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Fifth and Sixth Virial Coefficients for Hard Spheres and Hard Disks*

Francis H, Ree axp Winniam G, Hoover
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{Received 12 August 1963)

New expressions for the fourth, fifth, and sixth virial coefficients are obtained as sums of modified star
integrals. The modified stars contain both Mayer f functions and f functions (f=f+1). It is shown that
the number of topologically distinguishable graphs occurring in the new expressions is about half the num-
ber required in previous expressions. This reduction in the number of integrals makes numerical calculation
of virial coefficients simpler and more nearly accurate. For particles interacting with a hard-core potential,
values of the modified star integrals are shown to depend strongly on dimension; for example, several
modified star integrals are identically zero for hard disks (two dimensions), but give nonzero values for
hard spheres (three dimensions), Of all the modified star integrals contributing to the fourth, fifth, and
sixth virial coefficients, the complete star integrals are shown to be the largest. Mayer’s expressions for
these coefficients made the complete star integrals the smallest contributing integrals.

The fith (B;) and sixth (Bs) virial coefficients of hard-sphere and hard-disk systems are obtained by
Monte Carlo integration of the modified star integrals. The resulting values are

spheres: By/b*=0.11034-0.0003; B:s/b°=0.03864-0.0004
disks:  Bs/b4=0.3338::0.0005; Bs/6°=0.19924-0.0008

where b is the second virial coefficient.

Estimated values of By obtained from a Padé approximation to PV (N%T) —V/N are By/t¥=0.0127
for hard spheres and 0.115 for hard disks. For hard spheres virial series calculations including terms through
the sixth virial coefficient give values of PV/(W¥kT) which agree closely, for densities less than half of
closest-packing, with the molecular dynamics data of Alder and Wainwright. Furthermore the approximate
Padé expression agrees within 2%, with the molecular dynamics data for all densities on the fluid side of
the solid-fluid transition. This agreement indicates convergence of the virial series along the entire fluid
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branch of the hard-sphere equation of state.

I. INTRODUCTION

HE virial expansion of the pressure P of an im-
perfect gas is a power series expansion in the num-
ber density! p{(=N/V),

PV/(NET) =1+Byw+Bsp*+Bi*+--+, (1)

where ¥ is the number of particles in the volume V
at a temperature 7" and % is Boltzmann’s constant.
The nth virial coefficient B, for a gas with the pair-
wise additive interaction potential ¢;; between Particles
i and j can be expressed in terms of Mayer f functions®:

1
_Bﬂ:_’ﬁlim V_'lf"'fdrl'°'drnvﬂz (2)

. Ve

V= 3 115 3)

(S S5
= exp(—¢y/kT)—1; (4)

where the sum in (3) includes all labeled stars with »
points.

*This work was performed under the auspices of the U.S.
Atomic Energy Commission.

LFor an excellent discussion of this subject, refer to G. E.
Uhlenbeck and G. W. Tord, in Siudies in Statistical Mechanics,
edited by J. de Boer and G, E. Uhlenbeck (North-Holland Pub-
lishing Company, Amsterdam, The Netherlands, 1962), Vol. 1,
Part B. We shall follow the graph theoretical terminologies used
by these authors,

2], E. Mayer and M. G. Mayer, Statistical Mechanics (John
Wiley & Sons, Inc., New York, 1940).

Because the number of terms in V,, as well as the
difficulty in evaluating them, grows rapidly with #,
only the first few virial coefficients have been evaluated
for “realistic” potentials. For the hard-sphere gas, the
following exact results are known®4%:

spheres:

Bi=b= (2n/3)6%,  By/lt=3%,  Bai/b*=0.28695,

(3)

where ¢ is the sphere diameter. An approximate value
of By/b'=0.115£0.005 was obtained by the Rosen-
bluths,® who used Monte Carlo integration to evaluate
the 10 types of star integrals occurring in B;. For a
two-dimensional gas composed of hard disks, the first
three coefficients are known exactly®:

disks:
Bommb=(7/2)¢"%, and By/b=4§—V3/m==0.78200, (6)
where ¢ is the disk diameter. By/b=0.5327-4:0.0005

31.. Boltzmann, Verslag Gewone Vergader. Afdel. Natuurk.
Keoninkl, Ned. Akad. Wetenschap. 7, 484 (1899); H. Happel,
Ann. Physik 21, 342 (1906).

4+ B. R. A. Nijboer and L. Van Hove, Phys. Rev. 853, 777 (1952),

5 M. N, Rosenbluth and A, W, Rosenbluth, J. Chem. Phys. 33,
1439 (1960).

& See M. Metropolis, A. W. Rosenbluth, M. N. Roszenbluth,
A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953). B;
is calculated by L. Tonks, Phys. Rev. 50, 955 (1936}, We have
checked B, for disks, using 107 Monte Carlo trial configurations,
aud find By/b*=0.5324-£0.0003.
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and By/b*=0.312-40.016 were obtained for disks by
Metropolis ¢ al.8 using Monte Carlo integration.

