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Comparison of Some Exact and Approximate Results for Gases of Parallel Hard
Lines, Squares, and Cubes*

Wirriam G, Hoover{ anp Jacques C. Poiriurf

Department of Chemisiry, Dike Universily, Durkam, North Carolina

(Reccived 16 July 1962)

The st seven vivial coellicients {or hard pavallel lines, squares,
and cubes, as devived from approximations of the ring and water-
melon ype, are compared with the exact coefiicients, These ap-
proximations give no useful infornation as fo the sign or magni-
fde of the Teocficiens,

A Cavtesian distethation function depeading upon only one
space coordinate artses naduvally Jor the line, square, and cube
molecules, The fivat lour terms of the exaet number density ex-
pansion of this {uncion are presented and compared with resules
oblained by lteration from the Percus-Yevick, Kirkwood, and
convolution integral equations. The Percus~Yevick equation

yields a distribution function which closely resembles the cxact
result at low densitics.

Virial coefficients are obtained from the approgimate distribu-
tion Tunctions by means of the Ornstein-Zernicke relation and
the vivial theorem, ag well as Trom s relation helween the potens
tial of mean {oree al zero separation and the vicial coclhicients,
This last relation {which s valid for hard sphieres as well ag lines,
siuares, and cubes) has an intevesting graphical interpretation
and leads to correct values [or the third virial coclficient from the
Kirkwood equation, but not from the Percus-Yevick or convolu-
tion equations,

1. INTRODUCTION

TATISTICAL mechanics provides us with exact
expressions for the pressure and radial distribution
function in terms of the pairwisc-additive intermo-
lecular potential function ¢(r), the volume V, the
number of molecules N, and the temperature 7.2 Or-
dinarily, the integrals involved are impossible to evalu-
ate; however, one can make an exact expansion of the
pressure P, or radial distribution function g{r),
obtaining expressions useful for small values of the
expansion parameter. A number density (p=N/V) ex-
pansion is often used and leads to the following exact
expansions'® for the pressure and radial distribution
function:

P/ET=_ Bnpn, (1)

ne=l

exp[g(r)/kTIg(r) =2 ga(r)p"=G(r).  (2)

n={

The B, and g.(r) are sums of integrals over the co-
ordinates of # molecules. The integrands, best expressed
graphically, are complicated functions of the tempera-
ture and intermolecular potential. In particular, from

*This work was supported by a grant {rom the Alfred P, Sloan
Foundation,

i Present address: Lawrence Radiation Laboratory, Livermore,
California.,

i Alired P. Sloan Foundation Fellow.

L See, for example, J. de Boer, Repts. Progr. Phys. 12, 305
(1949).

2 J. E. Mayer and M. G. Mayer, Statisiical Mechanics (John
Wiley & Sons, Inc., New York, 1940), Chap. 13.

work due largely to Mayer, we know that?

_ 1—ns®
Bi=1, B,.>1=-—-——Z/g;Si{n)drl--'drn, (3)
nlV F=1
S*(n42)
g=1, guo(r)=— 2 fge*S.-*(n—H)dra--°drn+2.“
KL =1

4)

The Si(n) in (3) are all possible types of stars (for a
list of ali graphical terms used in this paper, together
with their definitions, the reader is referred to Ap-
pendix I; we consistently {talicize all graphical terms.)
which can be constructed with # unlabeled points and
up to (B)=u(n—1)/2 lines. The S;*(n) in (4) are
all possible types of doubly rooted graphs, with n—2
unlabeled points and root points labeled 1 and 2, which
would becorne or remain sfars if the line joining the
root poinis were added to the doubly rooted graphs.
S{n) and S*(1) are, respectively, the number of types
of stars of n unlabeled points and the number of doubly
rooled grapls of n—2 unlabeled points and two specially
designated roof points. The g, and g.* are the number of

3 Sce references 1 and 2 as well as M. Born and K. Fuchs, Proc.
Roy. Soc. (London) AI66, 391 (1938); B. Kahn and G. E.
Uhlenbeck, Physica 5, 399 {1938).

4In general, we use r as the argument of an angle-dependent
{unction, and » as the argument of a function of one space co-
ordinate only. We call g{r) the “radial distribution functien” in
this paper; lor the potentials which we use, g{r) depends upon
both angle and distance. The function G{r) introduced in (2) is,
for the potentials which we use, identical with g(r) for ¢ (r) =0
(r large}, but finite and nonzero, unlike g{r), for ¢(r)==(r
small). §{r) may be thought of as a “radial distribution function”
for two particles which interact normally with particles 3.. .,
but not with each other [¢ (r12) =07,

327
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Tance I, The number of stars of J junctions and # unlabeled points,

J 0 2 3 4 5 6 7
EY 1 0 0 0 0 0 0
=3 1 0 g 0 0 it
=g 1 1 0 1 0 0
n=35 1 3 1 2 3 0
n=0 i 6 3 13 12 19 0
n=7 1 10 18 54 94 142 149

wilys @ particular 8 or 50% may be labeled, The lines
in the graph represent Maver f functions, f{r)=
expl—o(r) /AT —1. A lst of the Sy through S:(7)
and S;* through §7%(5) is available®

Recently many approximate theories have been
developed® with the hope of getting values of 7 and
g{r) atlower temperatures or higher densities than can
conveniently be treated by the exact expansions (1)
and (2). For simple potentials one can generally express
the results of the approximate theories as power series
in p, and make a term-by-term comparison with (1)
and (2). For realistic potentials it has proved difficult
to generate more than two or three terms of (1) and
(2). Therefore, the approximate results can only be
compared with experiment (in which case the cause of
disagreement is difficult to isolate) or with direct
Monte Carlo™ or molecular dynamics®? studies. The
hard cube potential,® which sacrifices considerable
realism in order to simplify calculations, allows com-
parisons to be made at relatively high densities because
the B, for n < 8 and the g.(r) for n<4 are known
exactly 1 It is the purpose of this paper to use the
Hoover-De Rocco results {(and those of Geilikman and
Zwanzig) in a comparison of some exact and approxi-

5V, G. Hoover and A. G. De Rocco, J. Chem. Phys. 36, 3141
(1962).

¢ R, Abe, J. Phys. Soc. Japan 14, 10 (1939).

77. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1938).

8 1. G. Kirkwood, J. Chem. Phys. 3, 300 (1935].

9 I%. Meeron and E. R. Rodemich, Phys. I'luids 1, 246 (1958},
E. Meeron, J. Math. Phys. 1, 192 (1960); Physica 26, 445
(1960); Progr. Theoret. Phys. {Kyoto) 24, 583 (1960); T.
Morita and K. Hiroike, Progr. Theoret. Phys. (Kyoto) 23, 1003
(1960); J. M. J. Van Leeuwen, J. Groenveld, and J. de Boer,
Physica 25, 792 (1059); L. Verlet, Nuove cimento 18, 77 (1960).

1M, Born and H. S, Green, Proc. Roy, Soc. {London) Al88,
10 (1946); J. Yvon, Acfualilés scientifiques el indusirielles {Her-
mann & Cle., Paris, 1935), Vol. 203.

1N, Metropolis, A. W. Rosenbluth, M. N, Rosenbluth, A. I
Teller, and T2, Teller, J. Chem. Phys. 21, 1087 (1953).

21, 7. Alder and T, I, Wainwright, J. Chem. Phys, 31, 459
(1939).

B The hard cube model was introduced by B. T. Geilikman,
Proc. Acad. Sci. TU.S.8.R. 70, 25 {1950). Geilikman calculated
B and B; for this model.

¥ B, and Bs for hard cubes were calculated by R, W. Zwanzig,
J. Cliem. I'-. - 24, 855 (1956).

i B [J. Chiem. Phys. 34, 1039 (1961)] and® Bq, as well as
g1(r)« <= gs{r), were calculated for hard cubes by W. G. Hoover
and A. G. De Rocco.

mate results for this potential. We wish to stress that
throughout this paper the terms lines (not italicized),
squares, and cubes refer to molecules with (i) molecular
volumes of ¢, ¢% and ¢% respectively (we often set
o=1 for convenience in writing results); {(ii} a po-
teatial energy which is infinite on overlap, and zero
otherwise; and (iii} an orientation parallel to a fixed
Cartesian coordinate system,.

In Sec. 2 we compare the virial coefficients calculated
by means of Abe’s function expansion method® with the
exact B,. In Sec. 3 we compare the g, (r) functions from
the Percus-Yevick,” Kirkwood,® and convolution®
integral equations with the exact g.(r). In Sec. 4 we
use these functions in a calculation and comparison of
virial coefficients derived with the help of (i) the
Ornstein—Zernicke relation,® (ii) the virial theorem,?
and (iil} our new relation' between the potential of
mean force at zero separation and the virial coefficients.
In Sec. 5 we discuss the conclusions and speculations
to which our results lead.

2. APPROXIMATIONS BASED ON GRAPH TYPE

A group of approximate theories for the pressure is
characterized by the inclusion of only certain types of
stars [from the total of S(#) types] followed by a
summation over »#. For example, as shown by Montroll
and Mayer,”® the contribution of all ring graphs { —,
A, U, O, +++) to the pressure can be calculated
with the help of Fourler transforms. More recently
Abe® has pointed out that the nth virial coefficient B.
may be written as a sum of contributions B( 7, ») from
the stars of 0, 2, 3, ««+§, « = *n junctions:

Bu= 3 B(4,n);

=0

j=11s omitted because a star cannot have exactly one

1 Sec reference 1, p. 363,

7 T, Q. Hirschielder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liguids (John Wiley & Sons, Inc,, New
York, 1954), p. 134,

1 \\«;. G. Hoover and J. C. Poirder, J. Chem. Phys. 37, 1041
(1962).

