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Comparison of Some Exact and Approximate Results for Gases of Parallel Hard 

Lines, Squares, and Cubes* 


WU.LlAh[ G. HOOVgRt AND JACQUES C. POllUlmt 

DCj'arlmenl oj Chemistry, DII/,c University, DlIrham, North Carolina 

(Received 16 July 19(2) 

The ill'st SC\'C'lI virial co,~nicicnl~ lor hard paralJellincsy ~(ttHU·CS; 
alld cubes, as dert,'cd frolll approximalions of the ri Ill!: and water­
melon arc compared wit 11 (he (,"let cncl:icicnts. Thcse up­

r:i\'c 1i0 ll~('rlll infnrlllaiipn ;IS 10 the ;'i.l~n or map:ni­
w,:,,' nf till.' \'iri~d ,_'\,'t'fll\'i\'l\\Y; 

.\ ,,';nic~bn Ji:,~rihttli\ill fUI\dio~\ l.h'pcndinl~ Hjhlll ~Htly nlll' 

!-ip:t,'(.' ~'\.)~)\·dinat\' ;nist's Balurally {1B' lltl' :itl~\ ~qu:tn~, a.nd cuLc 
mll1.'cuk:;, The liL" ['HI!' ('!'ill>' "i I he ,"aeL nnllliJCl' density ex­
jl:1.IlSidll oi this iUIlCLillll arc presented ant! compared wilh results 
obtained by iteration froll! the Pcrcus-Ycvick, Kirkwood, and 
convolution integral equations. The Pcrcus-¥evick equation 

1. INTRODUCTION 

STATISTICAL mechanics provides us with exact 
expressions for the pressure and radial distribution 

function in terms of the pairwisc-additive intermo­
lecu~ar potential function ¢(r), the volume V, the 
number of molecules lV, and the temperature T.l Or­
dinarily, the integmls involved are impossible to evalu­
ate; however, one can make an exact expansion of the 
pres:mre P, or radial dis tribu tion function g(r), 
obtaining expressions useful for small values of the 
expansion parameter. A number density (p=NIV) ex­
pansion is often used and leads to the following exact 

•2expansions1 for the pressure and radial distribution 
function: 

(1) 

exp[¢(r)/kTJg(r) = I:g,,(r)p"=s(r). (2) 
n=O 

The E" and gn (r) are sums of integrals over the co­
ordinates of 1t molecules. The integrands, best expressed 
graphically, are complicated functions of the tempera­
ture Qnd intermolecular potential. In particular, from 

'" This work was supported by a grant from the Alfred P. Sloan 
Foundation. 

t Present address: Lawrence Radiation Laboratory, Livermore, 
California, 

Alfred p, Sloan Foundation Fellow. 
for example, J. de Boer, Repts. Pro gr. Phys. 12, 305 

(1949) . 
2 J. E. 1.Iayer and M. C. Mayer, Statisticcd Mechanics (John 

Wiley & Sons, Inc., New York, 1940), Chap. 13. 

yields a (iislrihlllion function which closely resembles the exact 
result at low dellsities. 

Vidal coci'licicills are oiJtaincd from the apilroximi1le distribu­
tion funclion:; hy means oj the OrnstcinZcrnickc rela(ioll all(1 
III(' ,iriill I ht·"n·'II, it:, well a:, il'l>ln ,\ !'i.I,,1 ill II 1,<'1 WITH t ]", 1>,,1 efl" 
Ital dr lIh'lIn fOl't'l' .It z\'!'o :;q);u'a.tldH ali,1 Ilil' vidal cuclf'ldcil!:-" 

Tilis b."1 cd:1I jOll (wbicll is valid J'Ol' I\anl spl":!'cs as well .. s lines, 
SiJlla!'cs, all,.! cubes) has an interest infi i,;mphical intcrprela.lion 
and leads to corrcct values for the third viria! cocnicient from the 
Kirkwood equation, but not from the Percus-¥evick or convolu­
tion equations. 

work due largely to Mayer, we know that3 

1-1$ Sen) j
1, --t- I: giS,(n)drl"' ·drn, (3)

n.V i~l 

1 S*(n+2) 

go=l, gn>o(r) =-; ~ jg;*S,*(n+2)dra" ""dr,,+2.4 

,n, ,~l 

(4) 

The S,(n) in (3) are all possible types of stars (for a 
list of all graphical terms used in this paper, together 
with their definitions, the reader is referred to Ap­
pendix I; we consistently italicize all graphical terms.) 
which can be constructed with n unlabeled points and 
up to (~)SEn(n-l)/2 tines. The S/(1~) in are 
all possible types of doubly rooted graphs, with n-2 
unlabeled points and root points labeled 1 and 2, which 
would become or remain stars if the line joining the 
root points were added to the doubly rooted graphs. 
S(n) and S*(n) are, respectively, the number of types 
of stars of n. unlabeled points and the numbcr of doubly 
rooted graphs of n- 2 unlabeled points and two specially 
designated root points. The gi and g;* are the number of 

3 See references 1 and 2 as well as 11. Born and K. Fuchs, Proc. 
Roy. Soc. (Lom]on) A166, 391 (1938); B. Kahn and G. E. 
Dillenbeck, Physic a 5,399 (1938). 

4 In general, we use r as the argument of an angle-dependent 
function, and,. as the argument of a function oi one space co­
ordinate only. We call g(r) the "radial distribution function" in 
this paper; for the potentials which \Ye use, g (r) depends upon 
both angle and distance. The function g(r) introduced in (2) 
for the potentials which we use, identical with g(r) for <;,>(r) 
(r large), but finite and nonzero, unli"e g (r), for ¢ (r) co (r 
smaH). 9 (r) may be thought of as a "radial distribution function" 
for two particles which interact normally with particles 3 •. .1'1, 
but not with each other [</>(r12) =0J. 

327 
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TABU, r. The number oi stars of J jUllctiolls and n unlaheled points. 

.,J o 2 

11=2 o 0 

tt=3 o 0 

11=4 0 

11=5 3 

11=6 6 5 

11=7 10 18 

ways a Si or S/ may be labeled. The lilies 
in the gr() pI! represent ),Iayer f functions, _. 

,'\' t T- 1 '" ., S' hIS' (~\exp [ -9\rj/~ J- ~~ ~lst 01 tne it rougl i\l)# 

and S;* through is ayaibble.5 

Recently many approximate theories have been 
de\'C~oped6-;') with the hope of values of P and 
g(r) at lower temperatures or higilCr densities than can 
conveniently be treated the exact expansions (1) 
and (2). For simple potentials one can generally express 
the results or the approximate theories as power series 
in p, and make a term-by-term comparison with (1) 
and . For realistic potenti2.ls it has proved difficult 
to generate more than two or three terms of (1) and 

. Therefore, the approxi:1:ate results can only be 
compared with experin'lent (in which case the cause of 
disagreement is difflcult to isolate) or with direct 
:Monte Carloll or molecular dynamicsl2 studies. The 
hard cube potential,13 which sacrifices considerable 
realism in order to simplify calculations, allows com­
parisons to be maGe at relatively high densities because 
the B" for n < 8 and the g,,(r) for 1$<4 are known 
exactly.lHo It is the purpose of this paper to use the 
Hoover-De Rocco results (and those of Geilikman and 
Zwanzig) in a comparison of some exact and approxi­

5 W. G. Hoover and A. G. De Rocco, J. Chern. Phys. 36, 3141 
(1962) . 

6 R, Abe, J. Phys. Soc. Japan 14. 10 (1959). 
7 J. K. Percus and G. J. 'levick, Phys. Rev. 110,1 (1958). 
B J. G. Kirkwood, J. Chern. PhO's, 3, 300 (1935). 
9 E. 1Ieeron and E, R. Rodemich, Phys. Fluids 1, 246 (1958); 

E. ~Ieeron, J. Math, 1, 192 (1960); Physica 26, 445 
(1960); Theoret, (Kyo~o) 24, 588 (1960); T. 
Morita and Hiroike, Progr. Theoret. Phys. (Kyoto) 23, 1003 
(1960); J. ?-1. J. Yan Leeu\,.-en, GroenvelC., and J. de Boer, 
Physica 25, 792 (1959); L. Yerlet, cimento 18, 77 (1960). 

10 ?--1. Born and H. S. Green, Proc. Roy. Soc. (Lor,don) A188, 
10 (1946); J. Yvon, Acluaiites scicntifiques et industrielles 
mann & Cie'l Paris, 1935), Vol. 203. 

II N. 11etropolis, A. \V, Rosenbluth, M. N. Rosenbluth, A. H. 
Teller, and E. Teller, J. Chcm. Phys. 21,1087 (1953). 

lZ B. J. Alder and T. E. Wainwright, J. Chern. Phys. 31, 459 
(1959) . 

