cerned. 

(1) One may compare the one-dimensional radial 
distribution function with the well-known exact re­
sult l2 : 

ro 

exp(¢/kT)g(r) =p-l~o+(r-k) (p/[l-p])k(r-k)k-l 

Xexp { (1'-k) (p/[l-p]) } / (k-l)!, (36) 

where o+(r-k) 1 for r>k and 0 for r<k. Expanding 
the fIrSt few terms of (36) in powers of p we find that 

g3=-~ 98+871'-241'z+2r); for 3<1'<4, gl gz=O, 
ga=i{M-48r+12rz-r), in agreement with the re­
sults we obtain using Appendix II. 

(2) Setting r=O in the expression for any doubly 
rooted graph integral gives the value of the corn:­
sponding star integral. For example, V<1 becomes 
[S] on setting r =0, and the value of 

reduces to the proper value, 14/3, for r =0. 
(3) The integral of the value of any doubly rooted 

graph from 0 to 1 will be equal to one-hali the value 
of the corresponding star integral. For exa.mple, 

gives 29/8, while from Appendix I the value of the 
corresponding star integral over ~ is 29/4. 

(4) In some cases doubly rooted graph integrals 
ma.y be derived by inspection from 5implcr integrals. 
For example, 

(5) The radial distribution function must satisfy 

the Ornstein-Zernicke relation,a 

kT(iJp/iJP)N.T=l+pr"dr[g(f)-l]. 
o 

for 0<r<2, gl=2-r, g2=l(7-6r+,2) , gs=fi(34- • 

391'+12,-2-1'1); for 2<1'<3, Kl=O, g2=H-9+6r-r), . :Ii J. de Boer, reiexencc 20, p. 364. 
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TAI1L}; XI. g., g" and g. iOT hard lines, squares, and cubes. 
-,~-.. ,~- - ~-~,~-

Lines Squares Cubes 

OJ ttY ...... & 
",,"--""'-< 

d ~l (d) g. (0, d) g. (d, d) gl (0,0, d) gl (0, il, d) g, (d, J, .1) 
J .fr1 1.rfili)0 2.0000 1.0000 4.0000 2.0000 i 
1.10 O.')l)liO umoo O.RIOO :I.moo 1.6200 o. 
1.20 (>. S!)O\) 1.mOO 0.6·100 :L2()OO 1. 2~00 O.Si~\,) .. 
1.30 O. ,,'liiO 1.4000 0.4900 2.i\OOO 0.%00 0.J·;3,} i1.,;0 0.(,000 1.2000 0.3(,00 2AOOO 0.7200 O.21('{) .,;..I.S0 O..'iKKJ 1.()f)OO 0.2S00 2.0000 O.SOOO O.12S0 
l.W O.·\lXI(j O.gOOO 0.1600 I.WOO 0.32(JO O.()(,;O 
1.70 O..iIiOIl (]. (,[)on O.moo 1.2000 O.IHO() 0.0270 
1.1'0 O •• :t\IHl () ..!lIO() (l.O·IOO (l.I'OOO o.mm() O.iol"'" 
1. 'I<) n.1\)OIl 0.1000 n.llwo O.·IO()O O,lILOIl o.OlliO 
:.1. (iO IJ.OW() O.{lIlOO O.OO()() O.OOO() O.()()(X) O.l"XX) 

d .,' (d) ;::,(0, d) /:2 (d, d) g,(O, 0, d) g,(O, d, d, ) b1(d,\!t J) 
..,1.00 1. O('()() 3.S000 O..SOOO 12.5000 2.0000 -1.:!.'\~) 

1 . I () n.:·;n~il 2.8100 O. \.i80 10.0~OO 0.7721 -l.·USS 
• ':1"1.20 O.(,21~) 2.lkOO -0.1156 7.8200 -0.1420 -.t. "t" ~ i 