( & E) W. Montroll and J. E. Mayer, J. Chem. Phys. 9, 626
1941).
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Tasrs 1L B,{J) for hard jines. The molecular side length is unit volume.
J 0 2 3 4 5 o 7
n=2 1.000 1.000
=3 1,000 1.000 1,000
n==4 —2.000 1.500 1.500 1.000
n=3 3.833 —12.667 1.833 2.333 1.000
n=06 ~7.333 48,500 —38.667 0,292 3.958 1.000
s 14.017 —149.825 208.933 —85.733 -8.950 7.233 1.000

Junetion, The first termy o (3) corresponds to the ring
approximation; the rirst two terms correspond to the
walermelon approximation. Abe has shown how one
can sum (over 12) the additional contribution from the
walermelon graphs (7=2) to the Helmholtz free
energy, and hence to the pressure. The convergence of
the sum in (5} is of Interest. At best, only a few terms
in this sum give a good approximation to B,; at worst,
all must be used. Because the values of all of the
star integrals of less than eight poinis are known® for
lines, squares, and cubes, it is straightforward, although
tedious, to check on the convergence of the sum in (3)
for #<8 using these simpie models. The following
procedure was used.

For a particular #, values of the one- dlmensmnal
(1/V) [ Si(sn)dry++ dr, from reference 5 were punched

~on cards together with the g; for each sigr and ordered

sy number of junctions. Table I gives the number of
stars with n peints and j junctions for n<8. The Duke
IBM 7070 computer then squared and cubed the one-
dimensionai values, thus getting®**% the two and three-
dimensional {1/V}[S:(n)dr+»+dr.; multiplied by the
g: and punched out the contribution of each ster to
S/ V) [ Si(nydrye - +dr,.. While adding these con-
tributions the computer printed cumulative totals,
from which, on multiplication by (1—wun)/n!, the
B{ 7, ») were selected. Tt was necessary to use multiple-
precision integer arithmetic to avoid round-off error.

As an illustration we give B(0, 5)~B(2, 5)+B(3, 3)
for squares [corresponding to the first three terms in
{5) for u=5]1in (6):

Bs(3)=_B(4,5)

=0

1—35
ﬂt“;';f[120+606+10@+10@ 460 A )dr- < - dys
(6)

B.(J) is the value of B. obtained using all siars of #
points and G, 2, « -+« J junctions. Substituting values for
the siar integrals in (6}, and choosing ¢ as unit volume,
we find,

(3):“'“[ 12(280)2460(228)2+10(122)?

10(180)2 60 )]
(7)

= 101760/ (30X376) = 53/9. 7

In Tables II-IV we present B,(J) for lines, squares,
and cubes. The results are enlightening, They show no
convenient way of determining either the sign or
magnitude of a particular B,, even if all of the con-
tributions from stars of n—1 or fewer juncltions are
known. Leaving out the siars of any particular number
of junctions in (5) gives a very poor approximation to

Tasre IIL, B,{J) for hard squares. The molecular area o2 is unit volume.

J G 2 3 4 3 6 7
n=2 2.000 2.000
n=3 3.000 3.000 3.000
n=4 —10.667 5.667 5.607 3.667
n=23 36.736 ~99.236 5.889 12.472 3.722
n=0 —129.067 695.163 —433.,529 ~40,492 35,886 3.025
n=7 458.423 —3083.439 4504.145 —1131.913 —~412.976 117.715 1.651

®In the machine computations and (7) [but not in (6)] the algebraic sign of each star integral, which Is independent of the

dimensionality of the models considered here, is, as in reference §, convemently attached to s ra‘cher than to the integral,
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Tasre IV, 8,{J) for hard cubes. The molecular volume ¢ is unit volume.

J 0 2 3 4 3 6 7
n=2 4.000 4,000
n=3 9.000 9.600 9,000
n= —~56.889 19,333 19,333 11.333
=3 352,051 —767.330 - 5. 174 59,868 3,160
1n=0 —2271.573 9976. 134 —4739.,42 857.766 330.338 —18.880
n=7 14992.975  —104731.870 94299.674 - 10432.294 1914, 669 ~43,505

~—10935.611

the virial coefiicient in question. It is difhcult to see hiow
the use of a more realistic potential function would
alter this conciusion.

Properties of star graphs, other than the number of
Junctions, can be used to order the contributions of the
graphs to the pressure. Number of lines, for example,
could be used. We mention this possibility because, for
hard lines, squares, and cubes, we can calculate the
contributions of all completz and nearly complele graphs
to the pressure. {Compleie graphs are stars of n poinis
with the maximum number (3) of lines: —, A, K,
&, +-+; by nearly complele graphs we mean the stars
of 1 points with (8)—1 lines: N, @, ++-.) In general
(see Appendix II} the value of an n-point complele
graph integralis (—)"nd, [(1/ V)DL day-+ «das=4, for
example ], where ¢ is the dimensjonality of the mole-
cules (1 for lines, 2 for squares, and 3 for cubes), [ ]
indicates the greatest integer function,® and o=1.
One can therefore sum the contribution of all such
graphs to the pressure. In one dimension we get

(P/ET) tines= p+52p*+53p° — 540"
— 3550 e r=ptp* (sinptcosp).  (8)

For simplicity we have set the side length of the
molecules equal to unit distance. In two and three
dimensions the results analogous to {8) are

A P/ET) squares= p=+2p% (sinp+cosp) +p? (cosp—sing),
)
(P/RT) oubea= p+4p* (sinp-+cosp) +35p* (cosp—sinp)
—pt {sinp-Fcosp}. (10)

Equations (8)~(10) are readily checked by expanding
sinp and cosp in Maclaurin’s series. The complele graph
equations of state are plotted in Fig. 1. We see that the
contribution of compleie graphs to the pressure is
monotone increasing with density in one and two

21 In the remainder of this section, and throughout Appendix
I, [»/2] is used to indicate /2 for # even, and (n-1)/2 for
# odd.

dimensions, and has a maximum in the hard cubes case
for a volume about 4/3 the closest-packed volume,

In Appendix II we show that the value of a sigr
integral of (3)—1 lines is (— )0l {p+(2/[n—17])}%
Noting that such a slar may be labeled in (%) ways one
can calculate the additional contribution of all such
stars to the pressure for lines, squares, and cubes,
Adding these contributions to (8)~{10) we find

(P/ET) 1ines= p+ 20" +4p%+ (3p*+2p° — p%) sinp

+ (Fp*—2p*—p%) cosp, (11)

(‘P/kT) aguares
= e p 8ot 16081 (— £ pStdpt+-8pt — 4p*—2p) sinp

+ (3p5-4p*—8p*—dp*+2p) cosp, (12)

(P/ET) ubes
= —5p+{Ci(p) —Si(p) —v—Inp} (4p) +32p*1+644°
+ (—3p°—630°+25p*33p%— 18p*—6p) sinp
+ (—3pb+63p"+ 250"~ 33p°— 18p%+-6p) cosp. (13)

In (13) Ciand Si are the cosine and sine integrals and
« is the Euler-Mascheroni constant. The equations of
state given by (11)-(13) are plotted in Fig, 2. The
pressure in the dense gas region is increased by orders
of magnitude over the complele graph contribution.
1t is therefore uniikely that the {tedious) extension of
this method to graphs of n—2, n—3, «++ lines would
yield an equation of state more reliable than the
available seven-term virial expansion, We have gone
no further in this direction.

3. RADIAL DISTRIBUTION FUNCTION FROM THREE
APPROXIMATE INTEGRAL EQUATIONS

Percus and VYevick,” using collective coordinates,
have derived an approximate integral equation for the
radial distribution function in terms of the Intermo-
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lecular potential. Broyles™ has applied the Percus-
Yevick equation to the Lennard-Jones potential,
obtaining reasonable agreement-with the earlier Monte
Carlo® calculations. The Kirkwood® and convolution®
mtegral equations are based respectively on the super-
position approximation for the wiplet distribution
function, and the neglect of all dementary graphs
in an exact integral equation for the pair distribution
function. The results of the Kirkwood equation calcu-
lations for hard spheres™ and modificd Lennard-Jones
molecules®™ indicate that considerable discrepancies
between experimental {Monte Carlo,® molecular dy-
namics,? and argon®; and calculated radial distribu-
tion functions exist in the dense gas region. The Kirk-
wood equation does predict the observed®® hard-
sphere phase transition. Some numerical results for
the convolution equation as applied to hard sphere and

5 L 1 T I i T rﬁ
i EQUATION OF STATE
N
Q<4 from Complete Grophs

3

2 L. -

|
[ ]
[ I I ! L {

I'ws. 1. Equation of state for hard lines, squares, and cubes,
using complete graphs only. p is the ratio of the closest-packed
volume to the total velume,

2 A, A. Broyles, J. Chem. Phys. 34, 1068 (1961); 35, 493
(1961). Broyles has also made similar calculations using the
Born-Green-Yvon integral equation: J, Chem. Phys. 33, 436
(19607 ; 34, 359 (1961).

, 3\7'\; W. Wood and F. R. Parker, J. Chem. Phys. 27, 720

{1837

(1;?') G. Kirkwood and E. M. Boggs, J. Chera. Phys. 18, 394
2.

% J, G, Kirkwood, V. A, Lewinson, and B, J. Alder, J. Chem,.
Phys. 20, 929 (1932;.