13 The hare cuhe mo(:el \Vas introduced oy B. T. Geilikrnan, 
l'roc. Aca(l. Sci. U.S,S, R. 70, 25 (1950). Geilikrnan calculated 
B2 and B3 ior this modeL 

14 B, and B, ior hard cubes were calculated by R. W. Zwanzig,
J. Chern. 1'). 24, 855 (1956). 

15 Bn O. CLem. PhY5. 34, 1059 (1961) ] and" B 7, as well as 
g) (r) ••• gs (r), were calculated for hard cubes by W. G. Hoover 
and A. G. De Rocco. 
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2 

13 
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3 

12 

0 

0 

0 

19 

0 

0 

0 

0 

54 94 142 149 
11 ' 

mate results for this potentiaL We wish to stress that 
jzt1lctithroughout this paper the terms lines (not italicized), 
apprcsquares, and cubes refer to molecules with (i) molecular 
water:volumes of IT, 1T2, and respectively (we often set 
can Sl 

IT==- 1 for convenience in writing results); a po­
water:tc.lltial energy which is infinite on overlap, and zero 
energotherwise; and an orientation parallel to a fixed 
the 51Cartesian coordinate system. 
in thiIn Sec. 2 we compare the virial coefficients ca~culated 
all ITby means of Abe's junction expansion method6 with the 
star iexact Bn. In Sec. 3 we compare the gn (r) functions from 
lines,the Percus-Yevick,7 Kirkwood,s and convolutionS 
tediointegral equations with the exact g,,( r). In Sec. 4 we 
for 1use these functions in a calculation and comparison of 
procEvirial coefficients derived with the help of (i) the 

FoOrnstein-Zernicke relation,!6 Oi) the virial theorem,l7 
(l/Vand (iii) our new relation18 between the potential of 
on c<mean force at zero separation and the virial coefflcient5. 
by nIn Sec. 5 we discuss the conclusions and speculations 
starsto which our results lead. 
IBM 

2. APPROXIMATIONS BASED ON GRAPH TYPE dime 
dimeA group of approximate theories for the pressure is 
g; a1characterized by the inclusion of only certain types of 


stars [from the total of S(n) types] followed by a L(: 

triblsummation over n. For example, as shown by Montroll 
fromand Mayer,19 the contribution of all ring graphs ( -, 

, 0, ... ) to the pressure can be calculated BU 
precwith the help of Fourier transforms. More recently 

Abe" has pointed out that the nth virial coefficient En 
may be written as a sum of contributions B(j, n) from 
the stars of 0, 2, 3, .. 'j, .. 'njunctions: 

B,,= LBU, n) ; (5) 
i=O 

1 is omitted because a star cannot have exactly one 
)6 See reference 1, p. 365. 
17 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Afolecular 

Theory of Gases and Liquids (John Wiley & Sons, Inc., New 
York, 1954), p. 134. 

;8 W. G. Hoover and J. C. Poirier, J. Chern. Phys. 37, lo,n 
(1962) . 

)5 E. W. MontroU and J. E. Mayer, J. Chern. Phys. 9, 626 
2Il](1941). 

dime 

..-------------------_......--_..... 
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'fAilLE E. 13,,(J) ior hard :incs. The molecular side length is unit volume. 

J 0 2 3 4 5 6 7 
'-'~~----~'~-'----"----, 

11=2 1.000 1.000 

1/.=3 1.000 1.000 1.000 

n=4 -2.000 1.500 1.500 

11=5 3.833 -12.667 1.833 

n=6 -7.333 48.500 -38.667 

11=7 14.017 -1-±9.825 208.933 

JUNction. The first term 111 (5) corresponds to the rillg 
approximation; the first two tcrms corrcspond to the 
,~'aicrll1clol1 approximation. Abc has shown how one 
can sum (over 11) the addi~ional contribution from the 
":aicrmclon graphs (j 2) to the Helmholtz free 
energy, and hence to the pressure. The convergence of 
the sum in (5) is of interest. At best, only a few terms 
in this sum give a good approximation to B,,; at worst, 
all must be used. Because the values of all of the 
star integra:s of less than eight poillts are known5 for 
lines, squares, and cubes, it is straightforward, although 
tedious, to check on the convergence of the sum in (5) 
for n <8 using these simple models. The following 
procedure was used. 

For a particular H, values of the one-dimensional 
(l/V)J Si(n)drl" -drn from reference 5 were punched 
on cards together with the IJi for each star and ordered 
)y number of JUlictioils. Table I the number of 
stars \yith 11 points and j jUllctioJls for n<8. The Duke 
IB:\I 7070 computer tl1en squared and cubed the one­
Gimensionai values, thus getting-,,;4,20 the two and three­
dimensional (l/V)J5';(n)drl" -drn ; mUltiplied by the 
~i and punched out the contribution of each slar to 
L(1/V)JSi(n)drl" -drn • While adding these con­
tributions the computer printed cumulative totals, 
from which, on multiplication by (1-1I)/n!, the 
BU, n) were selected. It was necessary to use multiple­
precision integer arithmetic to avoid round-off error. 

1.000 

2.333 1.000 

0.292 3.958 1.000 

-85.733 -8.950 7.233 1.000 

As an illustration we give B(O, 5)+B(2, 5)+B(3, 5) 
for squares [corresponding to the iirst three terms in 
(5) for n=5] in (6): 

3 

B5(3) == L2B(j, 5) 
i=O 

1-5/
_I V [120 +60 e+10(); + 10@} +60 ®ldxl" ·dy&. 
::'. 

(6) 

Bn(J) is the value of Bn obtained using all stars of n 
points and 0, 2, ••• J junctions. Substituting values for 
the star integrals in (6), and choosing (T2 as unit volume, 
we find, 

= 101760/ (30X576) 53/9. (7) 

In Tables II-IV we present Bn(J) for lines, squares, 
and cubes. The results are enlightening. They show no 
convenient way of determining either the sign or 
magnitude of a particular B n , even if all of the con­
tributions from stars of n-1 or fewer junctions are 
known. Leaving out the stars of any particular number 
of junctions in (5) gives a very poor approximation to 

T AllLE III. Bn (.1) for hard squares. The molecular area ".2 is unit volume. 

J 0 2 3 4 5 6 1 

n=2 

n=3 

n=4 

n=5 

r;=6 

n=7 

2.000 

3.000 

10.667 

36.736 

-129.067 

458.423 

2.000 

3.000 

5.667 

-99.236 

699.165 

-3983.439 

3.000 

5.667 

5.889 

-435.529 

4504.145 

3.667 

12.472 

-40.492 

-1131.915 

3.722 

35.886 

-412.976 

3.025 

117.715 1.651 

20 In the machine computations and (7) [but not in (6) J the aJgebraic sign of each star integral, which is independent of the 
dimensionality of the models considered here, is, as in reference 5, conveniently attached to Ui rather than to the integral. 
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TABLE IV. B. (J) for hard cuhes. The molecular volume era is unit volume. leC\. 
=======================­

J a 2 3 

11=2 4.000 'LOOO 

11=3 9.000 9.000 9.000 

n=·t -56.881) 19.333 1<).333 

11=5 352.05·t - /()1.3.iO -5.tH 

11=6 -2271.573 9976.154 -4739A42 

u=/ 14992.975 -104731. 870 94299.674 
.. ... 

the "iria! coetllclent in question. It is difficult to see how 
the u~e of rc more realistic potential function would 
alter this conciusio"l. 

Propert;es or s:ar other than the number of 
jUilctiollS, can be used to order the contributions of the 
graphs to the pressurt::. Xumber of lines, for example, 
could be used. \Ye mention this possibility because, for 
hard lines, squares, and cubes, we can calculate the 
contributions of all complete and nearly complete graphs 
to the pressure. (Complete graphs are stars of n points 
with the maximum number (~) of lilies; -, 6, ki5], 
@, •.• ; by lIearly complete graphs we mean the stars 
of n poillts with GD -llines; fSJ, " .•.) In general 
(see Appendix II) the value of an n-point complele 
grajJh integral is ( - ) ;,,/2] n", [(1/V)f~dxl" ·dX4= 4, for 
example], where d is the dimensionality of the mole­
cules (1 for lines, 2 for sc;uares, and 3 for cubes), [ ] 
indicates the greatest integer function,21 and 0"= 1. 
One can therefore sum the contribution of all such 
graphs to the pressure. In one dimension we get 

(P/kT) line. = p+~2p2+t3p3_t4p4 

(sinp+cosp). (8) 

For simplicity we have set the side length of the 
molecules equal to unit distance. In two and three 
dimensions the results analogous to (8) are 

. (P/kT).Quare.=p+2 p2 (sinp+cosp)+p3 (cosp-sinp), 

(9) 

(P/kT)cube.=p+4p2 (sinp+cosp)+Sp3 (cosp-sinp) 

_p4 (sinp+cosp). (10) 

Equations (8)-(10) are readily checked by expanding 
sinp and cosp in Maclaurin's series. The complete graph 
equations of state are plotted in Fig. 1. We see that the 
contribution of complete graphs to the pressure is 
monotone increasing with density in one and two 

21 In the remainder of this section, and throughout Appendix 
II, [nI2] is used to indicate nl2 for n even, and (n-l)/2 for 
n odd. 

4 5 6 7 

1L")33 

S9.~68 3.1GO 

857.766 330.338 -18.880 

-10432.294 -10935.611 1914.669 -43.505 

dimensions, and has a maximum in the hard cubes case 
for a volume about 4/3 the closest-packed volume. 

In Appendix II we show that the value of a slar 
integral of (~) -1 lines is (-) 1+. [,,/2J (n+ (2/[n-l]) )d. ' 
Noting that such a slar may be labeled in (~) ways one 
can calculate the additional contribution of all such 
stars to the pressure for lines, squares, and cubes. 
Adding these contributions to (8)-(10) we find 

(P/kT) linc.=p+2p2+4p3+ (~p4+2p3_ p2) sinp 

+(~p4_2pLpZ) cosp, (11) 

(P/kT) squares 

= -p+8p2+16p3+( -!p5+4p4+8p3_4p2_2p) sinp 

(P/kT) cube. 

= -5p+ tCi(p) -Si(p) -'Y-lnp} (4p) +32p2+64p3 

+ ( - ~pL 6~p5+25p4+33pL 18p2- 6p) sinp 

+ (-!p6+6~p5+25pL33p3-18p2+6p) cosp. (13) 

In (13) Ci and Si are the cosine and sine integrals and 
'Y is the Euler-Mascheroni constant. The equations of 
state given by (11)-(13) are plotted in Fig. 2. The 
pressure in the dense gas region is increased by orders 
of magnitude over. the complete graph contribution. 
It is therefore unlikely that the (tedious) extension of 
this method to graphs of n- 2, n- 3, .•• lilies would 
yield an equation of state more reliable than the 
available seven-term virial e;...-pansion. We have gone 
no further in this direction. 