As was observed by the above authors and also by
Hoover and De Rocco? in caleulating B,gr for the
parallel hard-square and hard-cube models, the con-
tribution of star integrals with positive values to Buxs
is approximately equal to the contribution of star inte-
grals with negative values. The final value for B, is
about the same order of magnitude as the contribution
of a complete star integral alone; the complete star
integral has the smallest absolute value of all the star
integrals involved in calculating B, We present, in
the following section, an alternative way of evaluating
the virial coefficients. This new approach is particu-
larly useful in the numerical calculation of virial co-
efficients beyond the third. In Secs. 3 and 4, this method
is used to evaluate Bs and B for hard spheres and
hard disks. It is found that the main contribution to
Bs; and Bs comes from the complete star integral,
while other graphs, some positive and some negative,
give smaller corrections. It is also shown that (de-
pending on the dimensionality of the particles) some
of the modified star integrals in this formalism are
identically zero. In Sec. 5, we estimate By for hard
spheres and hard disks, and discuss the convergence of
the virial series along the fluid branch of the equation
of state.

2. MODIFIED STARS
We introduce the function f;; defined by the equation
Ji= exp(—oui/kT) (7

7W. G. Hoover and A. G. De Roceo, J. Chem. Phys. 36, 3141
(1962).
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and related to f;; by the equation
1=Jij~fir (8)

Whenever two points ¢ and 7 in a star are not con-
nected by fi;, we use (8) to introduce fi;—f:; into the
star. When this procedure is carried out for all un-
connected pairs of points in any particular star and
the resulting expression is expanded, we find that the
star can be written as a sum of modified stars composed
of two kinds of lines, f;; (denoted by a straight line
between 4 and ), and fi; (denoted by a wiggly line
between ¢ and 7). When this procedure is applied to all
of the labeled stars occurring in a particular B,, many
of the graphs cancel out identically. Details of the ex-
pansion for the four-, five-, and six-point stars are
given in Appendix I. The final expressions for Vy, ¥,
and Vg are as follows:

Vs || -9, (9)
V=12 +10 “> 60 ™ 445« —6F,
5 Q . - + %\b f 7

(10)

Vem60 &P +180 {_) +13 %»% —360 ..
—90 @—no (“ 180 o 1 80@
+360< b 4240 i ] 40 d\i >+->40 %

— 288 Q 4180 g;o — 360 {:} — 360 \Z§
—240{ E —900 \:} —360 {: } +1440 f:/o |
{(11)

+240\ 540 BEE=1Y:}

For clarity, we have omitted drawing the f functions
in (9), (10}, and (11). This means, for example, that

i
the graph |

i e SO S \
? j = i\f‘ \i in Vs, ‘é Y, g in Vs, and €54
S

E denotes

(12)

As a second example, the graph & in (9), (10), and
(11) denotes complete stars of four, five, and six points,
rebpect;vely For V4, Vs, and Vs there are, respectively,
3, 10, and 56 topologically different types of stars,
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while here we see that the corresponding modified
expressions (9), (10}, and {11) contain, respectively,
2, 5, and 23 topologically different types of modified
stars. It is not possible at present to predict, in the
general case, the type of modified stars which will
occur in V,, nor can we predict the multiplicative
factors which will be assoclated with these modified
stars. [Since this work was finished, we have obtained
a new formalism, which gives all multiplicative factors
corresponding to each modified star appearing in the
expression of B,. This new formalism will be reported
in a later paper.]| It is, however, possible to calculate
the multiplicative factors for the complete star graph
and the graph E , in general, by using some identities
obtained by Riddell and Uhlenbeck.® The multiplicative
factors are

inl{n—1}

3 (- Yin=D=k S (. k)

k==n

M (%)=

= — (= )=D(p—2)1, (13)

—£]S(n, £Y=0,

;11( I

0 (el )l
)2 Do (e Ytk 1

F==n

(14)

where S(#, &) denotes the number of labeled stars of
# points and % lines { f functions). We also notice that
the sum of the positive coefficients of modified stars
contributing to V, is always one greater than the sum
of the negative coefficients of such modified stars.

3. HARD SPHERES AND HARD DISKS

For particles interacting with the hard-core potential
of Fig. 1(A), the corresponding 7 and f functions are
shown in Figs. 1(B) and 1(C). In this section we con-
sider the contribution of the modified stars to B, in
one-, two-, and three-dimensional systems. First, let
us consider a system of N hard lines of length ¢ in a
one-dimensional volume V. In 1934, Herzfeld and
Mayer® obtained the equation of state for this system:

(15)

We can easily evaluate the contribution of the complete
star integrals in the new formalism to the B,’s for this
system. From (2) and (13}, these contributions are

PV/{NET)={1—0op).