YW, W. Wood, F. R. Parker, and J. D. Jacobson, Nuovo
cimento, Suppl. Vol. 9, 133 (1938}.

7 B, J. Alder and T. E. Wainwright, Proceedings of the Interna-
lional Sympesium on Transport Processes sn Statistical Mechanics,
Brussels, 1956, edited by 1. Prigogine (Interscience Publishers,
Inc., New York, 1958), p. 97.

% A, Eisenstein and N. S. Gingrich, Phys. Rev. 62, 261 {1942);

"~N. 5. Gingrich and C. W. Tompson, J. Chem. Phys. 36, 2398

1962).
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N EQUATION OF STATE
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i from Complete and
Nearly Complete Graphs
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—CUBES
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SQUARES
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1 l ] 1. | I
a 2 4 & 8 10
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F16. 2. Equation of state for hard lines, squares, and cubes,
using both complele and nearly complete graphs. p is the ratio of
the closest-packed volume to the total volume,

Lennard-Jones molecules have been presented by
Klein.®

In this section we calculate the first four terms of the
number density expansion of the radial distribution
function for the three integral equations mentioned
above; comparisons of this kind have been made for
hard sphere® and “Gaussian”® molecules. The integral
equations with which we deal are

explo(r)/kT Jg(r) = 1+Pf S exp{da/kT) g

XL fis exp(ga/kT) grstexp(on/kT) gu—11dr;,  (PY)
Inf{exp[Ag(r) /2T g (x, A) ]

A
—p [ oy [ (= g\ /b T ] (gu—1)drs, (K)

Infexp[¢(r)/2TJg(r)}

=P[Eg13- 1““}11g13—* (qu/fzf)j(ggg— 1)dr3. (C)

is an excellent description of the calculation and interpretation of
radial distribution functions from the conveolution integral equa-
tion; some of the numerical results referred to above were pre-
sented by Klein at the March meeting of the American Physical
Society, Baltimore, 1962.

3B, R. A. Nijboer and L. Van Hove, Phys. Rev. 85, 777
{1952y ; G. Stell, J. Chem. Phys. 36, 1817 (1962) and references
given in the latter paper. .

3 See G. K. Uhlenbeck and G, W. Ford, Studies in Statistical
Mechanics, edited by J. de Boer and G. E. Uhlenbeck (Inter-
science Publishers, Inc,, New York, 1962), Vol. I, p. 194; E.
Helfand presented preliminary results of a calcuiation of g1 (7)+~»
gs{r) for “Gausslan” molecutes at the March meeting of the
American Physical Society, Baltimore, 1962,
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Each of these cquations may be solved [as a series
expansion of exp[¢{r}/k7T le(r)=¢(r) in the number
density ] by the standard Liouville-Neumann mcthod®;
equivalently one can -substitute a power scries for
g(r) or for ¥(r)=—1%T lng(r) into the equations,
equate like powers of p, and thus obtain solutions.
Using

g(r)=exp{—o(r)/kT}
X {expla{r)p+a(r)p*+v(r)p’+- -1}
=exp{—W(r)/kT}, (14)

[where a{r}, 3(r), and v(r) depend in the Kirkwood
case upon X\ as well as r] we introduce f functions
and expand the exponential in brackets in (14) to get

HOOVER AND J. C.

POIRILER

explicit expressions for a(r), (1), and v{r) in tems
of doubly rooted graph integrals., We had intended tg
treat the Born-Green-Yvon eqguation'® in this way teo,
but found that for squares and cubes there are ng
solutions of the form (14) which arc symmetric in
z, v, and 2.

As an illustration of the Liouville-Neumann method
we apply (14) to the Kirkwood integral equation
[replacing ¢ (1) by Ap(r) in (14) 7. The Percus-Yevick
and convolution equations are solved in the same way,
but without the complication of the coupling param-
eter A. We substitute {14) into (XK), expand the ex-
ponential, and equate coefficients of like powers of
to obtain the following equations for a(r, A}, (1, \)
and y{r,\):

3

A
o2, N) = [o i / (—du/ET) exp (—pu/BT)fudrs, (13)

%
B{r, \) “”:/; ﬁ/(‘éla/kT) exp{—Apu/BT) Loz (W) fostfascem—+cxes AT, (16)

A
v(r, \)= /o dx f (—¢1/kT) exp(—Ap1a/kT) [Fons®(N) fas+B1 (M) fast s (N) fascras

Fas(\) st S fmoes® %azaz’}ff wBestBas Jdrs.  (17)

We can integrate over A in (15) to get an explicit equation for a(r, A):

a(r, 7\)=‘/‘f1a<7\>f23dra=ff\dra» {18)

Making use of (18) and the definition exp(~A¢u/kT) =f1s(A) -1, [indicating f(N) by a cross-hatched line in (18)
and (20)] we integrate over A in (16) and find that 8(x, \) is given by

B(r, ?\):f{[ ou ][fax()\)fu(?\)f%fa4+f13(Ufaafz«rjr"fm()\}f%fsﬂ

drtdis

—f15(N)faa fuutfrs(N) fas fu St fra(M) fau fs-a} drdry.  (19)

In general, one cannot reduce the integrand in {19) to a set of the usual doubly rooted graphs (with lines indi-
cating f functions only). For hard lines, squares, and cubes (as well as spheres) however, we see that the fraction
¢13/ {P1s+du) may take on the values 0, 3, or 1 only, and we may indicate the value of this fraction by adding
appropriate f functions to the integrand of (19). For example, the term

f [&%1] J1s(N) fas fasd Tadry

may be replaced by
j[flaO\)fzafs4+%f13(Mfmfzafm]éradfq,

© T Margenau and G. M. Murphy, The Mathentatics of Physies and Chendistry (D. Van Nostrand Company, Inc., Princeton, New
Jersey, 1943}, p. 504,
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so that we have [fis{N)fs fadradry i molecules 1 and 4 do not overlap, and 4 [fis(A)fus fudradry if thc:y do. Pro-

cceding in this way we get the following expression for 3(r, A):

5(r, 0=} [ [F1+ - Pl +2 8427 Mrdr, (20)
where we are using the position convention § 5. In the same straightiorward way one can use (18) and (20) to
convert (17) into an explicit equation for v(r, A} in terms of doubly rovted graphs. The fraction ¢/ (Piz-t+du+dis)
is treated by a simple extension of our arguments regarding the simpler case ¢ua/ (¢13+¢u). Passing to the limit,
\—1, we obtain «(r), 3(r), and v{r) for the fully coupled system of interest

; a(r)=f/\drs, (21)
| 5(r) =3 [[2(1+3 N Jrdr, (22)
7 (1) =é][6Q—}~9@+4ﬁ+8@ +307+9Q +4Q +4§y 3¢y Mradrdrs. (23)

We can then find §{r} through terms in p* for the Kirkwood equation by intreducing (21)~(23) into (14) and
expanding the exponential. The Percus-Yevick and convolution equations require considerably less manipula-
tion. In (24) we give the results.® The four numbers preceding cach type of doubly rooted graph in (24) indicate
the number of times that this graph type occurs in the Percus~Yevick, Kirkwood, convolution, and exact ex-

| 5(r) (PY, K, C, E)=

+(0,0,0,12) Q+(0, 4

' We note that in (24) g(r) (PY) contains no composile
" graphs, and that none of the three integral equations
| produces elementary graphs. These facts have been
| shown in general for the Percus-Yevick’ and con-
volution® equations. We stress again that §(r)(X) is
obtained in this relatively simple form because ¢{r)
takes on the values of zero and infinity only.
As has previously been pointed out, G{r) is a sym-
metric function of z, ¥, and z for cubes; each grapk in

3 Most of these results are not new. In particular Percus and
Yevick? show which graphs contribute to g(r) (PY). Stell® has
~weeently made a calculation (independently) of gi(r) and g{)
‘om the Kirkwood equation. Those graphs contributing to the
convelution equation g{r) are obvious from the structure of the
equation’s derivation [G. S. Rushbrooke and P. Hutchinson,
Physica 27, 647 {1961)5

pressions, respectively. The exact result is included for comparison.

1+Pf(1a 1’ 13 1) Adr3+%92f[{0; 1: 1: I)N—‘}"{z) 2: 2) 2) i—l+<4) 3) 4: 4) N+(O> {}: O: 1) R]dr&ir‘i
+1p f[ 0,1,1,1)%+(0,6,6,6) 77+ (0,9, 12, 12) f 4 (0, 0, 0, 3)zzﬁg+(6 6,6,6)%14+(12,9, 12, 12)Q

+(6, 4, 6,6)C1+ (12, 8, 12, 12) @-{— 0,3,6,6) f*g—}— ©,0,0,3) §§+(12, 9,12, 12) @—E—(U, 4,12, 1)K
L6, 6)€9--(6, 3, 6,6) (W40, 0, 0, 6) Y +(0, 0, 0, 12) W +(0, 0, 0, 6) Y
+(0: O: 0: 3)@+(0: O: O) 6) @"{" (0: Ox O> 6)@ +<0’ 0: G) 3)@_*_(0: 0: 0: 6) @-}-‘(O, 02 0; 1) @]dradnﬂdr&

(24)

(24) contributes a term of the form
Pz ) Pilly ) Pul] 2,

where P; s a polynomial obtained by integrating over
the ith doubly rooted one-dimensional graph’® In order
to make a visual comparison of different distribution
{unctions it is convenient to have “radial” distribution
functions of one space coordinate only. The natural
distribution function to pick is Cartesian, obtained
by averaging the two-dimensional G(x, y) around the
perimeter of a square of side length 2r and the three-
dimensional G{z, ¥, 3) over the surface of a cube of side
length 2r. We denote the result of this averaging
procedure by G(r)=2 g.(r)p". To illustrate the
averaging process we consider the three-dimensional
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Tapre V. §{r) for hard lnes of unit length. B, PY, X, and C indicate exact, Percus-Yevick, Kirkwood, and convolution results,
respectively.

