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The usual graphical representation of the virial coefficients is reformulated in terms of graphs containing
not only Mayer f functions, but a soj’ functions [f=f41=cxp(—¢/2T)]
This reformulation has three main advantages:

(1} The number of integrals of topological graphs contributing to the virial coeflicients is reduced;
this simplifies numerical calculations.

(2) In Mayer’s formulation none of the star integrals contributing to the virial coeflicients (for hard
potentials, at least) could be ignored; each made a nonnegligible contribution. In the new formulation
(again, for hard potentials) many integrals make negligible (or even zero) contributlions; the extensive
cancellation of positive and negative terms found in Mayer's formulation is reduced,

(3) Several new ways of summing the virial series by successive approximation are suggested by the
new formulation. One such way is worked out, in the first three approximations, for gases of hard parallel
squares and cubes; the third approximation reproduces the first five virial coellicients exactly.

The reformulation is not restricted to the virial series alone. We also gencralize our treatment to the radial

1965-2

15 SEPTEMBER 1964

distribution function. It can be applied to any series whose coefficients are integrals of graphs.

I. INTRODUCTION

Tﬂ‘{I’LRI\IE\IT AL measurements of the pressure £
i¥ of an N -particle system in a volume V and at a
temperature 7" are conveniently expressed in virial form:
N

:Z;: p=1 (1)
The B, are the virial coefficients and % is Boltzmann’s
constant. The first few virial coefficients can be deter-
mined from experimental compressibility data.

Mayer and others! were able to derive (1) for classical
systems of particles with a pairwise-additive potential
¢ in the specific limit that ¥ and V are infinite, with
fixed ratio p. When the series converges, the nth virial
coefficient B. is proportional to a sum of integrals of all
the labeled topological stars of n points,

(S]] 1§,

{The notation used in this paper is found in the
Glossary.) Using the notation { ), to indicate

= [ Oar,

B, can be written in the following way:

(1 n) s

an Z(S[r"]>n (2>

Each n-point star represents a complicated function of
the coordinates of # particles [1*]. The lines in the stars

*This work was performed under the auspices of the U.S.
Atonnc Energy Commission.

1], E. Mayer and M. G. Mayer, Statistical Mechanics (John
Wiley & Sons, Inc., New York, 1940); H. D. Ursell, Proc. Cam-
bridge Phil, Soc. 23, 685 {1927) M. Born and K. Fuchs, Proc.
Roy Soc. (L ondon) Al66, 391 {1938)

join pairs of Points ¢ and 7, and the occurrence of such
a line stands for the Mayer f function

fii= exp(—ou/kT)— 1.

As an example, the 10 S r*] contributing to the fourth
virial coefficient are shown in Fig. 1. They are of three
different topological types (we indicate types of stars
by S{nl]), so that three different kinds of integrals
need to be evaluated in the computation of the fourth

X X

X X

Fic. 1. The 10 labeled stars of four points, The numbering
convention for the points is the same for each star

G

Notice that the stars are of three different types, S1T=10; §¢¥=3.

virial coefficient for a given potential function ¢. Intro-

ducing 8{#] for the number of ways a star of the ith

type can be labeled, we can write (2) in the following
form:

n} i N

B.= 2L 1(S D) (3)

The number of types of star integrals in B, according

to Mayer’s formulation is a rapidly increasing function?

of 12, which probably has the asymptotic » dependence

3R. J. Riddell, Jr. and G. E. Uhlenbeck, J. Chem. Phys. 21,
2086 (1953).
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Srimu2et-ii /0 The quantities S22, S%, ««+.5% are
1, 1, 3, 10, 50, and 408, respectively.

Caleulations for hard potentials show that the net
contribution of positive integrals to Bu.ye is roughly
equal to that of negative integrals. Separating the
positive and negative terms in (3) gives Bg/(By)4=
7.902—7.793=0.110 for hard spheres®* and 0.364—
6.352=0.012 for hard cubes.® The final value of B, is
small in comparison to both the positive and negative
contributions, being about the same order of magnitude
as the contribution of the smallest star integral [0.024
for spheres and 0.020 for cubes in the case of B/ (Ba)* .

In the following section we introduce the f function
[Je=f+1= exp(—¢/kT)]. This “f wiggle” function is
indicated graphically by a wiggly line (as in Fig. 2). We
then write B, i terms of modified star infograls which
contain both f and f functions, with each n-point modi-
Jied star containing (4) f and f functions in all. The
number of integrals which must be evaluated for a
particular B, is considerably reduced, being 2, 5, 23,
and 1718 for » equal to 4, §, 6, and 7, respectively. The
excessive canceliation is also reduced. When B/ (Bp)4
15 evaluated using modified star integrals, separating
the positive and negative terms gives 0.158—0.048=
0.110 for hard spheres and 0.120—0.108=0.012 for
hard cubes,

For hard particles the two kinds of lines (f and f)
restrict particles to be overlapping and nonoverlapping,
respectively, In the Mayer stars some pairs of particles
are restricted to overlap by f functions, but the overlap
or nonoverlap of the other pairs {(for which no lines
appear) is unspecified, The removal of these degrees of
freedom results in the reduced cancellation shown above
for spheres and cubes.