Bu() = (=) =0(F) n/m, (16)
(@)a=tim=t [ o+ [areeanITf (1)

>

8 R. J. Riddell, Jr., and G. E. Uhlenbeck, J. Chem. Phys. 21,
2056 (1953).
¢ K. F. Herzfeld and M. G. Mayer, J. Chem. Phys. 2, 38 (1934).
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The expression (17) can be easily evaluated™
(D)= (—

Therefore, we note from (16) and (18) that the B,
obtained by expanding (15) are identical to the
Bn(f)=0gm1, This implies that the other modified
star integrals contributing to the B, sum to zero. In
one dimension all of the four-, five-, and six-point
modified star integrals contributing to Be, Bs, and B
(except the complete star integrals) are zero for geo-
metrical reasons. We conjecture that this is true for all
of the higher virial coefficients as well.

We consider next a two-dimensional system of N
hard disks of diameter ¢. Several modified star inte-
grals give zero contributions to the corresponding
virial coefficients. We introduce a notation, { )., for
a linear integral operator for the # particles of any
graph given inside the parentheses; for example,

) v}n(n—l)no.w—l.

(18)

4

4 3 3. 1
( f ‘I)E timv- [, [[arararar, 57 .
o d /4 Voo &

1 2

(19)

The following modified star integrals represent geo-
metrically inaccessible configurations for disks in two
dimensions, and consequently vanish (see Appendix
II):

()0 )A=),
(D) (52 ) =0

Notice that the diagrams in (21) contain at least one
triangular set of f functions fi; fi fre. If, in addition
to such a triangle, a modified star contains any wiggly
line not linked to the triangle by fewer than two inter-
mediate wiggly lines, the corresponding modified star
integral vanishes for hard disks. Among the higher-
point graphs many will contain the graphs in (20),
(21}, or (22) as disjoint subgraphs, and will therefore
give zero integrals. The existence of integrals with
zero values can be related directly to the values of
Mayer’s star integrals. Evidently there are linear rela-
tions among some of these integrals; for example,

i

(21)

(22)
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Tasre I. Values of By and the five-point modified star integrals for hard spheres and hard disks.

Values of the integralsb /b

Contribution to Bs/b*

Coefficient Unlabeling
Star in By factors Spheres Disks Spheres Disks
2l 6/30 1 +{7.11£0.01) X107 -4+{1.809:£0.002) +0.1422 +0.3618
¢ p
v/ —45/30 ¢ +(2.092:40.009) X 107% +(1.7740.01) X107* ~0.0314 -0.0266
N ’
Mb 60/30 7 - {8.254-0.05) X103 - (5.1140.05) X 10~ —0.0165 -0.0102
0 -
e —10/30 1 (710,44 X104 0 —0.0002 0.0000
‘ A
ij —12/30 1 —{4.054:0.03) X 10* —(2.15:40.03) x10-* +0.0162 -+0.0086
Values for By/b%: -40.1103:0.0003 -+0.3338-:0.0005 --0.1103 +0.3336

* The unlabeling factor Is the number of ways a modified star graph can be labeled and still satisfy the Monte Carlo trial configuration conditions, fis=jfw=

Suam= =1,

b By and the modified star integrals for spheres {disks) are calculated from 81 (50) independent batches, each of which contains 100 000 Monte Carlo trial con-
figurations. Each modiﬁe}i star integral is the average of a number (unlabeling factor) of topologically identical but differently labeled star integrals. This is squiv-
alent to evaluating a particular labeled star integral using a number of trial configurations equal to (100 000X unlabeling factor) for each batch.

for hard disks, (20) implies the following linear
relation:

(@

Oty

The linear relations among Maver’s six-point star
integrals can be obtained from Table VII, Appendix I.
We can use Relation (23) to evaluate the complete
star integral if the values of the other integrals in (23)
are known. It must be emphasized that (20), (21)
and (22) depend on the nature of the interparticle
potential ¢;; (disks); other forms of ¢;; can lead to
other relations.® In addition to the integrals in (20},
{21), and (22), there are modified integrals which do
not appear in the virial expansion that nonetheless
vanish and lead to linear relations such as (23). For
disks we cite three examples:

U (&) = (2L

9 [or the hard-squave model vsed by Hoover and De Roceo?
the modified star integral,
7
L
ot
& Fnps

(]

is zero,in addition to the integrals appearing in (20), (21}, and

(22). ,

Next, we consider a three-dimensional system of
hard spheres with diameter o, All contributing modified
star integrals with four or five points are geometrically
allowed. Of the six-point modified diagrams, one dia-
gram contributing to Bs is zero for geometrical reasons
(see Appendix II),

(4 D) o
\ < >

(24)

N

For graphs with larger #> 6, more modified stars have
zero valued integrals.

4. MONTE CARLG CALCULATIONS

According to Relations (20), (21), and (22), some
of the integrals required for evaluating B; and Bs are
zero. Therefore, we can limit our attention to the re-
maining integrals. For spheres, it is necessary to evalu-
ate 5 and 22 modified star integrals for Bs and Bs, re-
spectively; for disks the corresponding numbers are 4
and 15. These integrals present formidable geometrical
problems in 8-, 10-, 12-, and 15-dimensional spaces.
We therefore evaluate them by a Monte Carlo method
using an IBM 7090 computer. To make a “trial con-
figuration” we place Particle 1 at the origin and Par-
ticles 2, «--, # randomly within a circle or sphere of
diameter (2z—2)o, with the conditions fi;u=—1
for i=1, «+., n—1. Next, the remaining distances
between pairs of particles are checked to see if any
modified stars occurring in Bs or Bg correspond to this
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TasLe II Values of Bs and the six-point modified star integrals for hard spheres and hard disks.