- —

=

CE 0 <) 02—y (044 (O 14—120-200 4 (03/36) ( 204—234r+ T22— 6r%)

=

(2<r<dy
E (3<r<d)d

PY0<r<1)il+p(2—r) - (o2/4) ( 12— §

(1<r<2) iitp(Zmr) + (02/4) ( 14—12r-27) - (5/36) ( 204—234r+ T2r8— Gr)
L (pt/4) (—184+12r =272 -+ (03/36) (— 588--522r — 1442 12r%)

A (p7/36)( 384—288r T2rt— GrY)

VA (p3/36) ( 144—108r )

PY{I<r<2)ilp (2mr) + (08/4) ( 14~=12r-+20%) - (p%/36) {  204~234r- 722~ Gr¥)

PY{(2<r<3) 1
PY(3<r<d):l

¢

oY

(2<r<C3):1
(3<r<d)id

ot

(2<r<3)
(3<r<4):l

O O oo

(024 (—~ 18-+ 127 —272) -+ (0°/36) (5885227 — 144/ 4-12¢%)

4+ (p¥/36){ 384288+ T2ri— Gr%)

(0<r< ) d4pQ2=r)+ (02/4) (14— 14r43m2) +(p%/36) ( 200--285r-+132,2— 257
(1<r<2)il4p =)+ (A/4) (14— 14r-+377) + (53/36) ( 224—327r 14472 — 195%)
 (/4) (— 184127 —27%) - (p7/36) (—426+414r — 126r2--127)

+{p%/36) ( 384~288r+ T2P— GrY)

(0<r <1)14p(2=r) 4 (5/4) ( 20=16r+2r%) +(p3/36) (408 —468r-+144s*— 1879
(1<r<2) l4pQ2—r) 4+ (0/4) ( 22—20r4+4r2) 4 (0/36) (492 — 648725272 — 305
+ (p2/4) (— 184127 —2¢%) + (p7/36) ( 9128467 — 2527 4+-24r%)

+(p%/36) ( 3842887 T2~ )

infegral §{r)=[/\dr; The value of this integral is
2—lzh2—y )@=zl for —2<w, ¥, 3<2, and
zero otherwise. By symmetry we see that the average
vatue of g{(x, v, z) on the surface of a cube of side
length 27 is identical with the average over the region
(0<x, v<r, z=r). The arca of this region is %, and
accordingly ¢{(r) is given by
2—r

g(r):———-fer'/:(2~x) (2~9) dxdy {(0<r<2),

o
72

g{ry=20 (2<r). (25)

Because the values of the integrals in (24) have been
tabulated® as functions of », and are therefore known
as functions of x, ¥ in the two-dimensional case, and
x, ¥, 5 in the three-dimensional case, we can average
these integrals as in (25). Then, in one, two, and three
dimensions, the quantities™ g; (7}, g2(r), and gs(z) canbe
calculated for each of the approximate integral equa-
tions, as well as for the exact case. The analytical ex-
pressions for all of these functions are given in Tables
V-VII;expl —¢{r) /2T g.(r) and expl —¢{r) /T g5 {r)
are plotted in Figs. 3-8, We see that the Percus-
Yevick equation is (to the order of the terms re-
tained) evact in one dimension and gives the most
faithful rendering of the two and three-dimensional
exp[—¢(r) /T Jg.{r) as well. As the density of a
gas increases {rom zero, the p? and higher order terms

#The g, (r) are defined by (2) and (4).

become increasingly more important in their con-
tribution to the Cartesian distribution function g{r).
Accordingly, for these molecules at least, in the density
region where the terms we have calculated provide an
adequate description of G(r), the Percus-Yevick dis-
tribution function is the most reliable of the three
approximations. Onec also sees that the Kirkwood results
are more smooth and the convolution results less
smooth than the exact curves. The discrepancies be-
tween the exact and approximate curves increase with
the dimensionality of the molecules. Although the
Percus-Yevick curves are more “accurate” than those
derived from the Kirkwood or convolution equations,
the question of the relative reliability of thermody-
namic information derived from these approximate
distribution functions is more difficult; we discuss it in
the following sections.
4. VIRIAL COEFFICIENTS FROM THE PERCUS-YEVICK,
KIRKWOOD, AND CONVOLUTION EQUATIONS
The pressure of a gas can be determined from g{x)
or G{r) by means of {i) the Ornstein-Zernicke rela-
tion, '

!eT(é‘p/ﬁP)N,T=1—%—,0/[;;(1‘)-1]{%1‘, (26)

or {ii} the virial theorem,” which latter leads to
P p*
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TapLe VI §(r) for hard squares of unit area. E, PY, X, and C indic?te exact, Percus~Yevick, Kirkwood, and convolution results,
respectively.

e

EO<r<1):1+4 (p/2) (8—6r-+r7) -+ (p2/24) (300—396r +- 16072 —20+%)
4 (p%/864) (28 992 —352 704732 760r2— 792073132474+ 16875 — 12/%)

EQ<r<2):1-4(p/2) (8—6r+72) + (p2/24) (6r+278—376r +164r*— 3003+ 2r%)
-+ {6%/864) (1476771423 082 — 46 1527 +32 502r2—11 1007+ 196274 — 168754 6r5)

E(2<r<3) i1+ (0?/24) (54r~1 — 5224927 — 180723011 — 274)
-+ (p3/864) (13 980r— — 124 4824155 232 —83 11872423 820, —3870r4-+336/5— 12¢%)
E(3<r<4) :1- (57/864) (—24 576r~1--116 736— 115 2007452 60872~ 13 440754201674 — 16875+ 675)
PY (0<r < 1) i1+ (9/2) (8= 6r ) - (0/24) (216 — 2167 2472+ 2075— 4r4)
+ (p3/864) (13 056 — 14 6837 +-864r2-+2760r3— 68474-1275)
PY (1<r<2) i1+ (p/2) (8= 6747 4 (p2/24) { — 10715294 — 380r + 16472 — 307-+2r0)
+(09/864) (—2916r71+33 05456 952740 0627 14 58079+29707% — 33675+ 1875)

PY(2<r<3) 114 (p%/24) (34771 — 522-+-492r — 180724307 —2r4)
-+ (p%/864) (19 164r~1 —129 666-+156 960r—83 3107223 82073387074 -+336r5 — 12r%)

PY (3<r <4) 114 (p%/864) (—24 576771116 736— 115 2007452 60872 — 13 44073+ 201674 — 16875+ Gr%)
KO<r< 1) 14 (p/2) (8—6r-7%) +- (0/24) (300 — 450720278 — 2573 — 1)
+ (p/864) (28 16061 T04r+-48 93872 — 16 04073+ 8974+ 60275~ 7378)

K (1<r<2) 14 (p/2) (8= Gr-+r%) + (52/24) (67714282 — 4507 + 23872 — 5573+ 57)

4 (7/864) (6407334 646 —80 640r+75 24211 — 36 290398014 — 1428/5-+807)
K(2<r<3) 14 (p2/24) (54r1— 52244927 — 18072+ 3071 — 27%)

4 (p%/864) (10 09271 —88 032+120 564r— 71 25614-+22 74075 — 41761 +42075 — 18/5)
K (3<r<4) 11+ (p3/864) (—24 576--1+116 736—115 2007 +52 60872 —13 440134201674~ 1687+ 6r5)

CO<r<1) 1+ (p/2) (8—6r-+77) + (0/24) (408 — 5047+ 184r2— 20s%)
+ (0%/864) (53 376—95 9047 +57 79212 =12 60079 T5674+67275— 3675

C<r<2) 14 (p/2) (B—6r41%) -+ (2/24) (— 10714486 — 668r 432472 — T0r5+-6r%)
+(0%/864) (—3144r-1+79 284— 159 4807129 624r*— 55 680r3-+13 680r*— 18487+ 10875

C(2<r<3): 14 (p*/24) (341 —522-+492r — 180s24-30r5—2/%)
+ (#?/864) (30 180r71—210 666265 6087 - 149 814¢2-1-46 50073 — 840674484075 — 3675)

C(3<r<4): 14 (p4/864) (—24 576r~1+116 736115 200752 6082~ 13 44073+ 2016¢¢ — 16875+ 6+5)

Differentiating exp[ —¢(r) /2T gives V¢(r)=—%T
explo(r)/RT 5, where &, is a delta function which is
nonzero only on the surface of a d-dimensional cube
of twice the molecular side length, in complete analogy
with the usual treatment for spheres.®® Using this tech-
nique {27) assumes the particularly simple form

P/ET=p+pBiG(1) = p+p*Bog (1), (28)

87T, L. Hill, Steiistical Mechanics {McGraw-Hill Book Coxn-

pany, Inc., New York, 1956), p. 214.

for hard lines, squares, and cubes (e=1). We may
therefore obtain the virial expansion of the pressufe
from either (26) or (28), using [in (26)] 2dr, 8rdr,
and 247%r for the one-, two-, and three-dimensional
dr’s, and g(r) for g(r). As an example let us calculate
B, for squares according to the Kirkwood equation.
Inverting the Ornstein-Zernicke relation (26) gives

(1/&T) (3P/dp)w,r="14pF(p) T
=1 pF g Fe g3 35 ,‘., (29)
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Tante VI G0} for hard cubes of unit volume. E, PY, K, and C indicate exact, Percus-Yevick, Kirkwood, and convolution results
respectively.