3. RADIAL DISTRIBUTION FUNCTION 	FROM THREE 

APPROXIMATE INTEGRAL EQUATIONS 


Percus and Yevick,7 using collective coordinates, 

have derived an approximate integral equation for the 

radial distribution function in terms of the intermo-
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leeular potcntial. has applied the Percus­
Ycvick equation to the Lennard-Jones potential, 
obtaining reasonable agrecment-with the earlier Monte 
Carl023 calculations. The Kirkwood8 and convolution9 

integral equations arc based respectively on the super­
position approximation for the triplet distribution 
iunctioll, anei the neglect of all graphs 
in an exact integral equation ior the pair distribULion 
function. The results of the Kirk\yood equation calcu­
lations for hard s;Jhercs~~ and modified Lennard-Jones 
1ll0lecules25 indicate tlla t considerable discrepancies 
betlvecn experimen~al C:\lonte CarloJ~6 molecular dy­
namics,27 and and calculated radial distribu­
tion functions exist in the dense gas region. The Kirk­
wood equation docs predict the observed26 ,27 hard­
sphere phase transition. Some numerical results for 
the convolution equation as applied to hard sphere and 

5 

EQUATION OF STATE 


(rom Complete Graphs 
 J 
CUBES­ I 

2 

-SQUARES 1 
! 
I 
I 

a ,2 ,4 ,6 ,8 1,0 

FIG. L Equation of stale for hard lines, squares, and cubes, 
using complete graphs only_ p is the ratio of the closest-packed 
volume to the total volume. 

22 A. A. Broyles, J. Chern. Phys. 34, 1068 (1961); 35, 493 
(1961). Broyles has also made similar calculations using the 
Born-Green-Yvon integral equation; J. Chern. Phys. 33, 456 
(1960); 34, 359 (1961). 

z, W. W. Wood and r. R. Parker, J. Chern. Phys. 27, 720 
(1957) . 
"J. G, Kirkwood and E. ':-1. Boggs, J. Chem. Phys. 10, 394 

(1942) , 
J, G. Kirkwood, V. A. Lewinson, and B. J. Alder, J. Chern. 

Phys. 20, 929 (1952). 
"W. W. Wood, F, J<'. Parker, and J. D. Jacobson, Nuovo 

cimento, Suppl. VoL 9, 133 (1958). 
27 B. J. Alder and T, E. Wainwright, Proceedings of tlte Interna­

tional Symposium on Transport Processes in Statistical Mechanics, 
Brussds, 1956, edited by I. Prigogine (Interscience Publishers, 
Inc., New York, 1958), p. 97. 

2S A. Eisenstein and N. S. Gingrich, Phys. Rev. 62, 261 (1942); 
~X. S. Gingrich and C. W. Tompson, J. Chem. Phys. 36, 2398 

)962) . 

IOO:~r-~---r----;--'--~l~-/--r-'1 
i 

Jh I I 

~ : EQUATION OF STATE 

75 ' 


from Complele and 

Nearly Complete Graphs 

50 

-CUBES 

25 

o 

o 	 .2 .4 .6 .8 LO 
p-

FIG. 2, Equation of state for hard lines, squares, and cubes, 
using both complete and nearly complete graphs. p is the ratio of 
the closest-packed volume to the total volume. 

Lennard-Jones molecules have been presented by 
Klein. 29 

In this section we calculate the nrst four terms of the 
number density expansion of the radial distribution 
function for the three integral equations mentioned 
above; comparisons of this kind have been made for 
hard sphere30 and "Gaussian"sl molecules. The integral 
equations with which we deal are 

exp[rJ>(r)/kT]g(r) = 1+pf hs exp(rJ>2s/kT)g23 

X[j13 exp(¢13/kT) gla+exp(rJ>13/kT) gl:;-1]dr3, (PY) 

In [exp[f.-¢(r)/kT]g(r, A) I 

=p['df.-f [-gls(A)¢ls/kT](g2s-1)dra, (K) 
o 

In {exp[¢( r) /kT]g( r) I 

= pf [gls-1-1ngis- (rJ>lslkT) ](g2s-1)drs. (C) 

29 M. Klein, dissertation, University of ':-Iaryland, 1962; this 
is an excellent description of the calcuiation and interpretation of 
radial distribution functions from the convolution integral equa­
tion; some of the numerical results referred to above were pre­
sented by Klein at the March meeting of the American Physical 
Society, Baltimore, 1962. 

30 B, R A, Nijboer and L. Van Hove, Phys. Rev. 85, 777 
(1952); G, Stell, J. Chern. Phys. 36, 1817 (1962) and references 
given in the latter paper. 

31 See G. E. 1;hlenbeck and G. W. Ford, Studies in Statistical 
Mechanics, edited by J. de Boer and G. E. Ghlenbeck (1nter­
science Publishers, Inc" New York, 1962), VoL I, p. 194; E. 
Helfand presented preliminary results of a calculation of gl (r) ••• 
g.(r) for "Gaussian" moleCUles at the March m.eeting of the 
American Physical Society, Baltimore, 1962. 

http:Klein.29
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Each of these equal ions may be solved [as a series 
expansion of exp[¢(r) TJg(r) =S(r) in the number 
density] by the standard Liouville-Neumann mcthod32 ; 

equivalently one can ·substitute a power series for 
S(r) or for 'Iter) ==-kT lng(r) into the equations, 
equate like powers of p, and thus obtain so~utions. 
Using 

g(r) exp! -¢(r) /kTl 

X (exp[a(r)p+.B(r)p2+y(r) p3+ • •• Jl 
=exp[ -'It(r)/kT}, (14) 

[where a(r), ,S(r), and "'f(r) depend in the Kirkwood 
case upon A as well as r] we introduce! functions 
and expand the exponential in brackets in (14) to get 

explicit expressions for aCr), .B(r), and "'f(r) in terms 
of doubly footed gmph integrals. We had intended to 
treat the Born-Green-Yvon equation lO in this way too, 
but found that for squares and cubes there are no 
solutions of the form (14) which are symmetric in 
x, y, and z. 

As an illustration of the Liouville-Neumann method 
we apply (14) to the Kirkwood integral equation 
[replacing ¢(r) by A¢(r) in (14)]. The Percus-Yevick 
and convolution equations are solved in the same way, 
but without the complication of the coupling param­
eter A. We substitute (14) into (K), expand the ex­
ponential, and equate coefficients of like powers of p 

to obtain the following equations for a(r, A), {3(r, A), 
and "'f(r, A) : 

a( r, A) = ['<fAJ(-¢13/kT) exp (-X¢18/kT)!33d r3, (15) 
o 

(16) 

"'f(r, X) ~).dAJ(-</>ls/kT) exp( -X¢13/kT) [!al.2(X)h.+{313 (X)h.+als(A)!23D:23 

+a13 (A) a23+if23D:332+!a232+haf333+.B33]dr3' (17) 

We can integrate over A in (15) to get an explicit equation for a(r, X): 

(18) 

l\faking use of (18) and the definition exp( -X¢14/kT) =!t4(A) +1, [indicatingf(X) by a cross-hatched line in (18) 
and (20)] we integrate over X in (16) and find that {3(r, X) is given by 

In general, one cannot redu<;e the integrand in (19) to a set of the usual doubly rooted graphs (with lines indi­
cating! functions only). For hard lines, squares, and cubes (as well as spheres) however, we see that the fraction 
¢13!(¢13+¢14) may take on the values 0, !, or 1 only, and we may indicate the value of this fraction by adding 
appropriate! functions to the integrand of (19). For example, the term 

may be replaced by 

. az H. Margenau and G. M. Murphy, The Mathematics of Physics and Chemistry (D. Van Nostrand Company, Inc., Princeton, New 
Jersey, 1943), p, 504. 
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so that we have f!i3CA)hdo.[dr3dr.l {f molecules 1 and 4 do not overlap, and Hh3(A)/23!34dr3dr4 if they do. Pro­
ceeding in this way we get the following expression ior per, A): 

p(r, A) 1j [171+ (20) 

where we arc using the position cOllnmtion r ~. In the same straightforward way one can use (18) and (20) to 
convert (17) into an explicit equation for 'Y( r, A) in terms of doubly rooted graphs. The fraction ¢13/ (¢13+¢14+¢15) 

j, treated by (l. simple c:xt,;;lSl0n or our ::lrguments regarding the simpler case ¢13/ (¢13+¢14). Passing to the limit, 
A--l-l, we obtain a( r), /3( r), a"d I( r) for the fully coupled system of interest 

a(r)= j 1\ drs, (21) 

(22) 

(23) 

We can then find S(r) through terms in p3 for the Kirkwood equation by introducing (21)-(23) into (14) and 
expanding the exponential. The Percus-Yevick and convolution equations require considerably less manipula­
tion. In (24) we give tne results.33 The four numbers preceding each type of doubly rooted graph in (24) indicate 
the number .of times chat this graph type occurs in the Percus-Yevick, Kirkwood, convolution, and exact ex­
pressions, respecth'ely. The exact result is included for comparison. 

g(r) (PY, K, C, 

l+p J(1,1,1,1) I\dr3+tp2j[(0, 1, 1, 1) M+(2, 2, 2, 2) (4,3,4,4) R+(O, 0, 0,1) rxl]dr3dr4 

+!paj[(o, 1,1,1) (0,6,6,6) t'l (0,9, 12, 12)~+(0, 0, 0, 3)~+(6, 6, 6, 6)0+(12, 9,12, 12)Q 

+ (6,4, 6, 6) fZ + (12, 8, 12, 12) (\1+ (0, 3, 6, 6) + (0,0,0,3) W+ (12,9, 12, 12) '0i + (12, 4, 12, 12) ~ 

+ (0,0, 0, 12) r:;, (0, 4, 6, 6) + (6, 3, 6,6) 0l+ (0,0,0, 6) ~+ (0,0, 0, 12) 0i +(0,0,0, 6) * 
+(0,0,0,3) (0,0,0, 6) ~+(O, 0, 0, 6) ~ + (0,0,0, 3) ~ +(0,0,0, 6) ~+(O, 0, 0, 1) ~]dradr4dr•. 