Values of the integralsb/5®

Contribution to Bs/6%

Coefficient Unlabeling
Star in B factors Spheres Disks Spheres Disks
—24/144 1 —(3.534£0.01) X107t —(1,3752:0.003) 400588  4-0.2292
540/144 21 —(5.66=0.04) X10°%  —(7.2840.06) X107  —0.0212  —0.0273
—240/144 5 A (2.0:£0.1) X107+ +(2.0220.7) X 1075 —0.0003  —0.0000
—1440/144 54 4 (1.87£0.00) X107 - (1.9140.02) X105 —0.0187  —0.0191
{; 360/144 19 — (4.2:£0,1) X 1074 —(3.6:£0.1) X107 ~0.0011  —0.0009
c\:; 900/144 35 —(3.4740.08) X 10~ - 5040.07) <10~  —0.0022  —~0.0010
:‘; 1[’ 240/144 10 ~(1.0520.07) X107 0 ~0.0002 0.0000
\Z\, 360/144 10 —{(1.07:£0.02) X107 —(7.740.3) X107+ —~0.0027  —0.0019
/: ”} 360/144 43 +(3.39:£0.07) X107 (1.590.05) <10~ -0.0008  +0.0004
. —180/144 H +{5.320.3) X 10~ +{(4.050.3) X107 —0.0007  —0.0005
7
{’} 288/144 8 A4 (4.93-£0.05) X107 - {4.514£0.07) 10" 4+0.0099  +0.0090
% —540/144 16 +(6.6:£0.5) x 107 0 ~0.0002 0.0000
{E E\} —30/144 1 0 ] 0.0000 0.0000
Q —240/144 5 ~{1.030.08) X 10™* —107¢ +0.0002  +0.0000
@ —360/144 24 - (6.20.4) X107 0 ++0.0002 0.0000
@ —1080/144 24 —(1.760.02) X1078  —(1.17£0.02) 10  +40.0132  +0.0088
‘\%;':? 180/144 3 —{2.040.6) X 1078 0 —0.0000 0.0000
{j} 720/144 12 +4(2.46£0.10) X107 +(1.320.3) X 1075 +0.0012  +0.0001
@ 90/144 4 +{1.340.5) X107 0 +0.0000 0.0000
@ 360/144 8 +(4.83£0.06) X108 4(3.094:0.07) 10  0.0121  +0.0077
) — —15/144 0 negligible 0 —0.0000 0.0000
ST
@ —180/144 2 ~{2.840.3) X 10~ 0 +0.0004 0.0000
i —60/144 1 1{2.62:£0.04) X102 +(1.23:0.04) X102  —0.0109  —0.0051
- .
Values for Bs/b: +0.0386--0.0004 +4-0.1992--0.0008 +0.0386  +0.1994

® The unlabeling factor is the number of ways a modified star graph can be labeled and still satisfy the Monte Carlo trial configuration conditions, fiu=fuz=
Ju=fa=fu=—1. )

b By and the modified star integrals for spheres (disks) are caleulated from 60 (38) independent batches, each of which contains 100 600 Monte Carlo trial
configurations. Fach modified star integral is the average of a number (unlabeling factor) of topologically identical but differently labeled star integrals. This is
equivalent to evaluating a particular labeled star integral using a number of trial configurations equal to ($00 000X unlabeling factor) for each batch.
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F16. 2. Plot of PV/(NET) versus Vy/V for hard spheres. ¥y is
the volume at closest-packing No®/vZ. The curves are: (1) virial
series including Bs, (2) virial series including By, and {3) a Padé
approximant. Molecular dynamics results of Alder and Wain-
wright (Ref, 12) are indicated by ees,

particlar trial configuration. For example,

(11

can be evaluated according to the following recipe:
3 4

(11])-@wm
i F4 6

|

i

/ number of trials).

(25)

In (25), bis Bs, (2n/3)0® for spheres and (r/2)6? for
disks; the factor {—}® corresponds to the number of
f functions in (25). In practice the (20) other possible

X (number of occurrences of

labelings of 11 consistent with fio=fis=fau=f5=

Jfes=—1 are counted too, and the corresponding inte-
grals are averaged. We call the number of ways a
wiggly-line graph can be labeled subject to the restric-
tion f12:f23=f34=f45=f5{1= —1 the “unlabeling factor”
for that graph. The corresponding unlabeling factors
for the other modified star graphs are listed in Tables
T and II. The unlabeling improves the efficiency of the

REE AND W. G, HOOVER

Monte Carlo method. Of the modified stars contributing
to Bs, only the configuration 7 cannot be con-

structed with the type of trial configuration we have
just described. We attempted to evaluate this integral
separately. Trial configurations were selected with the
following restriction:

f13=f14=f1a=f16=f-za=f24=f?5=f2s= - 1;

1<rp<V2{e=1). (26)
Out of 210 000 such configurations none satisfied the
required configuration. From this we conclude that
this modified star integral is orders of magnitude smaller
than those which we evaluated. We omit this tvpe of
wiggly-line integral from the B; calculation with an
error negligible relative to the uncertainty in our final
result.