E(0<r <1} i1+ {p/4) (323271072 13} -+ (p7/144) (6552~ 11 8087+ 768077 — 252075464474 — 160754 207%)
+(p%/20 736) (4 322 304 — 11 003 904r+10 748 1602 —35 520 096r3+1 918 56074 — 590 784/
183 528/5—30 340710 0325 1080,%)

E<r<2) 1= {p/ 4 {3232+ 1077 —13) + (p%/ 144) { — 6624 050r ™ -+-4688 — 98087 -+ 698072 — 247 27-+-476rt — 4875+ 25}
- (p3/20 736} (— 125 940,21 323 502,153 400 —4 531 39075 628 84072 — 2 663 7483296 352r44-237 780r°
— 120 7807526 13077 — 2904r8-1-138/%)

E2<r<3) 15 {02/ 154) (— 1627734-3024r71— 16 036+ 18 576r —9900r2 4-29287% — 50474+ 4875 —2s5)
- {p%/20 736) {40 020r~2--4 098 426r~1 — 26 283 736441 189 706r — 31 510 440,214 421 492-5— 4 304 160r4+866 148/5
— 117 3245310 200/7—328,54+124%)

ES3<r <414+ (%/20736) (1 572 864r~*—13 762 560r~2-4-39 616 51244 457 984r-+27 279 360r*— 10 579 968,32 774 G16+4
—304 376r°+63 360/~ 5280r7-4-264r8~ 6/°)

PY (0<r<1):1-{6/4) (32—32r 107" ~—r*) 4 (p2/144) (3888 — 51847 4108072+ 79278 — 25274~ 32r54- 12/}
- (p7/20 736) (1 069 0561 603 584103 680r2-636 768r3— 161 280rt—68 352r%
27 432754 180,7— 105678 4-108r%)

PY (1< r<2) 1+ (o/4) (32— 32741002 15) - (p2/144) (~34r — 144714 5848 — 10 4487+ 71402 — 248873+ 4761 — 48,5215
4+ (07/20 736) (42 2282~ 1 000 18277146 415 728~ 13 523 0347+13 569 000/2—7 525 T64r3+2 424 912r4—429 22875
425 452754483077 — 1056/5466r) ‘

PY (2<r<3) 1+ (p2/144) (— 162724302471~ 16 05618 5767 —9900r* 292878 — 504r4-4-4875 2,5}
~+ (p%/20 736) (—395 436r72-+6 773 370129 790 120443 320 906r —32 236 200r*--14 566 644r8—4 320 288r44+866 916/5
«=117 32475 +4-10 29,7~ 5285 4-12+%}

PY (3<r<4):1+ (/20 736) (1 572 864r~2—13 762 560r3+39 616 512—44 457 984,27 279 360:2— 10 579 968,42 774 O16r*
— 504 576r5+63 36075 — 5280772647 — %)

KO<r<1): 14 {p/4) (32--32r + 107~} 4 {p*/144) (6552 — 13 104r4-9030r% — 2862r34- 62371 — 1521842155}
4 (p8/20 736) (4 192 256—12 476 928r+14 397 0402 —8 292 948,342 680 664 — G613 144/
4186 252¢5—63 145,712 958/5—1213/%)

K{1<r<2):1+(p/4) (32327 -+ 1072 —7%) -+ (o%/144) (~66r~ 246481 -+-4980 — 12 4087 4-10 5602 —4590r44- 112774 — 15215-+-9/%)
-+ {p3/20 736) (—28 468724140 1387144 861 54416 959 238r-+23 753 600r2—18 132 432¢3--8 552 712r—2 644 136r°
545 994¢5—73 66577+ 5940r8—2177%)

LR (Q2<r<3) 11+ (07/144) (— 162r24-3024r1 — 16 05618 576r ~99007* 4292879~ 504r1-+4875 — 215

+ (p%/20 736) {73 392r2-+2 494 788,71 —17 844 45631 432 020726 815 680r24-13 686 984r3—4 585 392r4--1 048 200/5
164 016516 98077 — 1056-5-+-307%)

K(3<r<4):1+ (p3/20 736) (1 572 864r2—13 762 56071439 616 51244 457 984r+27 279 360r2—10 579 96842 T74 01674
504 576563 360r5— 528057 4-264r5— 6r°)

CO<r< 1)1+ (p/4) (32— 327+ 1072~ %)+ (2/144) (8496 — 14 4007876072 — 26647°+644r' — 1607542015
4+ (p7/20 736) (7 317 504—18 266 112r--17 030 40072 —7 855 776:3-+2 149 056+ —563 328¢%
219 67275—69 78077412 672/5—1128/%)

C1<r<2) 1+ (p/4) (32321072 —1%) 4 (2/144) (—34r~2 —144r=1--10 456— 19 6647+ 14 82072 — 594479137274 = 176r5-+-1075)
1 (45/20 736) (—42 816r2—483 S16r3412 656 352—34 846 464r+-41 979 3602 —28 945 O44r9-+12 786 144 —3 807 408/
4773 496r5— 104 16077844878 - 3127)

CA<r<3) 1+ (8/144) (—162r72-+3024r1—16 05618 576r — 9900724292873~ 50474 +48r°—27%)
4 (p3/20 736) (769 980r2-+-11 906 826r—52 169 88078 062 394r—G61 072 200-2+29 571 732r°—9 580 032-4+2 143 8127
—331 164¢54-34 050r7—2112,5460:%)

C(3<r=<c4) 1+ (p3/20 736) (1 572 864r2—13 762 560,739 616 512—44 457 984r 427 279 360,710 579 968r3-+2 774 016+
w504 57675463 360r%— 528077+ 26418 — 6r7)
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where F== [[g(r)—1]dr and the scries converges for
[oF |<1. From (24) we calculate I (Kirkwood):

F(K)=/e—»aire—:—f expL—¢(r)/kT]

X {p//\z drs‘f‘%‘f?g/[z R+N+3N]dradr4}drz;
(30)

F(K) = / —dTetp f [ A+ ATdrdr,

+3 [+ +2 3N Dindndr, (31)

Substituting (31) into (29}, integrating with respect to

15 1. -
1
ey
=
¥
b -
oL ¢ *¥Ty FOR LINES -
—Convolution
S L -
Percus-Yevick & Exact
0 |- .
Kirk wo o mme
-5 L -
it | i L |
10 15 20 25 3.0
r-—-—’

Fic. 3. Exp[—a¢(r)/kT]g{r) for hard lines of umit length
according to three integral equations. The exact and Percus—
Yevick curves coincide.

p ({from 0 to p), we identify By according to the Om-
stein-Zernicke relation as applied to the Kirkwood
equation:

By= _%/[3 O+aN -~ N Jdrdrdrs. (32)

Putting in the appropriate values for the integrals®
we find in two dimensions Bg=— (1/8)[3(16/3)%~
4(14/3)%~(2)*(3)*=83/18.

We can get B; according to the virial theorem as
applied to the Kirkwood equation (in two dimensions)

I {
2L i ;..4

L

N -

? ¢ ¥, FOR LINES
@

! L . ‘=Convolution n

Percus~Yevick & Exact

4L

| - ‘ I I
! 2 3 4
’—-—-

Fic. 4. Exp[—o{r)/kTJgs(r) for hard lines of unit length
according to three integral equations. The exact and Percus-
Yevick curves coincide.

by noting that g(1) is {from Table VI) 13/12. Thus
By=2(13/12)=13/6.

In the way illustrated above we find the virial
coefficients through By for lines, squares, and cubes;
By and B; are given exactly by all three integral equa-
tions from both the Ornstein-Zernicke relation and
the virial theorem and so are not tabulated; By and
Bs are displayed in Tables VIII-X. We have also
included Bg from the convolution equation, first getting
the graphs contributing to g4(r) by iteration and then
substituting these directly into (26) and (28) to gene-

3 T 7 ¥ I 1
R
=
<
A3
2L e#My FOR SQUARES -
- Convolution
;L Exact i
Percus -Yevick .
0 L 3
s -
{ | | ] ]

10 15 20 25 3.0

¥i6, 5. Bxp[—e(#) /2T Ju(r) for hard squares of upit area
according to three integral equations. The exact curve is included
for comparison,
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¥
I 5L T I i B
k“‘” \'-Ccnvoimion
3 o ™7y FOR SQUARES
@ | ;
;LW Percus-Yavick
Kirkwood=s,
- —
el |
Lt | i !

/ 2 3 4

g

Fi16. 6. Expl—e(r}/k1T g (r) for hard squares of unit area
according to three integral equations, The exact curve is included
{for comparison.

rate® known sier integrals. Because Percus and Yevick
have shown that the graphs contributing to the Percus—
Yevick equation of state as derived from (26} are all
planar irreducible convex graphs, we have obtained the
virial coefficients through By in this case by selecting

& :E 1 1 [ I _1

‘ |
=

Lol |
¥

- PrkT, |

4 1 \ [ 9, FOR CUBES o

~~Coavolution

2 |- -

0 - Percus -Yevick I

-2 ~ Kirkwaod— -

1 i L 1 i

10 15 20 25 30

7 -

Fic. 7. Exp[—~a{r}/kT]e(r) for hard cubes of unit volume
according to three integral equations. The exact curve is included
for comparison.