(24) 

We note that in (24:) s(r) (PY) contains no composite (24) contributes a term of the form 

graphs, and that none of the three integral equations 


p.(i x l)p,(1 y I) z I),
produces elementary graphs. These facts have been 
shown in general for the l)ercus-Yevick1 and COll­ where Pi is a polynomial obtained by integrating over 
volution9 equations. We stress again that S(r) (K) is the ith doubly rooted one-dimensional graph." In order 
obtained in this relatively simple form because ¢( r) to make a visual comparison of different distribution 
ta.kes on the values of zero and infinity only. functions it is convenient to have "radial" distribution 

As'has previously been pointed out, s(r) is a sym­ functions of one space coordinate only. The natural 
metric function of x, y, and z for cubes; each graph in distribution function to is Cartesian, obtained 

by averaging the two-dimensional sex, y) around the 

•• Most of these results are not new, In particular Percus and perimeter of a square of side length 2r and the three­
Ycvick7 show which {;ra/J/is contribute to g(y) (PY). StclpO has dimensional g(x, y, z) over the surface of a cube of side 

~,,"CCCJillY madc a calculation (indepcndcnUy) of gl (r) and g~(r) 
·om the Kirkwood equation. Those grafJlts contributing to the length 2r. We denote the result of this averaging 

convolution equation g(r) are obvious from the structure of the procedure by g(r) =Lgn(r)pn. To illustrate the 
equation's derivation [G. S. Rushbrooke and P. Hutchinson, 
l'hysica 27. 647 (1961) j. averaging process we consider the three-dimensional 

1
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TABLE V. g(r) for hard lines of unit length. E, PY, K, and C indicate exact, l'crcus-Ycvick, Kirkwood, and convolution results, 
respectively . 

. E (0<r<1):1+p(2-r)+(p'/4) ( 14~12r+2r2)+(r'I/3G)( 204-234r+ 72r'- or') 

E (1<r<2):1+r(2-r)+(p'/4) ( 14-12r+2r')+(p'/30) ( 204-234r+ 72r'- or') 

E (2<r<3):1 + (p'/4) (-18+12r-2r') +(p'/30) (-588+522r-144r'+12r3) 

E (3<r<4):1 + (p'/3G) ( 384-288r+ 72r2 - or3) 

PY(0<r<1):1+p(2-r)+(p'/4) ( 12- 8r ) + (p'/30) ( 144-108r 

PY(1<r<2):1+p(2-r)+(p'/4) ( 14-12r+2r2) + (p'/36) ( 204-234r+ 72,'- 01'3) 

PY (2 <,<3):1 + (p'/l) (-18+12,-2,') + (p3/36) (-588+522r-144r'+ 12(3) 

PY(3<,<4):1 + (p3/36) ( 384-288r+ 72r'- or3) 

K (0<,< 1):1+p(2-r) +(p'/4) ( 14-14r+3,,') + (p3/30) ( 200-285r+132r2-25r') 

K (1 <r <2):1 +p(2 -r) +(p'/4) ( 14-141+3(2) +(p3/30) ( 224-327r+ 144r2-19r3) 

K (2<r<3):1 + (p'/4) (-18+12r-2,2)+(p'/36) (-426+414,-120r'+12r') 

K (3<r <.Jc):1 + (p3/30) ( 384-288r+ 72r2- 6r3) 

C (O<r <1):1+p(2-r) + (pZ/4) ( 20-10r+2,') + (p'/36) ( 408-468'+ 144r'-18r') 
( 

,j 

C (1 <r <2) :1+p(2-r) + (p2/4) ( 22-20r+4r2) +(p'/30) ( 492-648r+252r2-30(3) 

C (2 <1<3):1 + (r'/4) (-18+ 12,-2r') + (p'/30) (-912+846r-252,2+24,3) 

C (3<r<4):1 + (p'/36) ( 384-288,+ 72,2- 6r3 ) 

integral ,(Jer) =f/\dra. The value of this integral is 
(2-;;;;) (2-1 y 1)(2- 1z i) for -2<x, y, z<2, and 
zero otherwise. By symmetry we see that the average 
value of ~ y, z) on the surface of a 'cube of side 
lenglh 2r is identical with the average over the region 
(O<x, ;:<r, zs=r). The area of this region is r7, and 
accordingly ,g (r) is given by 

'"i_r]r]r
,ge,) =~ (2-x) (2-y)dxdy (0<r<2), 

roo 

8(r) =0 (2<r). (25) 

Because the va~ues of the integrals in (24) have been 
tabulated5 as functions of ;i~, and are therefore known 
as functions of x, y in the two-dimensional case, and 
x, y, z in the three-dimensional case, we can average 
these integrals as in (25). Then, in one, two, and three 
dimensions, the quantities34 gl (r), g2(r), and ga(r) can be 
calculated for each of the approximate integral equa­
tior.s, as well as for the exact casco The analytical ex­
pressions for all of these functions are given in Tables 
\1-VII; -1>(r) /kT]g"(r) and expC-1>(r) /kTJg3(r) 
are plotted in 3-8. We see that the Percus­
Yevick equation is (to the order of the terms re­
tained) exact in one dimension and gives the most 
faithful rendering of the two and three-dimensional 
exp[-¢(r)/kT]gnCr) as well. As the density of a 
gas increases from zero, the p2 and higher order tenns 

Wfne g. (r) are defined by (2) and (4). 

become increasingly more important in their con­
tribution to the Cartesian distribution function 8(r). 
Accordingly, for these molecules at least, in the density 
region where the terms we have calculated provide an 
adequate description of 9(r), the Percus-Yevick dis­
tribution function is the most reliable of the three 
approximations. One also sees that the Kirkwood results 
are more smooth and the convolution results less 
smooth· than the exact curves. The discrepancies be­
tween the exact and approximate curves increase with 
the dimensionality of the molecules. Although the 
Percus-Yevick curves are more "accurate" than those 
derived from the Kirkwood or convolution equations, 
the question of the relative reliability of thermody­
namic information derived from these approximate 
distribution functions is more difficult; we discuss it in 
the following sections. 

4. VIRlAL COEFFICIENTS FROM THE PERCUS-YEVICK, 
KIRKWOOD, AND CONVOLUTION EQUATIONS 

The pressure of a gas can be dctennined from g(r) 
or 8(r) by means of (i) the Ornstein-Zernicke rela­
tion,16 

kT(ap/ap)N,T= l+pJ[g(r) -l]dr, (26) 

or (ii) the vinal theorem,l1 which latter leads to 

P p2 J -=p--- g(r):roV¢(r)]dr. (27)
kT 2dkT ~ 
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T,\DLE VI. girl for hard squares of unit area. E, PY, K, and C indicate exact, Percus-Yevick, Kirkwood, and convolution results, 
_ respectively. 

£(O<r< 1):1 + (p/2) (8-6,+,1) + (p'/2!t) (300-396,+160,-2-20r") 

+ (p"/864) (28 992-52 704,+32 760,'-7920,3+324r4+168,'-12r'l) 

£(1 <r<2) :1+ (p/2) (8-6,+r2) + (p'/24) (6,-1+278-376,+164r2-30,3+2(4) 

+ (p3/864) (1476,-1+23 082-46152,+32 502,'-11100r"+1962,l-168,'+6r'l) 

E(2<,<3) :1+ (p'/24) (541--1-522+492,-180,'+30r'-2,<) 

+ (p3/864) (13 980,-1-124 482+155232,-83 118r'+23 820r-3870,<+336,s-12r'l) 

r-", 

Differentiating exp[ -¢(r)/kTJ gives v¢(r) -kT 
exp[¢(r)/kT]os) where 0, is a delta function which is 
nonzero only on the surface of a d-dimensional cube 
of twice the molecular side length, in complete analogy 
with the usual treatment for spheres.as Using this tech­
nique (27) assumes the particularly simple form 

P/kT=p+p2B£J(1) p+p2B2g(1) , (28) 

~j 3'T. L. Hill, Statisticid Mechanics (McGraw-Hill Book Com­
pany, Inc., New York, 1956), p. 214. 

pY(O<r< 1):1 + (p/2) (8-6r+r') + (p'/24) (216-216r+24r'+20,3-4,<) 

+ (p3/864) (13056-14688,+86412+2760,3-684,<+12r'l) 

PY(1 <r<2):1 -i- (p/2) (8-6,-i-,2) + (p'/24) (-lOr-1+294-380r+164r2-30,3+2r1) 

+ (p3/864) (-2916,-1+33054-56 952r+4O 062r'-14 580r3+2970,<-336,"+18r'l) 

PY (2<,<3) :1+ (p'/24) (54,-1-522+492,-180,2+30,3-2,4) 

+ (p3/8M) (19 1641-L 129666+156960,-83310,'+23820,3-3870'<+336,"-12(6) 

PY(3<,<4):1+ (p3/8M) (-24576,-1+ 116736-115200,+52 608r'-13 440,3+2016,'-168,6+6,0) 

K(O<r< 1) :1+ (p/2l (8-6,+,') + (p'/24) (300-450,+202,'-25,3_ r') 

+ (ps/864) (28 160-61 704,+48 938r'-16 04O,3+897,<+602r'-73r'l) 

K(1 <r<2):1 + (pI2) (8-&+,2) +(p'/24) (6,-1+282-450r-!-238,2-55r3+5r') 

+ (1"/864) (-64O,-J+34 646-80 640r-!-75 242r'-36 290,3+9801,<-1428r"+89,o) 

K(2<r<3):1 + (p'/24) (54r- I -522+492,-180r'+30r3-2r1) 

-!- (p3/864) (10 092,-L88 032+120 564r-71 256r'+22 74Or3 -4176,<+420r6-18r'l) 

K(3<,<4):1 + (ps/8M) (-24576,-1+116736-115200,+52 608r'-13 44O,3+2016,<-168r"+&6) 

C(O<r< 1):1+(p/2) (8-&+,') + (p'/24) (408-504r+ 184,2-20(3) 

+ (p3/8M) (53376-95904,+57 792r'-12 600r-756r4+672rs-36,o) 

C(l <r<2):1 +(p/2) (8-6r+1'2) +(p'/24) (-lOr-1+486-668r+324r2 -70r3+6r1) 

+(p3/864) (-3141r-1+79 284-159 480,+129 62412-55680,3+13 680rl-1848,5-!-108,o) 

C(2<r<3) :1+ (p'/24) (54,-L522+492,-180,2+30,L2,<) 

+ (p3/864) (30 180r-I -210 666+265 608,-149 81412+46 500,L8406r'+84Ors-36r6) 

C(3<r<4):1 + (ps/8M) (-24 576r-1+ 116736-115200,+52608,2-13 440r3+2016r4-168r'+6r'l) 

for hard lines, squares, and cubes (0"= 1). We may 
therefore obtain the virial expansion of the pressu;e 
from either (26) or (28), using [in (26)J 2dr, 8rdr, 
and 24r2dr for the one-, two-, and three-dimensional 
dr's, and g(r) for g(r). As an example let us calculate 
B4 for squares according to the Kirkwood equation. 