Tables I and II give the results and expected errors
of the Monte Carlo calculations. The error for any
Monte Carlo integral [ is estimated by the following
formula®:

erm=c$21<<zi>—<z>>2/<g<q-1>>3a (27)

where (I) is the final Monte Carle average of [ as
obtained from ¢ independent Monte Carlo averages
{I:;) (=1, ««+, g) over batches of trial configurations.
The number of independent batches, ¢, and the number
of random Monte Carlo trial configurations in each
batch are given in Tables I and II. The estimated
errors are essentially independent of ¢ for the same
total number of Monte Carlo trial configurations.
Each of these Monte Carlo trial configurations satisfies
the restrictions of at most one of the modified stars
contributing to the virial coefficient expressions (10)
and (11).

5. DISCUSSION

Several aspects of the modified star integrals given
in Tables I and II are notable. Tirst, the complete
star integrals have the largest absolute values of all
the star integrals shown. The complete star integrals
always make positive contributions to the virial co-
efficients. Second, the next seven modified star integrals
contributing to By {Table II) give nonpositive correc-
tions. The net negative correction made by these terms

" The mean-square expected deviation of a quantity from the
exact value T is {({Iy—1I)?), where { ) denotes the expectation
operator, and {7} is the final average value over ¢ independent
values, {I;}, in the present problem. However, this deviation is
equal to o*/g, where o is the variance of 7. For a finite number of
batches, ¢ can be approximated by & defined in a finite number of
batches, i.e., #*=[(¢g—1)/¢)e* [see P. G. Hoel, Introduction to
Mathematicel Statistics {(John Wiley & Sons, inc., New York,
1954y, 2nd ed., p. 1987
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contributes significantly to Bs, and may become large
enough to give negative B, for larger values of », be-
cause the factors multiplying these graphs increase
rapidly with #. Third, the next largest integrals among
the modified star integrals are the ring graphs, which
are formed by 7 f functions and in(n—3)f functions.
These integrals give positive (negative} contributions
to B, if n is odd (even). Fourth, we see that the three-
dimensional modified star integrals which are zero in
two dimensions have much smaller values than the
other three-dimensional modified star integrals. If
only the complete star graphs are used to calculate Bs
and B for disks {“one-dimensional approximation”)},
the values of Bs/b* and Be/b° are, respectively, 8.4%
and 159 larger than the values given in Tables I and
I1. If we include for spheres only those integrals which
are not zero for disks (“two-dimensional approxima-
tion”) By/b* and Be/b® are, respectively, 0.219%, larger
and 0.179, smaller than our calculated values.

If the virial series converges to the true pressure in
the density range of the first-order fluid-solid phase
transition,®® some of the higher virial coefficients
must necessarily be negative in order to describe a
flat or looped isotherm in the P-V diagram. It is inter-
esting therefore to know the density range within which
the five- or six-term virial series is a good approxima-
tion to the complete infinite series. In Figs. 2 and 3,

o ‘ .
e Flyid o] S0l —=
24} [
2z Hard disk :’j
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Fi1c. 3. Plot of PV/{NET) versus Vo/V for hard disks. ¥, is
the volume at closest-packing, No?¥3/2, The curves are: (1) virial
series including Bs, (2) virial series including Bs, and (3) a Padé
approximant. Molecular dynamics results of Alder and Wain-
wright (Ref. 13) are indicated by eee,

2 B. J. Alder and T. E. Wainwright, J. Chem. Phys. 33, 1439
(1960).

B, J. Alder and T. E. Wainwright, Phys. Rev. 127, 359
(1962). The additional data given in Fig. 3 and Table IV are
kindly supplied to us by these authors.

Tasre III. Values of PV{NET) obtained by using the five-
and the six-term virial series, a Padé approximant, and the molecu-
lar dynamics results (MD) on the fluid branch of the equation
of state for hard spheres (Vo=Na*/v2).

Five-term Six-term
V/Ves series series Padé MDs
1.60 8.11 8.95 10.11 10.17v
1.70 7.17 7.79 8.55 8.59
2.00 5.31 5.59 5.83 5.89
3.00 2.98 3.01 3.03 3.05
10.00 1.36 1.36 1.36 1.36

® These data for systems of 108 spheres were kindly furnished by B. J. Alder
and T, E, Wainwright,

B At this density, both solid and fluid phases can occur for a system with a
finite number of particles. The phase transition from the fluid to the solid for
a system with an infinite number of particles is estimated to start at V/Ve=2 163,

these series are plotted together with the molecular
dynamics data of Alder and Wainwright.'®* Figures 2
and 3 also show the plots obtained by Padé approxi-
mants (see Appendix 111}, P(3, 3}, to PVY/ (N%T)—
V/N, using the known values of B, through Bs:

Vi PV
P = —1|=P(3,3
spheres N[Nki” ] P(3,3)

_ b(1+0.0635076p+0.0173208%%)

= 28
(1—0.5614938p+0.0813138%%) ’ (28)
vl PV
isks: — —1j=P(3,
disks N[NkT } P(3,3)
1-—0.196703bp-0.00651902%p?
~ 5(1—-0.196703bp+ 519b%%) (29)

T (1—0.978703bp+0.2394658%?)