% Only in the case of the convolution and exact results is it
possible to give a direct graphical representation (/ines represent-
ing f functions only) of the equation of state as derived from the
virial theorem. The theorem necessary to make this representa-
tion is given in G. S. Rushbrooke and H. I, Scoins, Proc. Roy.
Sec. {London) A216, 203 (1933). See also Rushbrooke and
Hutchinson.®*

AND 1. C.

POIRIER

all such graphs from the list previously montioned)s
We have not evaluated g{r) (numcrically) for any of
the three approximate integral equations. The task of
evaluating the rclated sia-point doubly rooled graphs is
{airly tedious.

For molecules having a pairwise-additive polential
encrgy which is either zero or Infinity, there is yet
another way of obtaining the pressure from the dis-
tribution function g(r). For such molecules we have
established!® the following relation between the pe-
tential of mean force at zero scparation and the virial
cocificients:

T(0)~p(0) = — kT InG(0) = kTS -1-4’1—13,‘,9'1—1. (33)

n=2 4

Equation (33) has an interesting graphical interpre-
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116, 8. Bxpl—~¢{r) /271w (r) for hard cubes of unit volume
according to three integral equations. The exact curve is included
{or comparison.

tation, the discovery of which actually led us to the
equation. If one takes the n-point graphs which con-
tribute to the potential of mean force (see Appendix
1), and merges the roof points, thus getting the po-
tential of mean force at zero separation, the resulting
(n—1)-poini graphs are just those which contribute to
the (#n—2)nd irreducible cluster integral.® In the process
of moving the roo! points together some lisies become
double lines, and to correct for this one must add an
extra factor of —1 to the resulting graph for each pair
of doubled lines. To illustrate these ideas we demon-
strate in Table XIV how the doudly rocted graphs of
five poinds which contribute to the potential of mean
force generate the star graphs of four peinls as the root
points are merged.

Returning to our Kirkwood example again we find
from (21)~(23) that at zero separation the following
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Tavre VIIL Virial coellicients for hard lines. The molecular side length is unit volume.
From the Ornstein-Zernicke relation Trom the virial theorem
By B; Bs B By B B;
Percus-Yevick 1.60000 1.00000 1.00000 1.00000 1.00000 1.00000
Kirkwaod 1.08333 1.20278 $.75000 0.61111
Convolution 0.91667 0.80000 0.70278 1.50000 1.83333 2.00000
Jixact 1.0000G0 1.00000 1.000600 1.00000 1.00000 1,00000 1.00000

cquation holds:

¥(0)—4(0)

=kT{p f R f Adridre

":‘%3’103/[3 D.+5 E]iffgdl‘gdﬁj

=kT[~2pBs—5p2B;—%0*B.]. (34)

Thus for squares

By=— %/[3[3 45N Jdrydrsdry

=—$3(16/3)2—5(14/3)¥])="53/18.

In this way we can find B; and By for the approximate
integral equations (B is given exactly by all three
equations). We list the Bj;, B, results in Tables X1~
XIII. Both the Percus—Yevick and convolution integral
equations fail 1o give correct third virial coclficients
[using (33)7], while the Kirkwood virial coeflicients
are generally closer to the exact values than those
obtained from the Ornstein-Zernicke relation and the
virial theorem. This suggests that {33} may beuseful in
getting thermodynamic quantities irom integral equa-
tions,” although this simple form is obtained only when
the molecules are hard.

We have noticed a relation similar to that illustrated
in Table XIV amonyg the star graphs themselves. We
do not yet have a thermodynaniic interpretation for this
relation: removal of point nwmber , together with the
lines at that point, {rom the set of labeled stars of n

# Inserting {33) into various integral equations gives quite
different results. Taking (i) the Percus—Yevick equation, (ii)
the Kirkwood equation, {iii) the convolution equation, and (iv)
the Born-Green-Yvon equation, and specializing to the hard
sphere ${r), one can get, respectively, (1) the ideal gas law, (ii)
the exact relation s/p=explp®xces/k Tj, {ili) sume integrals which
we have not been able to evaluate, and (iv) an equation of state

with the correct B, but all higher B,=0. The analog of (33) for
the triplet distribution function Is

n
¥ (I‘lza = O) - ch (I'123= 0} =2k TE;—-‘Enp"-l;
el 2

use of the Kirkwood superposition approximation multiplies the
right-hand side of this relation by %.

points, gencrates n—2 scts of the labeled stars of n—1
points. This last operation is Ulustrated in Table XV;
a proof is given in Appendix III. Again one has to be
careful about the sign of the derived graphs, and the
physical interpretation of the operation would pre-
sumably hold for hard molecules only.

5. DISCUSSION AND CONCLUSION

We must restrict our comments here to the density
region in which our number density expansions of the
pressure and radial distribution function are useful.
It is at least possible that some of the graph-type-
selection or integral equation approximations we have
treated are valid at (i) extremely low densities where
only the second virial coefficient contributes sig-
nificantly to the pressure, and at (ii} high densities
near closest packing; and that we have had the mis-
fortune of making comparisons only in an intermediate
density range.

With regard to virial cocflicient approximations of
the ring and waelermelon type, it has been pointed out
by Salpeter®® that such approximations may be par-
ticalarly useful for long-range potentials. Tor the
potentials we have considered this is evidently not
the case. The contributions of the ster integrals to B,
increase {with %) so rapidly that if all of the contribu-
tions to B, have the same sign

| im B, | = .
nroe
Tt is only the fact that almost exactly half of the con-
tributions are negative and half positive that results
in a convergent virial series.® It is because of this ex-
tensive cancellation that approximations which neglect
some graphs are inherently dangerous. There are many
ways of classifying graphs, however, and it is entirely
possible that some selective process exists which would
be useful for the molecules we have considered. This
fact is illustrated by the Percus-Yevick equation

~ which discards most of the star graphs and yet is exactly

correct in one dimension through at least the seventh
virial coefficient calculated by the Ornstein-Zernicke

# T B, Salpeter, Ann. Phys. (N.Y.) 5, 183 (1938).
3 G, W, TFord, dissertation, University of Michigan, 1953,
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Tanie IX. Virial coefficients for hard squares. The molecular area o2 is unit volume.

From the Ornstein-Zernicke relation

T'rom the virial theorem

B; B;‘, Bc B'} B¢ —Ba BG
Percus—Yevick 377778 4.,23611 4,42000 4,48761 3.33333 3.03356
Kirkwood 4.72222 7.01690 2.16667 1.803556
Convolution 2.95454 1.80417 0.96500 5.66667 5.88889 2.80417
Exact 3.66667 3.,72222 3.02300 1.65065 3.,66667 3.72222 3.02300

relation and through at least the ffth virial coefficient
caleulated by the virial theorem. Comparison of the
exact and Percus-Yevick G{r}'s (both are given in
Table V} incicates that the functional form of g(r)
for the Percus—Yevick equation is probably exact in
one aimension. Thus the grapls omitted by the Percus~
Yeviex equation cancel in one dimension but not (as
one can see rrom Tables VI and VII) In two or three
dimensions. Furthermore G(r) is incorrect for 0<r<1
in one dimension, leading to incorrect B, from G(0)
by (33).

One might expect to get more reliable distribution
functions from more complicated integral equations
such as the Kirkwood-Salsburg equation® (which we
find, using the superposition approximation and the
correct number density expansion of the fugacity,
gives Bpe«« By correctly); unfortunately this equation
is so complicated that no other calculations have yet
been based upon it.

A set of integral equations due to Poirier'! Is quite
different from those which we have treated here, His
sccond- and third-order theorics result in a ring ap-
proximation to the radial distribution function in
which the [lines represent —o{(r)/kT rather than
exp[—o{r) /BT —1. 1t is interesting that this ap-
proximation gives the Debye-Hiickel results for dilute
electrolyte solutions. Preliminary calculations indicate
that Poirier’s fourth order theory, in which the ap-
prosimate distribution function is determined by several
coupled integral equations, does not have a graphical

interpretation; that is, there is no number density
expansion for the solution of the fourth order equa-
tions. We plan to investigate these equations further.

It appears that the Born-Green-Yvon integral
equation has no solution for hard squares or cubes,
The basic difficulty is that the equation allows one to
solve for a number density expansion of the gradient
of g{x, v, ), but after finding this ‘“‘gradient” one
sees that there is no function symmetric in %, ¥, and z
from which it can be derived. Thus in the Bomn-
Green—Yvon case we cannot even obtain an approxi-
mate solution; the underlying Kirkwood superposition
approximation produces an equation without solutions.

We have found (see Figs. 3-8) that the Pecrcus-
Yevick equation is more satisfactory than the Kirk-
wood or convolution equations in representing the
radial distribution function. Because this equation
also has the simplest structure of those which we have
considered it deserves further study. By contrast, even
with the smoothing inherent in calculating ga{(r) from
g.(r), it is clear {sce Figs. 3-8) that the Kirkwood and
convolution eqguations represent rather crude ap-
proximations in our density range.

Even with the Percus-Yevick equation (with
radial distribution functions not markedly different
from the exact curve) we find, in two or three di-
mensions, rather unreliable virlal coefficients with the
{optimum) Ornstein~Zernicke relation. This sensitivity
of thermodynamic properties to the precise form of the
radial distribution function has been shown vividly in

TasrLe X. Virial coefficients for hard cubes. The molecular volume o2 is unit volume.