Inverting the Ornstein-Zernicke relation (26) gives 

(l/kT) (ap/ap)N,T= [1 +pF(p) J-1 
I-pF+p2F2- p3F3+ ... , (29) 

http:spheres.as
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TABLE ,on. $;(1) for hard cubes of unit volumc, E, PY, K, and C indicate exact, Percus-Ycvick, Kirkwood, and convolution results 
respectivcly, ' 

336 

E(O<r< 1):1., (32-32r+ lOr2-r3) (p2/144) (6552-11 808r+7680rL2520r3+644r4-160r~+20r6) 
+ (p'/20 736) (.± 322 3040-11 003 90-!,+1O 748160,2-5520 096r3+1918 560,4-590 784r' 
+ 183528';-50 3-±Or7+ 10 032r8- 1080(9) 

EO <r<2):1+ (p/-!) (32-32r+ 10r2-(3) (-66r2 +656r-1+4688-9808r+6980r2 -2472r3+476r4-48r'+2r6) 
+ (p'/30 736) (-125 9-±Orz+1325502,-1-53400-4531 590r+5 628 840r2-2 663 748r'+296 352r4+237 780r' 
-120 780';+26 130,7- 2904r8'1"-138(9) 

E(2<r<3):1 -;- (p~/lrl) 162r-2+302-±r-L 16 056+18 576r-9900r'+2928r'-504r'+48r'-2r6) 
+ (p'/20 (36) (~O 020r-L )-4 098 426r-I -26 285736+41189 706r-31 510 44Dr2+14 421492r"-4 304160r4+866 148r' 
-117 32-tr'+ 10 290,' -528r6+ 12(9) 

E{3<r<{' :1+ (p'/20 736) (1572 86-!r'-2-13 762 560r-1+39 616 512-44 457 984r+27 279 360r2-1O 579 968r+2 774016r' 
-50-! 576r'+63 360r6-5280r7+2&1r8-6r') 

PY (0 <r< 1):1+ (Pl'.) (32 -32r+ 10r2-r3) +(p2/144) (3888-5184r+l080r2+792r"-252r4-32r·+ 12r') 
+ (pa/20 736) (1 069 056-1 603 584r+103 6801'1+636 768r3-161 280r'-68 352r' 

+27 432r'+ 180,.L 1056r8+ 108rO) 


PY (1 < r<2) :1+ (p/4) (32 -32r+1OI 2-,3) +(p2/144) (-34"""-144r-I+5848-10 448r+7140r-2488r+476r'-48r5+2(6) 

+ (ps/20 736) (42 228r-"-1 000 182,-1+6415728-13 5230341'+ 135690001'1-7525 7Mr'+2 424 912r4-429 2281" 
+ 25 452r6 +4830,L 1056,s+66r~) 

PY (2 <r <3):1 + (1'2/144) (-162,-"+3024,-1- 16056+ 18 576r-9900r2+2928r'-504r4+48r6-21') 
+ (p'/20 736) (-395436'-'+6773 370r-I-29 790 120+43 320 906r-32 236200,2+14566644,3-4320 288r4+866 916,' 
-117 324,"-HO 290r7-528,.a+12r~) 

PY(3 <r<4):1 + (p'/20 736) (1 572 864,--"-13 762 560,-1+39616512-44 4579841+27279 360r2-1O 579 968,3+2 774 016r4 
-504576,·+63360r"-5280r7+264,3_6,·) 

K (O<r< J):J ,- (1'/4) (32--32r+ lOr2-r3) + (,,2/144) (6552-13 104r+90.,O,2-2862r3+623,4- 152r'+21,6) 
-;- (p'/20 736) (4 192 256-12 476928,+143970401'1-8292 948r'+2 680 664,'-613 144," 
+ 186 252r'-63 145,7+12 958r"-1213,') 

K(1 <r<2):1 + (p/4) (32-32,+10r-,') + (p2/144) (-66r---2+&18,-1+4980-12 -108r+ 10 560,2-4590r+1127r4-152,'+9r6) 
+ (po/20 (36)( -28468,---2+140 158,-1+4861544-16959 238r+23 753 600,2-181324321"+8552 712r4-Z 644 136r' 
+5459941'-73665r7 +59401'8-217r9) 

K(2<r<3):1 + (p2/144) (-162r-"+3024r-1- 16056+18 576r-9900,2+2928r'-504r'+48r'-2r6) 

+ (p'/20 (36) (73 392r---2+2 494 788,-1-17 844 456+31 432 0201'- 26 815 680,2+13 686 98413-4 585 392r'+ 1 048 2001' 
-1&1 0161'+ 16980,7-1056r8+30,2) 

K(3<r<4):1 + (p'/20 736)(1 572 8&11'---2-13 762 560,-1+39 616512-44 4579841+27 279 360,2-10 579 968r3+2 774016r' 
-504 576r'+63 360r'-5280r7+264,s-6r9) 

C(O<r< 1):1 + (p/4) (32-32r+l0,2- r3) + (p'/l44) (8496-14 400,+8760,2-2664r'+644r4-160r5+20(6) 

+ (p'/20 736) (7 317 504-182661121'+17030400,2-7855776,3+2149 056r4-563 328r5 


+219 672r'-69 780r7+12 672r'-1128,') 


FO 

> 
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C (1 <r<2):1 + (p/4) (32-32,+10rL r3) + (p2/144) (-34r-"-144,-I+ 10 456-19 6&1,+ 14 820,2-5944r3+ 1372r'-176r'+10,s) eq 
+ (p3/20 (36) (-42 816,---2-483 516,-1+12656352-348464&1,+41 979 360r2-28 945 944r'+ 12 786 144r-3 807 408r' 
+773 496r6-104 160r7+8448r8-312r9) 

C (2<r<3):1 + (P'/144) (-162r---2+3024,-1-16 056+ 18 576r-9900,2+2928r3-504r'+48,'-2r') 
Pi 

-331 164r6+34050ri -2112r8+60rO) 

+ (p'/20 (36) (-769 980r-2+11 906826,-1-52 169880+78062 394r-61 072 2001'1+29 571 732,.>-9580 032r4+2 143812,. 
W( 

4(
C{3<r<4):1 + (p3/20 (36) (1 572 8641'-"-13 762 560,-1+39 616 512-44 457984,+27 279360,2-10579968,'+2 77.1 016r4 

-504 576r·+63 3601'-5280r7+264,"-6r') 
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where F=J[g(r) 1Jdr and the series converges for 
IpF 1<1. From (2-1) we calculate; F (Kirkwood): 

F(K) f~rz+f exp[-q,(r)/kT] 

(30) 

Substituting (31) into (29), integrating with respect to 

1.0 1.5 2.0 2.5 3.0 
(­

FIG. 3. Exp[-q,(r)/kng2(1') ior hard lines of unit length 
according to three integral equations. The exact and Percus­
Yevick curves coincide. 

p (from 0 to p), we identify B4 according to the Orn­
stein-Zernicke relation as applied to the Kirkwood 
equation: 

Putting in the appropriate values for the integralsS 

we find in two dimensions B4= (1/8) [3(16/3)2­
4(14/3)2- (2)2(3)2J=85/18. 

We can get B4 accprding to the virial theorem as 
applied to the Kirkwood equation (in two dimensions) 

I J 


I 
Lt_!L-________~________~__________~ 

2 4 
(­

0 

i j 

FIG. 4. Exp[-q,(1') /k T]g. (1') for hard lines of unit length 
according to three integral equations. The exact and Percus­
Yevick curves coincide. 

by noting that g2(1) is (from Table VI) 13/12. Thus 
B4= 2(13/12) = 13/6. 

In the way illustrated above we find the virial 
coefficients through Bs for lines, squares, and cubes; 
Bz and Bo are given exactly by all three integral equa­
tions from both the Ornstein-Zernicke relation and 
the virial theorem and so are not tabulated; B4 and 
Bo are displayed in Tables VIII-X. We have also 
included Bo from the convolution equation, first getting 
the graphs contributing to g4 (r) by iteration and then 
substituting these directly into (26) and (28) to gene-

f .,'.~~ 
I 

.lII 
1.0 1.5 2.0 2.5 3.0 

(­

FIG. 5. Exp[-q, (,) /k T]gz (1') for hard squares of unit area 
according to three integral equations. The exact curve is included 
for comparison. 
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F1G. G. Exp[-1> (r) / k 1'JI;3 (r) for hard squares of unit area 
according to three integral equations. The exact curve is included 
for comparison. 

rate36 known star integrals. Because Percus and Yevick 
have shown that the graphs contributing to the Percus­
Yevick equation of state as derived from (26) are all 
plallar irreducible convex graphs, we have obtained the 
virial coefficients through B7 in this case by selecting 

r----~ 
6 

....ti'I 
I I 

"< I 
~ 
'.. Ie-'NkTg4 FOR CUBES 

2 l 
2 J 

l 
\ 
I 

0 r 
I 
I 

-2 I 
lKirkWOOd-
I I Ij 

/.0 1.5 3.0 
T­

FIG. 7. Exp[ -q,(r)/kT]gz(r) for hard cuhes of unit volume 
according to three integral equations. The exact curve is included 
for comparison. 