In the case of disks, the six-term virial series pressure
is considerably below (259%) the molecular dynamics
pressure on the fluid side of the two-phase region
(V=1.312V,). We therefore expect the next several
coefficients for disks to be positive. It is interesting,
but probably not significant, to note that the sphere
B, from (28) are given by

spheres: Buaygsy/ b= 0.285152[0.62500 co0s(0.17606x)
+2.2603 sin(0.17606%) . (30)

From (30) we see that By has the first negative sign,
and the sign of the sphere B. changes roughly every
16 terms, while the disk B, from (29) are all positive,

disks: By yans/ b2 =0.489357[0.7820040.30597]. (31)

Strangely enough, the denominator of (29) is (to six
significant figures), a perfect square (1--0.4893518p)%
We note that values of the six-term virial series agree
within 1% with the molecular dynamics results for
hard spheres and disks at volumes greater than twice
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TasLE IV. Values of PV/(NET) obtained by using the five-
and six-term virial series, a Padé approximant, and the molecular
dynamics results (MD) on the fluid branch (Ref. 13) of hard
disks. (Ve=No2V3/2).

Tive-term Six-term
V/Vo series series Padé MD
1.312a 6.50 7.51 11.11 10.13
1.40 5.7 6.44 8.45 8.25
1.45 5.33 5.95 7.45 7.47
1.50 5.01 5.52 6.66 6.67
1.55 4.72 5.16 6.03 6.08
1.60 4.47 4.84 5.52 5.56
1.65 4.24 4.56 5.10 5.13
1.70 4.04 4.31 4.74 4.76
1.80 3.69 3.90 4.18 4.24
1.90 3.41 3.57 3.76 3.78
2.00 3.17 3.30 3.43 3.39

& The phase transition from the fluid to the solid for a system with an infinite
number of particles is estimated to start at V/V;=1.312,

closest-packed. The values of the Padé approximants
agree even better with the dynamics data. The agree-
ment with the fluid branch is good even at phase-
transition densities (Tables III and IV). However,
the Padé approximants do not show any maxima or
minima on the P-V diagram.

The Padé approximant method has proved to be
very accurate in estimating critical parameters for
Ising lattice problems.* % If the Padé approximants
(28) and (29) are used to estimate B and B, the
following values are obtained!®:

spheres: B7/08=0.0127, and Bs/0"=0.0040, (32)

disks: B7/66=0.115, and Bg/b"=0.065. (33)
By subtracting the six-term virial series from the
molecular dynamics PV/(NET) (Tables IIT and IV)
and assuming the remainder can be represented by the
single term B70%, we find:

Spheres: B7/6%20.03,
Disks: B7/b%0.3.

(34)
(35)

The exact evaluation of B by integrating the modi-
fied star integrals occurring in V7 is now in progress for
both spheres and disks.

14 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961).

5 T, W. Essam and M. E. Fisher, J. Chem. Phys. 38, 802 (1963).

8 P, Heller and G. B. Benedek, Phys. Rev. Letters 8, 428

1962).

( 17 C, Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1961); 3,
586 (1962).

18 The Padé approximant, P(1, 2), gives Bs/05=0.0364 for
spheres and Bg/55=0.1974 for disks. These values agree well with
the exact values obtained in this paper: 0.0386 and 0.1992,
respectively.
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APPENDIX I

This appendix gives the detailed transformation of
the star integrals into modified star integrals. To the
right of each labeled star type are listed the modified
stars arising from it. The number of ways each type
of star can be labeled is taken into account so that the
entries in Tables V-VII give the total number of times
each modified star integral appears when all of the
Mayer labeled stars are expanded and the contribu-
tions added together.

TaBre V. Transformation of the four-point labeled
stars to modified stars.

Labelings Star ! ‘ %)
3 O 3 —6 3

6 %! 6 —6

1 X 1
Totals 3 o —2

APPENDIX II

In this appendix we prove that three distinct modified
star integrals are zero.
Proof 1:

(=) =
\ nh

For convenience we take the disk diameter to be unity.
In Fig. 4 circles with unit radius, centered on Particles
1 and 2 are drawn. Particle 3 must lie outside these
circles in order to satisfy fi; fs%0. Particles 4 and 5
( fis#0—r4>1) must satisfy the conditions

7’2531,
7’35§1-

(36)
(37)

14, 15, o4, and

73 and
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TapLe VI, Transformation of the five-point labeled stars to modified stars.