From the Ornstein—~Zernicke relation

From the virial theorem

B{ Bs Bu B'} . Bg —85 BG
Percus—Yevick 12.88889 12,43403 9.,20674 11.58167 §. 44444 0.56944
Kirkwood 20.92593 37.94250 3.00000 4.20370
Convolution 6.62963 —6.93947 —2.21330 19.33333 ~35.17361 —49. 60366
Exact 11.33333 3.15972 —18.87963 - 43.50543 11.33333 3.15972 —18.87963

# 7, 3, Kirkwood and Z. Salsburg, Discussions Farad. Soc. 15, 28 (1933},

# 7. C. Poirler, J. Chem. Phys. 26, 1427 {(1957).
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Tapre X1, Virial coellicients for hard lines from the potential
of mean force. The molecular side length is unit volume,
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Tavre XI{I. Virial cocflicients for hard cubes from the potential
of mean force, The molecular volume ¢ is unit volume.

Yercus— : Percus-

Yevick Kirkwood Convolution Ixact Yevick Kitkwood Cenvolution Txact
Bs 0. 66667 1.00000 2.00000 1.00000 By ~3.33333 9.00000 18. 00000 9.00000
B, 0.30000 0.91667 3.00000 1.00000 By 4.66667 6.62963 38.66667 11.33333

the case of the Lennard-Jones potential.® Our final
conclusions concerning hard lines, squares, and cubes
are somewhat negative, namely that even if one uscs
an integral eguation which gives a reasonably accurate
distribution function {(e.g., the Percus-Yevick equa-
tion) the thermodinamics obtained from it is (in the
intermediate density range) (i) internally inconsistent
(e.g., Ornstein~Zernicke vs virial theorem vs mean
force potential), and (i) unrcHable. At present Monte
Carlo and molecular dynamics studies represent the
most reliable routes to thermodynamics (at inter-
mediate and high densities) from the intermolecular
potential as well as the best checks on integral equa-
tion work.
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APPENDIX I

In this appendix we outline some graphical ter-
minology for the benefit of the reader who is not

Tasre XI1, Virial coefiicients for hard squares from the
potential of mean force. The molecular area ¢® is unit volume.

Percus—

Yevica Kirkwood Convolution Exact
B, 0. 66667 3.00000 6.00000 3.00000
By 0.33333 2.94444 11.33333 3.66667

familiar with one of the basic works on graph theory.®
Much of this material is taken irom the lecture notes

Tasre X1V, Graphical illustration of the relation between the
potential of mean force and the irreducible siar graphs. Merging
the root points of the five-point doubly rooled graphs shown gives
the indicated four-point star graphs.

X AN, U

12 ~12

12

12 0 - 12 0

12 0 —12 0

12 -12 0

BDDDIDDDDDISID2DDDODIDDDD
|

Totals -1 —6 -3

“ R, W. Zwanzig, J. G. Kirkwood, K. F. Stripp, and 1. Oppen-
heim, J. Chem. Phys. 21, 1268 (1953). In this paper it is pointed
out that a change of 2.6%, in the distance scale of the radial
distribution function changes the pressure (under certain condi-
tions) by a factor of 108,

8D, Kénig, Theorie der Endlichen und Unendlichen Graphen
{Chelsea Publishing Company, New York, 1950); C. Berge,
Theorei des graphes et ses applications (Dunod Tditeur, Paris,
1958). For applications to statistical mechanics see R. J. Riddell,
dissertation, University of Michigan, 1951; G. W. Ford®; G. E.
Uhlenbeck and G, W, Ford.® .
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Tasue XV, Graphical illustration of the relation hebween the
stars of wand n—1 points for n=35, Shown is the nuntber of times
cach (ype of fumir-point connected grapl appears when the relation
(denned in Appendix I11) is applied to the sct of labeled five-point
siars.

R N O R X M

2 O 0 0 0 0 0 12
o O 0 0 12 24 0 —24
10 < 0 0 6 00— 0
10 W 0 o 0 0 ! 0
o0 Wy 0w 024 0 12
o000« 0 6 —12 —12 0 0
00 0w 6 —12 ) 0 0
5 6 0 -12 3 0 0 0
10 & —4 6 0 0 0 )
1 @ 1 0 0 0 0 0

Totals 3 18 9 0 0 0

of Professor Frank Harary’s Graph Theory course at the
University of Michigan.

The many applications of graph theory have led to
several names for the same concept. For example,
points of a graph are also known as nodes, vertices,
junctions, or O-simplexes. Synonyms for line include
arc, edge, branch, link, wire, and I-simplex. The graphs
themselves (which are sets of points with lines con-
necting pairs of these poinls) are called nefworks, nels,
paiterns, configuralions, figures, diagrams, linear graphs,
or I-dimensional simplicial coniplexes.

The following definitions are relevant to this paper:

(1) A graph is called labeled if the poinis of the
graph are distinguished from one another in some way
{commonly by labeling the points numerically: 1, 2,
+«+) independent of the structure of the graph. Other-
wise the grapl is unlabeled.

(2) A graph is disconnected if it is possible to divide
the points of the graph into two or more sets, such that
no lines oi the graph connect points of any two different
sets. If such a division is impossible the graph is con-~
necled. According to Mayer’s terminology such a
connected graph is at least singly connected.

{3) A point P, of a connecled graph Is said to be an
articulation pointifitis true that removing P, (fogether
with the lines at Po) from the graph leaves a dis-
connected graph.

(4) A connected graph having at least one line and

;

HOOVER AND J. C, POIRIER

no articulation poinls s called a star. Other terms for
star include block and at Least doudly connected graph.

(5} The degree of o point is the number of lines
adjacent Lo it. A ring graph is a star, a1l poiuts of which
ave of degree 2. A watermelon graph is a slar of a poinis,
2 points arc of degree 3 and n—2 points are of degree 2,
A complele graph of n poinls has all poinls of degree
w1 A nearly contplete graph is & ster of »>3 points;
2 painis are of degree n—2 and n—2 poinls are of
degrec n—1,

L0 N\ duably pouted graph (s w graph in which two
ropt peints are speciadly distinguished, in some way,
from the veste We restrict our interest o conirected
doibly rooled graphs with root points iabeled 1 and 2
not directly connected by a line, such that were the
missing line linking the rool points added the graph
would become or remain a slter, According to Van
Leeuwcen ef al. such graphs are composite if removal of
both reot poinis gives a disconnected graph; otherwise
they are nodal or clementary, the former if there exists
any poud the removal of which gives a disconnecled
graplk, otherwise the latter.® The graphs contributing
to the radial distribution function may be composile,
nodal, or elementary. Of these only the nodal and
elementary graphs contribute to the potential of mean
force.

(7) The planar irreducible convex graphs resulting
from the Percus-Yevick integral equation used in

" conjunction with the Ornstein-Zernicke relation may

be constructed in the following way: start with a
labeled ring graph of n points; by adding 0, 1, -+ lines
connecting the points of the ring graph construct all
possible graphs with noncrossing lines (keeping the
original ring graph on a plane). B.(PY, OZ) is then the
sum of the corresponding star integrals divided by —#7

(8) A cycle is an ordered set of 2> 2 distinct poinis
of a graph, Py, Pa, +++ Py, such that P;is connected to
Py and Py for all 7 with the conventions FPy=Fi
and Pr= Py, '

APPENDIX II

In this appendix we show that the value of any one-
dimensional (hazd line) slar integral of s poinis and
(8) lines is (=) 25, and that the value® of any one-
dimensional (hard line) star integral of n peints and
(BY—1 lines is — (=) u+(2/[n—1])}. (Again we
are using the units e=1.) The integrals we are con-
sidering are volume-independent and have the form

I=(1/V) f Si(n)drye - dry= / S:(n)dts: +~dr.

(moiecule 1 uf origin}
(I1.1)

Tw J. MT:I’,”Van Leeuwen ef al.?
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We assume some familiarity with a previous paper in
which the evaluation of one-dimensional integrals was
deseribed In detail®

We recall that any sfar integral may be written as
the swn of »z! subintegrals, one for cach of the ways n
molecules may be ordered from left to right. Thus the
slar integral contributing to Bs, (1/V) [ Adre- d1s,
may be written as the sum of six subintegrals corre-
sponding to the 3! orderings 123, 132, 213, 231, 312,
321, In the event that the arst and last molecules in a
given ordering {of the poinés of any star) are con-
nected by aline {in that star) one shows easily that the
value of the corresponding subintegral is £1/(n—1}
the sign i1s determined by the number of lines in the
star. This value for the subintegral is obtained because
the restrictions of the ordering and the f function
linking the first and last molecules restrict the integra-
tion to one of n—1 equal parts of an (n—1)-dimen-
sional cube of side-length o, the molecular length.
We illustrate the case for #=0, using the ordering
123456 and assuming that fis appears in the integrand.