GO Only in the cuse of the convolution and exact results is it 
possible to give a direct graphical representation (tines represent­
ing f functions only) of the equation of state as der!ved from the 
viria! theorem. The theorem necessary to make thIS representa­
tion is given in G. S. Rushbrooke and H. I. Scoins, Proc. Roy. 
Soc. (London) A216, 203 (1953). See also Rushbrooke and 
Hutchinson.'3 

all such gmphs from the list previously mentioned.' 
We have not evaluated g.: (r) (numerically) for any of 
the three approximate integral equations. The task of 
evaluating the related six-point doubly rooted graphs i~ 

fairly tedious. 
For molecules having a pairwise-additive potential 

energy which is either zero or infinity, there is yet 
another way of obtaining the pressure from the dis­
tribution function g(r). For such molecules we have 
established1s the following relation between the po­
tential of mean force at J.:ero sep,lralion and the vidal 
coeffIcients: 

n 
'It(0) -.p(O) == -kT Ing(O) =kTL _-Bnpn-l. (33) 

n~21-n 

Equation (33) has an interesting graphical interpre­

f' I I
1 6 
.,,"l .... FOR CUBES 

"" 3 L-i 
'.. 

l 
1 

II0 r 
-3 ~ ~ 
-6 

-9 

]l, I 
2 3 4 

r­

F1G. 8. Exp[ -,p (r) /k 1'JI'.3 (r) for hard cubes of unit volume 
according to three inLegral equations. The exact curve is included 
for comparison. 

tation, the discovery of which actually led us to the 
equation. If one takes the n-point graphs which con­
tribute to the potential of mean force (see Appendix 
I), and merges the root points, thus getting the po­
tential of mean force at zero separation, the resulting 
(n-l)-point graphs are just those which contribute to 
the (n- 2) nd irreducible cluster integra1.2 In the process 
of moving the root points together some lilies become 
double lines, and to correct for this one must add an 
extra factor of -1 to the resulting graph for each pair 
of doubled lines. To illustrate these ideas we demon­
strate in Table XIV how the doubly rooted graphs of 
five points which contribute to the potential of mean 
force generate the star graphs of jOllr points as the root 
points are merged. 

Returning to our Kirkwood example again we fmd 
from (21)-(23) that at zero separation the following 

!• 

\, 

, 
J 
I 
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TATILE VIII. Viri:Ll cocnicicnts ior hard lines. The molecular side length is unit volU!r.e. 

FroZll the Ornstcin-Zcrnickc relation From the vidal theorem 

B, B, Be B, B. B. B. 

Percus-Y evick 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
Kir;'wood 1.08333 1.10278 0.75000 0.61111 
Convolution 0.91667 0.80000 0.70278 1.50000 1.83333 2.00000 
Exact 1.00000 1.00000 1.00000 1.00000 1.00000 1. 00000 1.00000 

equation holds: 

0/(0) -1;(0) 

=kT{p!-drz+tP2! i:::.dr2drs 

=kT[- 2pB2-~p2BJ-!p3B.J. (34) 

Thus for squares 

(16/3)LS (14/3)2J= 53/18. 

In this way we can find Bs and B4 for the approximate 
integral equations (Bz is given exactly by all three 
equations). We list the B, results in Tables XI­
XIII. Both the Percus-Y evick and convolution integral 
cquation~ fail to give correct third viriill coefficients 
[using ], while the Kirkwood virial coel1icients 
are generally closer to the exact values than those 
obtained from the Ornstein-Zernicke relation and the 
virial theorem. This suggests that (33) may be useful in 
getting thermodynamic quantities from integral equa­
tions,37 although this simple form is obtained only when 
the molecules are hard. 

We have noticed a relation similar to that illustrated 
in Table XIV among the star graphs themselves. We 
c.o not yet have a thermodynamic interpretation for this 
relation: removal of point number Ii, together with the 
lines at that from the set of labeled stars of 11 

37 Inserting (33) into various integral equations gives 
different results. Taking (i) the Percus-Yevick equation, (ii) 
the Kirkwood equation, (iii) the convolution equation, and (iv) 
the Born-Green-Yvon equation, and specializing to the hard 
sphere "'(1'), one can get, respectively (i) the ideal gas law, (ii) 
the exact relation z!p=exp[p.~xce"!kTJ, (iii) some integrals which 
we have not been able to evaluate, and (iv) an equation of state 
with the correct B" but an higher B,,=O. The analog of (33) for 
the triplet distribution function is 

n 
w(rl2:J=O) -'" (rl2:J=O) =2kT"};--Bnpn-l; 

I-n 

use of the Kirkwood superposition approximation mUltiplies the 
right-hand side of this relation by 1. 

generates H - 2 sets of the labeled stars of 11-1 
points. This last operation is illustrated in Table XV; 
a proof is given in Appendix III. Again one has to be 
careful about the of the derived graphs, and the 
physical interpretation of the operation would pre­
sumably hold for hard molecules only. 

5. DISCUSSION AND CONCLUSION 

\Ve must restrict our comments here to the density 
region in which our number density expansions of the 
pressure and radial distribution function are useful. 
It is at least possible that some of the graph-type­
selcction or integral equation approximations wc have 
treated are valid at (i) extremely low densities where 
only the second virial coefficient contributes sig­
nificantly to the pressure, and at (ii) high densities 
near closest packing; and that we have had the mis­
fortune of making comparisons only in an intermediate 
density range. 

With regard to virial coefficient approximations of 
the ring and watermelon type, it has been pointed out 
by Salpeteras that such approximations may be par­
ticularly useful for long-range potentials. for the 
potentials we have considered this is evidently not 
the case. The contributions of the star integrals to Bn 
increase (with n) so rapidly that if all of the contribu­
tions to En have the same sign 

I lim En I 00. 

It is only the fact that almost exactly half of the con­
tributions are negative and half positive that results 
in a convergent virial series.39 It is because of this ex­
tensive cancellation that approximations which neglect 
some graphs are inherently dangerous. There are many 
ways of classifying graphs, however, and it is entirely 
possible that some selective process exists which would 
be useful for the molecules we have considered. This 
fact is illustrated by the Percus-Yevick equation 
which discards most of the star graphs and is exactly 
correct in one dimension through at least the seventh 
virial coefficient calculated by the Ornstein-Zernicke 

38 E. E. Salpeter, Ann. Phys. (N. Y.) 5, 183 (1958). 
39 G. W. Ford, dissertation, University of Michigan, 1954-. 

http:series.39
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TABLE DO::. 'Virial coclIicicnts for hard squares. The molecular area (12 is unit volume. 

From the Ornstcin-Zcrnickc relatio::l From the virial theorem 

r B, B5 Bo B7 B. B, B, 

TABLE X. Virial coefficients for hard cubes. The molecular volume u3 is u::lit volume. 

From the Ornstein-Zcrnicke relation From the virial theorem 

B. B. Bo B7 B. B. Bo 

Percus-Yevick 12.88839 12.43403 9.20674 11. 58167 3.44444 0.56944 

Kirkwood 20.92593 37.94250 3.00000 4.20370 

Convolution 6.62963 -6.93947 -2.21330 19.33333 -5.17361 -49.60366 

Exact 11.33333 3.15972 -18.87963 -43.50543 11.33333 3.15972 18.37963 , 

40 J. G. Kirkwood and Z. Salsburg, Discussions Farad. Soc. 15, 23 (1953). 
41 J. C. Poirier, J. Chern. Phys. 26, 1427 (1957). 

Pcrcus-\.~:Yick 3.7777S 4.23611 4.42000 

Kirkwood 4.72222 7.01690 

CO:1Volution 2.9·'·.U·! 1. SO·H7 0.96500 

Exact 3.66667 3.72222 3.02500 

relation ar.c. at least the fifth virial coefficient 
calcu;ated by c:1C yirial theorem. Comparison of the 
exact and Percus-Yeyick 's (both are given in 
Tab~e :;-;G;catcs that the functional form of g(r) 
for the Percus-Yeyick equation is probably exact in 
one di",e;ls;on. Thus the graphs omitted by the Percus~ 
Ycyic;';' eqtlation cancel in one dimension but not (as 
one (;111 see irom Tables VI and VII) in two or three 
dimeasio;}s. Furthermore g(r) is incorrect for O<r< 1 
in one dimension, leading to incorrect En from g(O) 
by (33). 

One expect to get more reliable distribution 
functiol1s !rom more complicated integral equations 
such as the Kirkwood-Salsburg equation40 (which we 

using the superposition approximation and the 
correct number density expansion of the fugacity, 

.• B4 correctly) i unfortunately this equation 
is so complicated that no other calculations have yet 
been based upon it. 

A set of integral equations due to Poirier41 is quite 
different from those wLich we have treated here. His 
sccond- and third-order theories result in a ring ap­
proximation to the radial distribution function in 
which the lines represent -cp(r)/hT rather than 
exp[-¢(r) 1. It is interesting that this ap­
proximation the Debye-Huckel results for dilute 
electrolyte solutions. Preliminary calculations indicate 
that Poirier's fourth order theory, in which the ap­

distribution function is determined by several 
coupled integral equations, does not have a graphical 

4.48761 3.33333 3.05556 

2.16667 1.80556 

5.66667 5.88889 2.30417 

1. 65065 3.66667 3.72222 3.02500 
tl 
c( 

interpretation; that there is no number density 
expansion for the solution of the fourth order equa­ d 
tions. We plan to investigate these equations further. ti 

It appears that the J3 orn-Green-Yvon integral 
j[ 

equa tion has no solu tion for hard squares or cubes. 
The basic dif6.culty is that the equation allows one to f( 
solve for a number density expansion of the gradient ( 
of g(x, y, z), but after this "gradient" one 11 
sees that there is no function symmetric in x, y, and z n 
from which it can be derived. Thus in the Born­

P
Green-Yvon case we cannot even obtain an approxi­ t 
mate solution; the underlying Kirkwood superposition 
approximation produces an equation without solutions. 

We have found (see 3-8) that the Percus-
Yevick equation is more satisfactory than the Kirk­ f 
wood or convolution equations in representing the 
radial distribution function. Because this equation I 

also has the simplest structure of those which we have 
considered it deserves further study. By contrast, even 
with the smoothing inherent in calculating g,,(r) from 
gr. (r), it is clear (see Figs. 3-8) that the Kirkwood and 
convolution equations represent rat.her crude ap­
proximations in our density range. 