NH /\ o g\‘/ \\f N N e_:_,,p Q"A\n ‘ .{/\\) S : 2
Labelings Star \ L/ bﬁ - W L X j o . oo
12 ¢ " 12 —60 60 60 — 60 —60 60 —12
60 oy 60 —120 -120 180 180 —240 60
10 S 10 =10 —30 30 30 —40 10
e
10 A 10 -30 30 —-10
>
60 PR 60 -60 -120 180 —60
v
P
30 P 30 —60 —30 90 -30
by
15 e 15 ~30 15
yay
30 q\ﬁ,t 30 —~60 30
10 Ty 10 —10
VAKX
WS
LN
Totals 12 0 10 0 0 —60 45 0 0 —6
Equation (36) restricts 4 and 5 to be within the area Proof 3:
common to the two unit circles, and the condition L
ris>1 implies #<V3. The optimum position for ( ZQ 1>5 =0
Particle 3 which will still satisfy (37) is denoted by A i

{or A7) in Fig. 4. Particles 4 and 5 must then be located
in the shaded area ABCA to satisfy (36) and (37).
However, this optimum configuration cannot satisfy
75> 1. Consequently, the corresponding integral is
zero. This proof is equally valid for any #2>3. Direct
applications of the proof lead casily to other identities
such as (21) involving the present integral.
Proof 2:

Referring to Fig. 4, we have the condition 1<rp<V3
because r{>1) must lie within the area A’'BACA’
common to the two unit circles, The restrictions 7,
716, 735, and 72622 1 place Particles 5 and 6 outside both
unit circles in Fig. 4. Evidently 5 and ¢ must both lie
below or above the unit circles to satisfy re<1. We
place them below, in the vicinity of 4. But, since both
r3 and 7y must be less than unity, Particles 3 and 4
must lie inside the shaded arca ABCA. This violates
the condition rw>1. Therefore, the integral corre-
sponding to the above configuration is zero. The proof
is equally valid for any #>>6.

£ ongd

It can be shown that the area of any cross section within
the volume commeon to three unit spheres centered at
the points 1, 2, and 3 {(and satisfying rs, 713, and
725>>1) is contained in an area common to two unit
circles whose centers are separated by at least unit
distance. However, we cannot place the triangle 436
{with 745, 745, and 75> 1) inside such an area. Therefore,
the corresponding integral is zero. This proof is equally
valid for any #>6.

F1c. 4. Disk geometry. Unit circles are centered on Particles 1
and 2 with 1< <V3.
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TasrLe VIL Transformation of the six-point labeled stars to

e

O <= Ni

moa O

A N

tasetio S0 HesS OoNDPDOKNADTOS

63 H &6 -360 180 3560 183 380 180 360 =120 ~360 36T -3¢ .30 -720 ~728 -1080 ~72G  ~180 ~80 -——
380 2 360 ~ee -360 ~720 ~ 354 360 728 WD 7200 380 1240 2160 2520 720 360

0 3 166 -360  -360 360 360 360 720 30 720 1420 180 180

180 4 9 - 180 =350  w1BG ~720 350 180 1840 180 360 10RO 1080 360 -i8¢
183 5 isg ~380 ~183 “720 180
15 [ i 18 -84 90
720 K =720 NG ~T20 0 W780 ~728 ~720 720