& subintegral

=[du*f(fx/dy/a’:/(i&
J i F P z
=[dwj a’x(e:’y[ ds(oe—sg)/1!
0 w M b

=fa’u'/ a’xf d}’(a——y)ﬁ/Z!:/dw/ dx{o—x)%/3!
0 iw £ o w

:/dw@_agvm=gva=xmi (I1.2)
8

The general case is obvious from this illustration. If the
star we consider is complele all orderings of the # mole-
cules will give ¢ subintegrals, of value £1/{n—1)L
Because %! of these orderings are possible the value of
the sfar integral corresponding to a complele graph is
=, :
For a star with (3)—1 lines it is clear that all order-
ings in which the missing /ine is not between the first
and last molecules will give ¢ subintegrals. The re-
mainder of the orderings, 2(#—2)! in number, will
contribute 40 subintegrals, which we represent sche-
matically as follows:

w subintegral = (1/V)f"€§".’§3 dryssdr,.  (IL3)

Using the ordering 123456 and assuming that fi; does
not appear in the integrand, we may evaluate a six-

SQUARES, AND CUBES 343

pointw subintegral:

o o Pl g 4 W
wsubimcgml=[ dw/ d:c/ ai’yf dz/ da
V] w z ¥ 2

=g subintcgraH—f dw/ dx/ dy/ ziz/ da. (114)
1] w z ¥ o

Integrating by parts over w {following the integrations
over g+ -+x) we see that the last integral in (I1.4) has
the same value as a ¢ subintegral. Thus the w sub-
integral has value =£2/(n—1)!, and the value of a
star integral with (§)—1 lines and n points is (apart
from sign)

n!—2(n~2)152(2)(7a-~2)1d S 2
(n—1)1 D1 a1

All that remains is to determine the sign of the inte-
grals. We observe that

(=B =y,

giving the sign of the complete graph integral. The sign
of the graph obtained by removing one line from a
complele graph is necessarily opposite, being — (=) /21,

APPENDIX IIT

In this appendix we state and prove a graph-theo-
retical theerem which presumably has {unknown)
thermodynamic implications. In this appendix we will
be concerned with labeled graphs only.

Let us denote the set of labeled stars of n points,
P-+ P, by &(n), and the set of labeled connected
graphs of n points which are not stars by €(n). Par-
ticular graphs in these sets will be indicated by Sp(#)
and Ci(m) respectively, We define a general relation
between pairs of labeled graphs, Gi(n) and Ga{n—1),
by writing

Gi{nyar =Gy(n—1) (I11.1)

if {and only if) it is true that removing P, and all lines
joining Pi*++ Py to Py, from Gi{n) leaves Go(n—1).
If the number of lnes removed is even (odd) we use a
plus (minus) sign in (II1.1). The following pairs of
graphs satisfy the relation, where P,= Py is the topmost
point in the flve-point graphs shown.

&=+,
Using our notation we wish to prove the following:
Sy n—2]Sn—1). (111.2)

Because removing a single point from a sfar never
results in a disconnected graph, we may divide the set of
stars of n points into two sets: &,(n), those stars which

@;g—~u, @fr—\'}?,
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I

A g, % A schematie representation of
F) G (a1, a graph lormed by removing the e
Py— P, irom an element G (#) of &i(n).

Py

give stars of w1 poinis on removal of Py; and &.(n),
those stars which give conuecied graphs of n—1 poinis
which are not stars. Evidently &.(n) US.(1) =5 (n).

Conslder £,(#). For a particular Si{n—1) there is
one sfar in &,(xn) in which P, is linked to Sp(u—1)
by n—1 lincs; there are n—1 stars in ,(n) in which
Py is linked to Si(in—1) by 12—2 lines, and in general
exactly (,271)=("3") stars in S,(u) which give
(—)78:(n—1) for 1<j<m. Graphs which consist of
Se{u—1) joined to P. by a single line are clearly not
stars and will therefore not appear in $,(n). Thus the
number of times that Se{n—1) will appear in the
stars derived from £,(») [by removal of P, according
to (II1.1) Jis, independent of %,

Z<—>(;1)=Z<~—>(;1)—Z<~—>(;1)
—O0—[1—(n—1)T=n—2. (IIL3)

Because each star in £,(n) will give some Sp{n—1)
on removal of P,, and because each Si(n—1) is
obtained exactly n—2 times {rom £,(5) we find

S, ([ n—218n—1). (111.4)

We now consider ,.(n). For a particular Cy{n—1)
containing the arliculation point P, we may select from
S.(n) two sets of stars: £.(n), those stars in &.(n)
which have the line joining P, to P, and give Cy(n—1)
when P, is removed; £.%(n), those siars in S.(u)
which do not have the line joining P, to P, and give
Ci(n—1) when P, is removed. We now demonstrate
that there is a one-to-one correspondence hetween the
stars in Sy(n) and the siors in &% (n). For any star

Tapre XVI. B, according to the Ornstein~Zernicke relation
from three intepral equations, and according to the virial theorem
from the convolution equation. The number of times cach grapk
contributes to the integrand in

Bys= (~—1/8V) [ (d-point gra plis)drys « odry
is given in this table.

PY(0Z)  K(0Z) cloz) C{VT)
U 2 3 3 3
4 4 5 6
N 0 -1 0 0

HOOVER AND J. C.
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Tanie XVIL B; according ta the Ornstein-Zernicke relation
from three integral cquations, and according to the virdal theorem
from the convolution equation. The number of times cach graph

contributes to the integrand in
By { —1/30V) ] (5-poin graphs)dry-+<drs

is given in this table.

C(0Z)

PY(0Z)  K(0Z) C(VT)
& 6 12 12 12
& 30 36 45 60
0 30 25 42 60
&= 0 4 7 10
& 0 5 7 10
& 0 -6 0 0
< 0 -7 0 0
N 0 -3 0 0

Tasre XVIIL B, according to the Ornstein-Zernicke relation
from the Percus—Yevick and convolution integral equations, and
according to the virial theorem from the convolution equation.
The number of times each graph contributes to the integrand in

By= (—1/144V) [ (6-point graphs)dr;-«-drs

is given in this table.

PY(0Z) c(0Z) C(VT)
O 24 60 60
O 144 288 360
& 72 132 180
G 0 120 180
& 0 120 180
& 0 9 15
& 288 480 720
o VTR 240 360
o 72 120 180
& 0 216 360
& 0 9 15
= 0 216 360
O 48 72 120
& 144 216 360
=) 144 216 360
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i &.5() there s a corresponding sfar in Sy{u},
identicat but for the presence of the fiue Py— 7 joining
P, to Py This follows from the observation that adding
a line to the poinds of a sfar alwayvs gives another siar.
To cstablish that for any s'vr in &uin) there is a
corresponding sfar in &%), idendcal but for the
absence of the line IPy— 17, is somewihat more iedious.
This demonstration Is eguivaient to showing that any
two points In Gi¥iied, o grapl formcd b}' ranoving the
ling Po— P, irom an clement Ge{i) of &), leon a
eycle. Let us consider (wo painls 1 w, Le other than
Py or Pnoin G0 and draw G () oas in Flig. 9,
where @ and & represent two of the two or more
conecied graphs formed by removal of 7, and 7, from
G (n). Without loss of generality we suppose P is In
®, and P, is in either @ or @. If P.is in @ any cycle
on which Lboth P, and P, lay in Gi(n) is also in Gi*(n),
because such a cycle could not include the line Py— P.
If both P, and P, are in @ any c¢ycle on which both
lay in Gu{n) is also in Gy™(52) unless the cycle included
Po—P,. In the latter case we can construct a new
cycle in Gi¥(n) by replacing the Gi(n) cycle with a
cycle identical to it but for the substitution of any
path through & from P. to P, for the line P,— P,.
In this way we have shown that any two points {other
than P, and P,) which lay on a c¢ycle in Gy(7) lieon 2
cycle in Gp*(n), and that Gg*(#) is therefore a sfar cor-
responding to Gi(n), provided only that we show
P,and Py, P, and P,, Py and Ps, P.and P; also lie on
cyeles in Gi¥(n). These facts are all easily shown in the
{oregoing manner, and the one-to-one correspondence
between the stars in ©£:(n) and the stars in .%(n)
is established. We illustrate it here, for a particular
case, taking & as the particular labeled Ci(5), indi-
cating the articulation point P, by an open circle.

%k*(é)z{ @: @} and ék((a):{ @: @ }
Noting again that

U (Si(n) US*(n)}=5.(n),

k

and observing that
{&:(n) US*(n) I,
where & is the empty set, we have the result
S (n)ard. (IIL.3)

Taking the union of (II1.4) and (II1.5) gives (111.2),
and completes the proof.

APPENDIX IV

In this appendix we catalog graphical expressions for
virtal coefliclents obtained from the Percus-Yevick,
Kirkwood, and convolution integral equations using (i)
the Ornstein-Zernicke relation, (ii) the virfal theorem,
and {(iii) thc potential of mean force at zcro scpara-
tion.™ Tables XVI-XVIIT give By- «» B caleulated from
(i) for all*® three integral equations and from (ii) for
the convolution cquation. We have used an expression
for By only in the case of the Percus-Yevick equation
as applied to the Ornstein-Zernicke relation; this ex-
pression for B;(PY, 0Z) is given by (IV.1). Finally,
in {IV.2) and (IV.3) we give B; and Bs as obtained
from the potential of mean force at zero separation
for each of the three integral equations:

B:(PY, 0Z)
= (—1/840V) f (120048408403 +16800

-840 -840 -840 (D -+-1680 -840 5 4-8408
4168055 -+16805S 41680 5541680 +-16808
4840316805 --1680S -840 +8400y ]

Xdrye-+dr;. (IV.1)

B[¥(0) (PY, K, C)]
- (—1/31/)[{(2, 1,2) A4(1, 0, 0) AJdrse - -drs.
(Iv.2)
BJ[¥(0) (PY, X, C)]
= (—1/8V)f[(6, 3,6) [1+12, 5, 12)N

+(6,0,0) [N (2, 0,00 [ Jdrre - -dr  (IV.3)

% 1In the case of the Percus—Yevick and Kirkwood integral
equations, the theorem of Rushbrooke and Scoins® is not useful.

4 We have not calculated By from the Kirkwood equation ac-
cording to the Ornstein-Zernicke relation.

hd The exact expressions in terms of gra pks are given in reference
5 for Bg=++ By, including the 448 seven-point sfars not appearing in
(IV.1) which contribute to the exact Br.
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