1.30 n.4·1.'O 1.5800 -0.3020 5.7200 -0. itiS9 -! .32')·1 
lAO 0.2~O{) 1.0200 -0.4216 3.7800 1.2000 -1.1,:.~1 (6~
1..~O O. j 2.~0 O.~OOO -0.4/\+1 2.0000 -1.4219 -O.t)35() .1 
1.(,0 -0.02110 0.0200 -0.4996 0.J800 -1.4S60 -0. i 2(h) harC1\ 
1.70 -n.l~SO -0.4200 -0.4760 -1.0800 -1.4239 -ll. 52: 2 whc~
1.1'0 -O.2i'110 -0.H200 -0.4216 -2.3800 -1.2(}1O ...... 0.3520 
1.'iO -0..".150 -1.1S00 -0.3440 -3.5200 1.0319 -0.2PIl on tit 

f2.rx, -0.50;)0 -l.~()OO -0.2500 -4.5000 -0.7500 -0. USn relau 
2.10 -().·HI~O 1. 2150 -0.1640 -3.6;50 -0.4921 -0. ()(ll·t 

2.20 -0.3200 -0.9600 -0.102,~ -2.8800 -0.3072 -O.{'.'~~ linest: 
!

2 . .10 -(1.2,;50 -0.7350 -0.0600 -2.2050 -o.ISOI -O.O~'~7 Tc 
2.40 -O.Ii'OO -0.5400 -0.0324 -1.6200 -0.0972 -O.(Kj:;~ 

func!2.50 -0.1250 -0.3750 -0.0156 -1.1250 -0.0·169 -0.O\l2iJ 
2.W -O.OSOO -0.2400 -0.0064 -0.7200 -0.0192 -O.V,/ll.) for I
2.70 -0.0.50 -0.1350 -0.0020 -0.4050 -0.0061 -O.O.,(J! \ 

,>2.80 -0.02(X') -0.0600 -0.0004 -0.1800 -0.0012 -o.r)\)(~) 'l' (rlJ 
2.90 -0.0050 -0.0150 -0.0000 -0.0450 -0.0001 -O.C<:lI~1 t 

! I3.00 0.0000 0.0000 0.0000 0.0000 0.0000 O.lXX)() i 

I 
d g,(d) g,(O, d) K,(d, d) g,(O, 0, d) };.(O, d, d) glld, .1, ..I) 

1.00 1.0000 5.5556 -0.3333 32.4444 0.0556 -3.;0.722 and 
r 
t1.10 0.71-lS 3.9876 -0.5663 23.3804 -1.0834 -1.15()S mole;

1.20 OA587 2.6116 -0.6344' 15.6124 -1.3301 O. i'l·t! 
1.30 0.2305 1.4196 -0.5855 9.0765 -0.9S~6 2.();lS at i) 
1.40 0.0293 0.4036 -0.4599 3.7085 -0.2911 2.0{j·i3 i hardt 

i 

1. 50 -0.1-158 -0.4444 -0.2912 -0.5556 0.5558 3.2';(;5 i' 

1. GO -0.2960 -1.1324 -0.1065 -3.ii96 1.4071 3,22';2 
1. 7(} -0.4222 -1.6684 0.0729 -6.0276 2.1535 2. 9,~(j3 
1.80 -0.5253· -2.0604 0.2312 -7.3636 2. n17 2.·j(Il,)j 

~.'1.90 -0.W65. -2.3164 0.3572 -7.8516 3.0702 1.977S 
I '" t2.00 -0.6667 -2.4444 0.4444 -7.5556 3.1852 1.. ·;~15 

2.10 -OA363 -1.4361 0.4752 . -3.2853 3.0.j<)6 1 .0.',,1 ~J
I2.20 -0.2440 -0.6045 0.4519 0.1802 2.7193 O. 71~(, 

of2.30 -0.08/7 0.0606 0.3966 2.8891 2.2890 OA(Al , ,.2.40 0,0347 0.5689 0.3261 4.8901 1.8289 0.::1\79 -I' ,
2.50 0.12,'i0 0.9306 0.2526 6.2315 1.3886 0.1('", N' 

2.(·0 0.11l53 1.1556 0.1845 6.9618 1.0001 O.th» ;!
2.70 0.2177 1.2539 0.1267 7.129·\C 0.6807 0.0;87 ~I 

... ~2.80 0.22·tO 1. 2356 0.0816 6.7828 0.4360 0.02.,') 
it 

2.90 0.2063 1.1106 0.0491 5.970,], 0.2621 O.01W I'li,'tJ.OO 0.1667 0.SSS9 0.0278 4./407 0.14.')1 O.OO·i(, 
3.10 . 0.1215 0.6480 0.0148 3.45(,0 0.07Si O.WI;) ~:, 