380 H 360 350 =360 -F20 ~120 =350

i8¢0 ¥ 140 -3¢0 730 - 180

380 10 360 »360 “F26 <380 360 -720 350
180 it 180 (€19 =360 w720

9 1z 90 =153 ~360 -9

365 13 363 =720 320 «720  -360

1B 4 15 TS
360 1§ 6% ~380
120 16 129

3o 17 360

360 i3 369

1ag 19 [

180 w0 B3

720 23 Tz

90 22 ER) 90
360 23 1¢s

368 2a sea

360 25 160

60 26 45

in 27 19

90 28 o
360 29

90 30

RIY] X

380 sz

360 33

360 54

180 35

72 2%

45 37

360 38

50 39

180 40

360 41

§5 §2

80 3

360 44

40 45

lag 46

3¢ 47

to 48

20 43

180 50

186 L4

rE 52

60 53

45 54

= s o
¥ E1

Tatals 2] o 6 180 [T o 13 ¢ 350 90 w720 ° o e 9 [ 3 3 e -1B0 0 1030 340 240 40 2

* The sbove 56 types of six-point stars are listed in the same order as in Appendix X of Ref. 7,
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OO VN A SOOAMAN O YIMAITIHAAA ATIAL 1A 11
380 S8 7IC Y20 108D 1440 366 ZA0  Ia0 10U 360 360 ~10 «(80 360 -2eiG 380 -J340 -9D0 383 526 IN0C 2520 240 1086 -i280 340 ~60
S1083  ~350 ~2160 -1440 3600 -366C 7200 ~1082 =360 1080 540 1080 8640 720 5300 ~360 7560 -9720 -1CBD  BOID 5040 2880 250
~363 -360  -720 40 ~T20 -2160  -720 -3160 -l060 720, 20 180 3960 1080 1800 1980 -TI0 -360 -3249 ~3400  -360 2520 2520 -1440 80
~360 -1080 -1050 ~1B00 1083 <383 Ji50 -2380  -360 1080 1808 180 Y20 3960 720 2T60 1440 720 -bU -3420 -5040  -540 2520 2330 2440 180
T2 S50 720 360 TR 36 360 ~108a ~180 ~380 -330 360 TR0 360 2520 2520 130 -2150 -1620 1260 180
e ~180 ~45 6D ~60 180 60 £0 I80  ino 45 ~180  -33%F 105 -1%
g0 720 2160 21BG 1440 e Te9 2160 720 -1440 ~5760  ~720 1440 -8640 -1440 -2860 2884 D180 T30 9360 12240 FIB 7320 -7200 5040 -720
1080 720 7200 1800 TAY R0 360 350 1440 -10B0 -2R80  -360  -360 -3950 =360 -2560 <TI0 J0BO 360 5040 $400 720 3960 -3BD0 2520 -360
185 120 360 1440 ~1440  ~360 18846 -2160  ~34A0 360 %20 2880 540 -1800 -31988 1260 -180
?20‘ 360 1082 1440 250 $440 360 ~1800 -1B00  ~360  -T20 -Z850 -1080 -2B80 -1080 1080 726 4220 5760 720 -3960 3600 2520 360
a3 360 182 1086 -1080 ~i8% 360 -2320 «1440 -72% 380 2340 3240 360 1800 ~1880 1266 180
94 143 360 150 360 544 <180 380 ~i80 -T20  -548 360 -810 180 180 728 13%h # -%00 040 838 -90
(% Tz 720 1840 Vi6 340 2680 3O ~720 1440 «T20 «4320  -720 2660 ~1800 720 36D 3960 6340 Tz0 -3600 ~3¢B0 2520 -360
186 45 -59 ~&)  ~180 180 458 ~9¢ 13
720 ~728 1800 Y440 360 1446 360 <1080 ~720 ~3600 -1800 3600 1800 -2160 345
«340 360 ¥iI0 360 340 ~360  -120 -1080 w728 120 1080 720 -720 14§
<720 -368 2160 260 1440 1080 360 720 ~3240 -2860  -360 2880 2520 -2160 360
~F80 720 ~369 F20 1440 360 2520 360 ~T20 w368 -3800 2520 3240 2160 -2160 360
360 ~120 720 1§30 360 1080 60 360 ~1440 ~1800 1440 3260 ~1080 i
- 180 340 -26¢ -i80 180 720 ige 720 360 540 -360  ~180 -1080 -1%80 1440 1260 -13EC e
~720 -7 ~720 -T2 70 ~T20 1440 2160 720, 2860 720 2160 T20 ~1440 V20 -53D40 -6480 730 5760 5040 -4y 70
~360 -90 359 90 1ao 188 840 -180 <180 -340 -T20  -MA0 TR0 630 340 as
~360 ~720 “360  -720 1080 360 1440 2160 3606 .30 ~2880 <3240 -740 2520 2880 2160 350
~360  ~T20 -360. -720 720 360 2520 1988 720 ~%60 <E520 «396¢  -360 2520 2BRO 2183 30
%60 ~360  -360 ~T20 ~360 360 368 360 1440 TIG 1080 I0BO 360 ~3560 -1BOG .4320 380 2520 2683 <2160 iy
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-360 -%0 146 FE) 540 «Fin  ~180 450 -3
260 720 -7 360 720 360 1800 720 ~2520 -1080 (360 ~360
50 ~350 ~34) i80 360 3640 w541 ~360 A5G R
360 ~720 w360 720 360 2160 1080 ~2140 1440 IRDG 360
350 =360 =360 =720 -360 360 3600 1440 1443 ~2160 - 1440 1800 360
362 ~720 ~360 ~730 360 1240 1440 360 -1800 -1BOG 1808 -340
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APPENDIX II1

This appendix indicates the general method for ob-
taining Padé approsimants to the virial series.

We define the Padé approximant to PV (N%T)—
V/N by the relation

W. G. HOOVER

where # and m are positive integers and the expansion
of (38) reproduces the virial coefficients up to Bpim.
The virial expansion of PV/(N%T)—V/N is given
by the following equation,

[PV/(NET)—1](V/N) =3 B, (39)

Pn,m) =73 aip™Y/ D ap®, a=8,, a=1, (38) The coefficients a; and a; can be evaluated from (38)
=1 =t and (39), which can be written in the equivalent form:
€ n—1 € m—1
; 1 0 0 -B 0 0 a | [ B
0 1 v - Bs — Bz 0 22 B4
n—1 .
L 1o 1 —B, ~Bny @ | = | Bapa (40)
1 0 O - Bn+1 - Bn (243 Bn+2
m—1| 0O
i .
,; 0 fEvovet 0 "'-B%-{-m—l "Bﬂ-f-m—% “"Bn J X | Bn—}-m
The recursion relation
Be=~2 Brixi, k>n+2 (41)

§==2

can be used to estimate higher virial coefficients.

—

—
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