All of the Mayer star integrals are generally nonzero,
while many of the modified star integrals are identically
zero for particular choices of potential function ¢. The
number of zero-valued modified star integrals contrib-
uting to B, increases with # and decreases with dimen-
sionality. For one-dimensional hard lines all but one
of the contributing modified star integrals are zero,

In the Maver representation the complete star
integral gives the smallest contribution to the #th virial
coefficient; in our reformulation, this integral gives the
largest contribution of all the modified star integrals to
the hiard sphere and cube virial coefiicients through By.

In addition to detailing the reformulation in Sec. 111,
we give a graphical interpretation of the coefficient
associated with each kind of miodified star appearing
In B.. In Sec. 1V we cast our results in a more trans-

58, Katsura and Y. Abe, J. Chem, Phys. 39, 2068 (1963). The
value of Bs/(Be)4, 0.1097-£0.002, found by these authors for
hard spheres agrees with that found by us (Ref. 4), 0.1103:4
0.0003.

1 1. H. Ree and W. G. Hoover, J. Chem, Phys. 40, 939 (1964).

5 W, G. Hoover and A. G, De Rocco, J. Chem. Phys. 36, 3141
(1962). ’

8 We are calculating values of By for hard spheres and disks
using these modified stars.
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parent series form. Truncating this scries, we obtain
approximate equations of state for gases of squares and
cubes by summing over a small number of infinite sets
of modified star integrals. A similar kind of summation
appears in determinations of the equation of state from
approximate integral equations for the radial distribu-
tion function. In Sec. V we show how to gencralize our
treatment to the number density expansion of the radia)
distribution function. Section VI is reserved for con-
cluding remarks and a discussion of our results.

II. GLOSSARY
Meanings of symbols used, given in order of their
introduction in the text.

_Z [ wiggle function, exp[—¢/477]
J Mayer f function,

J=1=[exp(—¢/RT) ]~ 1=f

¢ pairwise-additive

function

product of Boltzmann’s constant and abse-

lute temperature

£ pressure of system

N number of particles in system

V' volume of system

B, coclhcient of p™ in the number density ex-
pansion of P/k7T; B, is the nth virial co-
cilicient

interparticle  potential

kT

p number density, N/V
Si{r] the7th labeled star of n points
57t the total number of different labeled stars
of n points
( )» integral operator: V=1 { )dre{or stars and

modified stars, [v( }dr® {or doubly rooted
graphs and modified doubly rooted graphs
r*  the coordinates of n particles

Si{n] the ith type of n-point star
87 thenumber of ways of labeling the ith type
of #-point star
S5"* the total number of different types of
N stars of » points
Si[r*] the ith labeled modified star of 2 points
dn] star content of an n-point modified star of
N the ith type
Si{n] the ith type of n-point modified star
87, ] a Mayer star with f functions forming a

subset of those in S;[1"]
»S; the total number of Mayer stars with f func-
tions forming a subset of those in S;[ 1]
the number of f {functions in 8;{r*] which
are not in 8 7, "]
number of f functions in a wiggly-line graph
the number of points connected by wiggly
lines in a wiggly-line graph
the complete star integral,

v ﬁfﬁfff";
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& is also used (in Fig. 8) to indicate

(fm)“’_/: [

fI f,',‘drz‘ . ‘dl'y,.{,.g
<5
k(3

B.{(1) first approximation to By, exact for n<4

B.(2) sccond approximation to By, exact for <5

B,(3) third approximation to By, exact for n<6
¥ function of p,

<0

fea)
g{r) radial distribution function
gn(r) coeflicient of p* in the number density ex-
pansion of g(#) exp[o(r)/RT]
R{r*7] theith labeled doubly rooted graph of n+42
peoints with Rootpoints 1 and 2
Ri{n+2] the ith type of doubly rooted graph of n+2
5 points with Rootpoints 1 and 2
RLrv+] the ith labeled modified doubly rooted
graph of #-+2 points with Rootpoints 1
. and 2
E{n+2] theith type of modified doubly rooted graph
of #n-+2 points with Rootpoints 1 and 2
r;{#] the number of ways of labeling the 4th type
of doubly rooted 142 point graph
Rt the total number of different labeled doubly
vooted graphs of n-+2 points with Root-
points 1 and 2
R*t the total number of different types of
doubly rooted graphs with Rootpoints 1
and 2
&l n] the doubly rooted graph content of an 742

»oint doubly rooted graph of the ith type
§ the crossed-line function, f=1=7—f.