'f 
,...~ 

I' ~, 
3.20 0.OSS3 0.4551 0.0073 2..1273 0.0388 O.von(, 
.>..10 O.OS72 0.30·*9 0.0033 1.6261 0.01/-t 0.0002 

CI, ~ 
~L·~O 0.03W 0.1920 0.0013 1.0240 0,0069 o.lXi01 ' , 
3.50 0.020/\ 0.1111 0.000,* 0.5926 0.0023 O.O(XJil
3.m 0.0107 0.0569 0.0001 0.30:!! 0.0006 O.O(XlO 
5.70 0.00.],5 0.0240 0.0000 0.1280 0.0001 0.(')(X10 

!
3.SO 0.0013 0.0071 0.0000 0.0379 0.0000 0.0000 ..,.--j
3.90· 0.0002 0.0009 0.0000 0.0047 0.0000 O.OOCO 
4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 uJ I

'1 
." 
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FIG. 8. Potenti'al of the mean force ior hard lines. 

(6) From the vi rial theorcm onc may derive, for 
hard cubes, the equation PV/NkT=1+4pg(surface), 
whcre g(surface) is the avera!Se val.ue ,of g(x, y, z, p) 
on the suriace of a cube of tWice UDlt side length. ThiS 
relation can be checked as can the analogous results for 
lines and squares. 

To conclude this section on the radial distribution 
function let us cxamine thc potential of the mean force23 

j 

for hard lincs, squares, and cubes. This potential,j 
" 'l' (r12) I is given by 

and is the potential encrgy of the average force on 
molecule 2 along r12 with molecule 1 (for convenience) 
at the origin. In Figs. 8-10 we have plotted 'J!jkT for 
hard lines, squares, and cubes at a volume of 3Vo, 

.ORCE POTENTIAL FOR 

HARO SQUARES 

THE MEAN 

d_ 

FIG. 9. Potential of the mea.n force for hard squares. 

, .. J. de Doer, reference 20, p. 358. 

~--~------~------~------r-,
t 1 J>- N l. 

$.:1 I 

T 
,; 
i:~ fl':,:,:"d~,i/'-=f:~~:::--::::::=~-

.., 

1 
"';, THE MEAN FORCE POTENTIAl FOR -1 

HARO CUBES ~ ;~ 1 
I 

FlO. 10. Potential of the mean force for hard cubes. 

using the radial distribution function data from 
Table XI in Eq. (37). Because g(x) is known exactly 
for hard lines ~Eq. (36)], we include \Jlmct/ k T for 
comparison with '[t(gl" ·g.)/kT in Fig. 8. We do not 
mean to imply, by using V =3Vo for lines, squares, 
and cubcs, that '¥c;mct will be cqually close to \fr(gl'" g3) 
in each case. It might, for cxample, bc better to uSe 
equal values of plln for comparison, where 11 is the 
number of dimensions. As in the case of hard spheres,::;! 
we see that the mean force for lines, squares, and 
cubes is attractive for some values of the separation 
and number density, Again, the results for squarcs 
and cubes are strongly dependent upon angle as well as 
distance. 

5. CONCLUSION AND REMARKS 

The foregoing calculations for hard lines, squares, 
and cubes are interesting in illustrating the dii1icult:cs 
involved in using the exact cluster treatment of the 
configurational integral. The facts that (1) some viri~J 
coefficients are negative for hard cubes, and (2) 
that only a single kind of subintegral contributes to 

B~·' ·B1 for hard line:>; a.re both interesting and stimu­
lating, because the physical basis of these result::; is 
not understood. The techniques used here are rather 

TADLE XII. Bl and B. for triangle~, squares, equilateral hcx~­
gons, and circles. First set of values IS for Vo ... N. Second set IS 

for B2al. 

D [J 0 0 
B2 3.0000 2.0000 2.0000 2.0000 

Ba 7.0000 3.0000 3.1111 3.1280 

Bz 1.0000 1.0000 1.0000 1.0000 

Ba 0.7778 0.7500 0.7'1'18 0.782()4 

,-' 

l- _. _, ~ '1'""," itU, 4 \, .-------------------------------~._&.----,,-,-------------~ 

r 

P:Z ~ B', Q j 

. QA 

i 
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bu t n~ay p;'(JYe of value in suggc~ting trcat­
nH;)t:; ;'0, more complicated potentials. Finally, the 
lar;~l: :dl1()c:r,t of numerical data available from this 
lnW, win permit rather exacting tests for any 
approximate theory of the configurational integral 
problem. 