Even with the Percus-Y evick equation (with 
radial distribution functions not markedly different 
from the exact curve) we find, in two or three di­
mensions, rather unreliable virial coefficients with the 
(optimum) Ornstein-Zernicke relation. This sensitivity 
of thermodynamic properties to the precise form of the 
radial distribution function has been shown vividly in 
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TABLE XI. Yirial coenicicnts ior hard lines from the potential TAGLE XIII. Virial cocfTicicnts for hard cubes from the potentia! 
of mean force. The molecular side length is unit volume. of mean force. The molecular volume <1" is unit volume. 

PcrCllS- Percus­
YCl'ick Kirkwood Con vo;ul ion Exact Ycvick Kirkwood Convolution Exact 

lh 0.66667 1.00000 2.00000 1.00000 B3 -3.33333 9.00000 18.00000 9.00000 

B. 0.50000 0.91667 3.00000 1.00000 B. 4.66667 6.62963 38.66667 11. 33333 
==­

the case of the Lennarc;-Jones potential}2 Our final 
squan.:s, and cubes 

are sOl1lcwhn t that even if one uses 
ty an 	 eqlintion which gi\'cS a reasonably accurate 
l- distribution iunct;ol1 (e.g., the Percus-Yevick equa­

tion) the obtained from it is (in the 
intermediate density (i) internally inconsistent 

s. 	 (c.g., Ornstein-Zcrnicke vs virial theorem vs mean 
iorce potential), and (ii) unreliable. At Monte 

It 	 Carlo and molecular dynamics studies represent the 
most rcliab~e routes to thermodynamics (at inter­
mediate and high densiLies) from the intermolecular 
potential as well as the best checks on integral equa­

i­ tion work. 
n 
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APPENDIX I 

In this appendix we outline some graphical ter­
minology for the beneiit of the reader who IS not 

TABLE XII. Virial coefficients for hard 
potential of mean iorce. The molecular area 

Pe:cus­

Yevick Kirkwood Convolution Exact 


0.66667 3.00000 6.00000 3.00000 

0.33333 2.94444 11.33333 3.66667 

42 R. W. Zwanzig, J. G. Kirkwood, K. F. Stripp, and 1. Oppen-
Chem. Phys. 21, 1268 (1953). In this paper it is pointed 

out a change oi 2.6% in the distance scale of the radial 
distribution function changes the pressure (under certain condi­
tions) by a factor of 1()J. 

familiar with one of the basic works on graph theory.43 
::'Iuc11 of this material is taken from the lecture notes 

TABLE XIV. Graphical illustration of the relation between the 
potential of mean force and the irreducible slar graphs. YIerging 
the root points of the five-point dOltbty rooled graphs shown gives 
the indicated four-point star graphs. 
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43 D. Konig, Theorie dcr Endliclzen lind Unendlicllen Graphen 
(Chelsea Publishing Company, Xew York, 1959); C. Berge, 
Thcorei des graphes et ses applications (Dunod Editeur, Paris, 
1958). For applica.tions to statistical mechanics see R. J. Riddell, 
dissertation, University of Michigan, 1951; G. W. Ford39 j G. E. 
Uhlenbeck and G. W. Ford.31 

http:theory.43


W. G. HOOVER AND J. C. POIRIER 

illuslra~ion of tile rchtior. ])clwcen the 
for n=5. Shown is the numher of times 

COllllcctcd when the relation 
Ill) is sct of lobe/cll jive·point 

slars. 

[8J [S] N ~ n 
12 0 0 0 0 0 0 12 

60 e 0 0 12 2-* 0 -2.t 

10 0 0 (i 0 -" n 

10 0 () () 0 .\ () 

()\) 0 	 2·. 0 -2·1 0 12 

30 0 6 -12 -12 0 0 

30 6 -12 0 12 0 0 

15 0 -12 3 0 0 0 

10 Q -4 6 0 0 0 0 

1 1 0 0 0 0 0 

Totals ,; 18 9 0 0 0 

of Professor Frank Harary's Graph Theory course at the 
University of ::-'Iichigan. 

The many applications of graph theory have led to 
several names for the same concept. For example,r points of a graph are also known as nodes, vertices, 
junctions, or O-simplexes. Synonyms for line include 
arc, edge, branch, link, wire, and i-simplex. The graphs 
themselves (which are sets of points with lines con­
necting pairs of these points) are called 1l6tworks, nets, 
patterns, configurations, figures, diagrams, linear graphs, 
or i-di1lZeJlsioJlal simplicial complexes. 

The following definitions are relevant to this paper: 

(1) A graph is called labeled if the points of the 
graph are distinguished from one another in some way 
(commonly by labeling the points numerically: 1, 2, 
••. ) independent of the structure of the graph. Other­
wise the graph is 1>lllabeled. 

(2) A grapJz is discollnected if it is possible to divide 
the points of the graph into two or more sets, such that 
no lilies of the graph connect poiuls of any two different 
sets. If such a division is impossible the graph is con­
nected. According to ::-'fayer's terminology such a 
connected graph is at least singly connected. 

(3) A point Pa of a connected graph is said to be an 
articulation point if it is true that removing Pa (together 
with the lines at Pa ) from the graph leaves a dis­
connected graph. 

(4) A connected graph having at least one line and 

no artiwlalion points is called a star. OL];cr terms ior 
slar include block and at least doubly COllllcc/ed graph. 

(5) Thc degree of ,L point is the number of lincs 
to it. A ring graph is a star, alljHIll/ls of which 

are of degree 2. A ,:latcrmclon graph is a star of n points; 
2 poil/ts are of degree 3 and n- 2 poillts are of degree 2. 
A GOlllplclc grajJ/t of il points has ~dl poillts of degree 
n-1. A lIearly cIJlllj)[cte graj)h is a sial' oj II> 3 j)ointsj 
2 poillts at'e oi degree 11-2 and 1/-2 poillts arc of 

11-1. 
t()') :\ d,l/If,[y I'oo/nl graph i~ a grtl/!/r itl wlii,'ll two 

t,IO/ /)oiliis an' Sllt"'ially di~til1.~\iisi1cd, ill ~()IlIC W,LY, 
[rom til(' rest. \Vc restrict our illtn""L to wllI/ected 

doubly roolcd grajJlis with root poil/ls tabctcd 1 and 2 
not directly co/lIlec/cd by a lillc, such that were the 
missing line linking the rool poillts added the graph 
would become or remain a star. According to Van 
Leeuwen et al. such graphs are composite if removal of 
both root points gives a disconnected graph; otherwise 
they are nodal or elementary, the former if there exists 
any point the removal of which gives a disconnected 
gmph, otherwise the latter.4-l The graphs contributing 
to the radial distribution function may be composite, 
nodal, or elementary. Of these only the nodal and 
elementary graphs contribute to the potential of mean 
force. 

(7) The l'Jlallar irreducible convex graphs resulting 
from the Percus-Yevick integral equation used in 
conjunction with the Ornstein-Zernicke relation may 
be constructed in the following way: start with a 
labeled ring graph of 11 points; by adding 0, 1, ... lines 
connecting the points of the ring graph construct all 
possible graphs with noncrossing lines (keeping the 
original ring graph on a plane). Bn(PY, OZ) is then the 
sum of the corresponding star integrals divided by -11.1 

(8) A cycle is an ordered set of k> 2 distinct points 
of a graph, Pi, P 2, ••• P k , such that Pi is connected to 
Pj-l and PJ+l for all j with the conventions PO=Pk 

and Pk.t-l. 

APPENDIX II 

In this appendix we show that the value of any 011e­
dimensional (ha:::d line) slar integral of n poil//s and 
(~) lilies is (-) [,,/2]11, and that the value2! of any one­
dimensional (hard line) star integral ofn points and 
G)-lliIlGS is -(-)["!21(n+(2/[n-l])}. (Again we 
are using the units a-=1.) The integrals we are con­
sidering are volume-independent and have the form 

1= (1/V) JSi(n)drl"' ·dr,,= JS,(n)dr2" ·drn _ 

(molecule 1 at origin) 

(ILl) 
.. J. M. J. Van Leeuwen e/ al.o 
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- \\'e as;;mne ;;OIlle with :1 previous paper in poillt w subintegral: 
the evaluation of one-dimcflsional integmls \V;\S 

described in dctail. 5 i" "" iff fU+w w subintegral= ffdw dX} dy dz da 
Wc recall that any slar integral may be writtcn as o w x U ~ 

the sum of It! subintegra18, one ior each of the ways n 
molecult:s lllay be ordered from left to Thus thc j" iff f~ i" f"-H.P 

j 

= cr subintegral+ dw dx dy dz da. (11.4) 
slar integral contributing to (1/V)f 6dri- - -drs, o tv x 'if 0' 

mo.)' be written as the sum of six sub integrals corre­
sponding to the 3: orderings 132, 213, 231, 312, 
321. In the c\'('nt that the rirst and last molecules in a 
giyen ordering lot the of any slar) are con­
nected by a lil1e tJ:at slur) one shows easily that the 
value of the corre~ponding subintegral is (n-1) 1; 
tbe sign is determined by the number of lilieS in the 
slar. This vaLle ior the subintegral is obtained because 
the restrictions or the ordering and the f function 
linking the first and last molecules restrict the 
lion to one of 1t-1 equal parts of an (n-l) -dimen­
sional cube of side-length cr, the molecular length. 
We illustrate the case for n= 6, using the ordering 
123456 and thatf16 appears in the integrand. 

'" subintegral 

= j~dw(cr-W)4/-± 175/51=1/5! (11.2) 
o 

The g~neral case is obvious from this illustration. If the 
star we consider is complete all orderings of the n mole­
cules will give cr subintegrals, of value ±1/(n-l)!. 
Because n 1of these orderings are possible the value of 
the star integral corresponding to a complete graph is 
±n. 

For a siar with CD 1 lines it is clear that all order-
in which the missing lille is not between the first 

and last molecules will give cr subintegrals. The re· 
mainder of the orderings, 2 2)! in number, will 
contribute :w subintegrals, which we represent sche­
matically as follows: 

(II.3) 

Using the ordering 123456 and assuming that fIG does 
not appear in the integrand, we may evaluate a six-

Integrating by over w (following the integrations 
over a-' ·x) we see that the 1<L5t integral in (11.4) has 
the same value as a cr subintegral. Thus the w sub­
integral has value 
star integral with (~) 
from sign) 

(n-l)!, and the value of 
1 Unes and n points is (apa

a 
rt 

n!-2 2) ! 2 

(n-l) ! (n-1) ! n-

All that remains is to determine the sign of the inte­
grals. We observe that 

) {n/2], 

giving the sign of the complete graph integral. The sign 
of the graph obtained by removing one line from a 
complete graph is necessarily opposite, being - (- ) [1l/~1. 

APPENDIX III 

In this appcndix we state and prove a graph-theo­
retic::Ll theorcm which presumably has (unknown) 
thermodynamic implications. In this appendix we will 
be concerned with labeled graphs only. 

Let us denote the set of labeled stars of n points, 
Pi" .p", by gv(n), and the set of labeled connected 
graphs of n points which are not stars by QC(n). Par­
ticular graphs in these sets will be indicated by Sk (n) 
and Ck(n) respectively. We define a general relation 
between pairs of labeled graphs, Gl(n) and G2(n-1), 
by writing 

(III.1) 

if (and only if) it is true that removing P nand all lines 
joining P1,,,Pn-i to Pn from Gl(n) leaves Gz(n-1). 
If the number of lines removed is even (odd) we use a 
plus (minus) sign in (IIL1). The following pairs of 
graphs satisfy the relation, where P n = Po is the topmost 
point in the five-point graphs shown. 

Using our notation we wish to prove the following: 

gv(n)lV[n-2J~(n-1) . (IIL2) 

Because removing a single point from a star never 
results in a disconnected graph, we may divide the set of 
stars of n points into two sets: gv.(n) , those stars which 
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F](;. Y. ,\ schematic representation of 
Gk*(l1), a graph formed by removing the line 
P.-P.·from an element Gdn) oi ~k(n). 

give slclrs of ll-I poillts on removal of p,,; and ?1vc(u) , 
those slars which giYC cow/cried graphs of !I -1 points 
which are not stars. EvidenUy u?1vc(u) = ~(n). 

Consider ~,(JI). For a particular Sk(n-I) there is 
one star in ~$(Il) in which p" is linked to Sk(lI 1) 
by n-11ilics; there are ii-I stars ill i'fl.8(i1) in which 
P n is linked to Sk(il-1) by n-2 lilies, and in general 

I) - () 1 . 1I (n-l-j)) = (n j 1) stars 1Il ~s n w He,] •exact v glve 
(-)'Sk(I1-I) for l<j<lI. Graphs which consist of 
Sk(n-l) joined to P" by a single line are clearly not 
stars and will therefore not appear in ~s(n). Thus the 
number of times that Sk(n-l) will appear in the 
stars derived from ~s(iI) [by removal of P" according 
to (ULl) ] is, independent of k, 

,,-I (n-. 1) (It-l) 1n-l .(n-l)
L(-)' . =L(-)' . -L(-)' . 
M J ~ J ~ J 

=O-[l-(n-l) n-2. (III.3) 

Because each star in fbsCn) will give some Sk(n-l) 
on removal of Pn, and because each Sk (n-l) is 
obtained exactly n-2 times from fb.(n) we find 

fb.(n )--[11- 2JfbCn-l). CIII.4) 

We now consider fbeCn). For a particular Ck(n.-l) 
containing the articulation point Pa we may select from 
fb,(n) two sets of stars: fbk(n), those stars in ~e(n) 
which have the line joining Pa to P n and give Ck (n-l) 
when Pn is removed; ~k*(n), those stars in ~c(1t) 

which do not have the line joining Pa to Pn and give 
Ck(n-l) when Pn is removed. We now demonstrate 
that there is a one-to-one correspondence between the 
stars in ~k(n) and the stars in fbk*(n). For any star 

TABLE XVI. B, according to the Ornstcin-Zernickc relation 
from three integral equations, and according to the virialtheorem 
from the convolution equation. The numhel' of times each gmph 
contrihutes to the intcgr:cnd in 

B,= (-1!81')f(4-poiut graplIs)drl" .dr, 
is given in this tabk. 

py(OZ) K(OZ) C(OZ) C(VT) 

2 3 3 3 

4 4 5 6 

o -1 o o 

TABU, XVlI. Eo ;].ccorfling tfJ the Ornstcin-Zcrnicke relation 
from three integral equations, and according to the vidal theorem 
from the C0l1v()1ulion equation. The number of limes each trap!; 
contributes to the integrand in 

B,= ( -1!30V) J(5-point graphs)drl" -dr, 

is given in this table. 

PY(OZ) R(OZ) C(OZ) C(VT) 

6 12 12 12 

30 36 48 60 

30 25 42 60 

o 4 7 10 

o 5 7 10 

o -6 o o 

o -7 o o 

o -3 o o 

i·TABLE XVIII. Bo according to the Ornstein-Zernicke relation 
from the Percus-Yevick and convolution integral equations, and 
according to the virial theorem from the convolution equation. 
The number of times each graph contributes to the integrand in 

B6= (-1!144V)j (6-point graphs)drl' ..drs 

is given in this table. 

PY(OZ) C(OZ) C(VT) 

24 60 60 

144 

72 

288 

132 

360 

180 

i 
\., 

0 120 180 

0 120 180 

0 9 15 

288 480 720 

144 240 360 

72 120 ISO 

0 216 360 

0 9 15 

0 216 360 

48 72 120 

144 216 360 

144 216 360 
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in ~k*(J1) there is a rorrc;;pollding siar in i!i>,(il), 
ilienlirai but for I he prcsr;h'l' o[ \ ill'lille ""-1',, joining 
Fa to 1'". This iollo\\';; irom the oh;;cn'aliOll thaL 
a line to the points oi a star ahra~'s ano[l1c'r sl,]r. 

To establish that for any s:tlr in i!i>k there is a 
.:orrrsponcling sl,lr in , ilh'nlicill but lor the 
absence of the lillt 1',,- PH, is SOl11C\\';la~ more tedious, 
This demonstra t iOIl is 1O s!lOwing t];a t any 
t iYO i),Jillts in Gk " i ornwd by rC'll1oying ,'le 

line P" iroll~ an C;(':;~(,i1;: G;.\III or i!i>k\ ,lie on a 
cycle. Let us CO:l:;;L1er ~\\'0 1'(Jinfs 1\, other than 
fa or p" in G" and (iraw G/"(II) as in 9, 
where CD and @ r(';)1('5l'11; two of tbe two or more 
cOll/wcled gralihs formed by rl'llloYal of Pa ane! Pn frol~l 

Gk *(n). Withou t loss of generality we suppose Pb is in 
CD, and Pc is in either CD or 0. If P,. is in ® any cycle 
on which both and p" lay in Gk (n) is also in Gk *(n), 
because such a cycle could not include the line Pa - Pn • 

If both Po and Pc are in CD any cycle on which both 
lay in Gk(n) is also in Gk *(n) unless the cycle included 
Pa - Pr.. In the latter case we can construct a new 
cycle in Gk*(n) by replacing the Gk(ll) cycle with a 
cycle identical to it but for the substitution of any 
path through ® from Pa to Pn for the liJle Pn • 

In this way we have shown that any two points (other 
than Pa and Pn ) which lay on a cycle in Gk(U) lie on a 
cycle in Gk *(n), and that Gk *(n) is therefore a slar cor­
responding to Gk (n), provided only that we show 
Paand P b, Pa and Pc, Po and Pn, Pc and P" also lie on 
cycles in Gk*(n). These facts are all easily shown in the 
foregoing manner, and the one-to-one correspondence 
between the stars in gs,t(n) and the stars in ~k"(n) 
is established. We illustrate it here, for a particular 
case, taking as the particular labeled ek(5), indi­
cating the articulal-ion point P a by an open circle. 

~k*(6) 10,$) and ~k(6)={$,$). 

Noting again that 

u{~k(n) U gs,k*(n) }= ~c(n), 
k 

and observing that 

where Xi is the empty set, we have the result 

the union of (III.4) and (IlLS) gives (1II.2) , 
and completes the proof. 

APPENDIX IV 

III this appendix wc catalog graphical exprcssions for 
yirial cocificicnts obtained from the Percus-Yevick, 
Kirkwood, and convolution integral equations using (i) 
the Ornstein-Zcrnicke relation, (ii) the vidal theorem, 
and (iii) the potentilll of mean force at z.ero separa­
tion:'" T,lbles XVI-XVIII give H t ··, 136 calculated from 
(i) for all lG three integral equations and from Oi) for 
the convolution equation. \Ve h~lVe used an expression 
for 137 only in the case of the Percus-Y evick equation 
as applied to the Ornstcin-Zernicke relation; this ex­
pression for 137(PY, OZ) is given by (IV.i). Finally, 
in (IV.2) and (IV.3) we give 133 and B4 as obtained 
from the potential of mean force at zero separation 
for each of the three integral equations: 

= ( 1/840V)1[1200+8400+840G+1680Q 

+8400+8400+840®+1680Gl+840G+840@ 

+ 1680~+1680@ + 1680 Q+1680G+1680c;d 

+8400+1680~+1680~ +840® +840®J 
Xdrl' ..dr7. (IV.1) 

B3['l1(0) (PY, K, C)] 

= ( 1/3V) 1[(2,1,2) .6.+(1, 0, 0) AJdrl" ·dra. 

(IV.2) 

B4['l1(0) (PY, K, C)] 

(-1/8V) 1[(6,3,6) 0+(12,5, 12)N 

+(6,0, 0) ~+ (2,0,0) n]drl" ·dr4.47 (IV.3) 

4. In the case of the Percus-Yevick and Kirkwood integral 
equations, the theorem of Rushbrooke and Scoins36 is not useful. 

45 We have not calculated Bs from the Kirkwood equation ac­
cording to the Ornstein-Zernicke relation. 

47 The exact expressions in terms of graphs are given in reference 
5 for Bz•• •Br, including the 448 seven-point stars not appearing in 
(IV.l) which contribute to the exact B r• 
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