V"l: note here Ihat ior other :;imple paralicl moiccules 
the illlrgrali()n~ :trc more diilicult. In Table XII we 
li~t for comp;,rj:;on /3z and BJ for parallel triangles, 
o:quarcs, c(juilatcr;d and cirdes,2'I.m first in 
units oi f0/X, then ill unit" of B2 • It is interesting to 
:'cc that in the !;l:lcr unit:') 133 is the "arne for triangles 
and hexa;::ons. :\ ~y"Lcm which is particularly easy to 
study from li;e jlr.ilit of vicw of the virial equation of 
~tate is ;1. mixture (two·dimensional) of hard lines, 
!'O!1lC pllii1lin;~ l\(sl·wc"l and the rcst north-south; 
for O;\1cll a system Olll' linds that B2 is po~itive, 133 is 
zero, and n, is negative'. 

Soft·s (;ddol iii pror:.!. It is clear that the equation 
of state for the two-dimensional mixture of hard lines 
(north-south, l'Z,st-wc:sc; is identical with the equation 
of state for a corrcs;JOnciing mixture of hard parallel red 
and grcensqua;:(::i, such that9I1R=0,9GG and9RG=9 
(hard paralJd squares), The nonvanishing star integrals 
for north-south and cast-west lines of length L are 
identical to the corresponding star integrals for squares 
of side length L/2. 

Upon examination, it is found that most of the 
integrals vanish, and applying the expressions of 
)I<l.yer~& for the virial coefficients of mixtures, one 
fmds for the case of an equimolar mixture, using the 
appropriate entries in our Appendix I, the results: 
B,=1/4, B3=0, -1/48, -1/192, where unit 
area is D. (2) We have noticed that the net number of 
points oi degree mr!n-1 is zero for the stars of n<8 
points. The degree of a point is simply the number of 
points to which it is directly linked by lines. [Refer 
to Eqs. (23), (24), and (25) and the remarks that 
follow]. 
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APPENDIX I 

Graphs and Integral Values for All Stars of Less than 
Eight Points 

In this appendix we list ail of the stars co;)tribui.i~'h 
to the first seven virial coefficients, together with the 

vaiucs of the one·dimensional integrals. The ~t;u:" ,i,e 
numbered scri,dly for each value of 71, the number oi • 
points, and ordered according to (1) number of point,;, ~, 

,(2) number of lines, and (3) value of the one.dimen­ '/' 

sional integral. These values arc derived from the 
following form of the integral 

(n-l) If 
Si(n)dr," 'dr".V0',,-1 

This form is chosen so as to make all value~ api)C;Lr ;I" 

intcgcrs~ 

Three numbers arc as~ociatcd with each star: {ir~l, 
the serial index; second, g, the number of way,; in which 
a star may be labeled, positive if the number of lines 
is even, negative if odd; third, the value of the integral, 
which is always taken as positive. 
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APPENDIX II 

Doubly Rooted Graphs and Integral Values for Less 
than Six Poin ts 

In this appendix we list all of the doubly rooted 
graphs contributing to the first four approximations to 
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the radial distribution function, togethc:r with the 
values of the one-dimensional integrals. The graphs arc 
numbered serially for each value of Il, the number oi 
points, and ordered according to (1) number of points, 
(2) number of lines, and (3) value of the one-dimen­
sional integral. These values are derived from the 
following form of the integral 

This form is chosen so as to make all coefficient; appear 
as in legers. 

Because the value of the integra'[ is a function oi 
rI2=1, it is necessary to tabulate the values separately 
for O<r< 1, 1<1<2, ... , where we have assigned (T 

the value unity. The other numbers associated with 
each graph are the serial index and g, the number of 
''lays the graph may be labeled with the root points 
being 1 and 2. Although the integral values for 0<1'<1 
do not contribute to the one-dimensional radial dis­
tribution function, these values are needed for the 
distribution functions in two or more dimensions, and 
are included for that reason. 
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