w [(n—1 171

v {(n—k}!
III, REFORMULATION OF THE VIRIAL SERIES

In a previous publication? we described a new method
for writing cach virial coefficient in terms of modified
star integrals. This method starts with Eq. (2), which
expresses 53, in terms of labeled star integrals, and sys-
tematically introduces into each S r"] the identity
J—f (=1) {or cach pair of points which are not con-
nected by f functions in that star. When these factors
of /—f are multiplicd out, cach Mayer star is expressed
as a sum of modified stars, each of which has (3) lines
(counting both f and f functions). We indicate the set

of labeled modified stars by {S.{r*] | 1<i< S}, There
is an obvious one-to-one corre‘spondence between S 1]
and S [r 71, such that both have identical f functions.
Combining the modified star expansions of all labeled
Mayer stars of » points gives B, in terms of modified
star integrals. The results of this expansion are note-
worthy; the number of integrals appearing in the new
expression for By, is considerably reduced from the num-
ber appearing in the Mayer expansions. The new ex-
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pressions, for # less than 7, arc given in Tig. 2. In this
figure, and throughout this paper, we use the conven-
tion of drawing only the wiggly-line graph corresponding
to a particular medified star. The wiggly-line graph
consists only of the lines which represent J functions in
the modified star; the lines not drawn are understood
to be Mayer [ functions, This convention has the
advantage that a single type of wiggly-line integral can
be used to represent an infinite class of corresponding
modified star integrals. For example,

(1]

( ? ‘f )Equf‘?-rl-'*fnfi='>f‘zaf~2.=fzsfx,;f:;;fﬁzz’ri‘,

[

) =} I/flzfx'sfufzsfzafsadr‘

The expansion of the Mayer stars by introducing
products of the form [[[f—/] is somewhat unsatis-
factory; in order to determine how many times a
partlcular modified star S, r*] contributes to B, it
is necessary to expand all of the Mayer stars of » points.
We have sought and found a more satisfactory way to
determine the coefficient, @[], which multiplies each
of the modified stars of type S.[7]in the full expansion,
Notice that a partlcular modified star §;[r"], chosen
to be of Type SJ{n], is produced only by expanding
those Mayer stars whose f functions form a subset of
the / functions in S;[ 1. Let us call this set of Mayer
stars {&[7, ]| 1<k ,,S,}, and denote by A/ (>0)
the number of functions in S;[r] but not in 8&[ 7, r*].
It is clear that the 8:[ 7, r"] are exactly those stars which
can be formed by removing Aj;,f functions from those
in S;{r*]. We sece that @[] is given by the expression

nSi

aln]= 2 (=)

Ke=]

(4)

the minus sign appears because the expmsmn of
H(jﬁf) introduces f functions together with minus
signs into 8. 7, r"}. Equation (4) can be expressed by
the following rule; Count the number of labeled Mayer
stars <ohich can be formed by successively removing
0,2,4, -+ -f functions from the f functions of any modified
star S;[177] of type Si(n]; then substract the nuwmber of
labeled Mayer stars which can be formed by removing
1,35, «f funclions from the f funclions of the same
modified star. The resulting number {which can be posi-
live, negative, or zero) is @;[n]. We call & #] the “star
content”” of the modified stars of type S;[n]. hnowmg
the @[ n ], we can express the sth virial coefficient in
terms of modified star integrals:

St

— 2 S a5

B,=

| ”) Zs [ ja ) (8n ) m

il

(5)
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{Ss{rfl=[1x1]e
(Srgi={-2x118 +01x3 | |
(S[eY=(-ox118  +[ax1s) | | +[-2x30] 7 +[1><10]‘S +oxiz {7

(S]] =[24X 11
+[16x15] ] j ;
+oaxasy | ]
+[3X360] 6

+oxas] X

+[-12xa5]} | +8x180) ":‘ +[—4><60]“§f‘ +[—4><7sz
+L—axo0] A A +0-sxason} [l r-exoon A\ Jr - ixas01
coaxiso] SNT +mxaog AA +rexesy  +oixasas )
+-2x90] [N] | +D-2x360] {3} +0-1x901] P +0-2x 1803‘@
+0xi80] £y +ixea] 43

F16. 2. The modified stars of 2, 3, 4, 5, and 6 points resulting from the expansion of [8,[4]}, {5.[5]}, and {S.[6]). {5:[2]} and
{5:03]} are identical with {$:[2]} and {S:{3]], respectively. The number of times a particular type of modified star appears in the
full expansion, &[nJX&{n], is prefixed to each topological type of modified star.

Notice that whenever any @[n] is zero, the corre-
sponding modified stars of the 7th type make no con-
tribution to the #th virial coefficient. All of the types
of modified stars of less than seven points which have
nonzero star contents d. 7] are listed in Fig. 2. Five
modified star types for which @.[6] is zero are illus-
trated in Fig. 3. Notice that the number of types of
contributing six-point modified star integrals is 23,
while Mayer's formulation gives Bs as the sum of 56
difierent integrals.

A particularly useful result relates @,[n ] to d,[n—1]
when the modified star types S;[7] and §,[n~1] have
the same type of wiggly-line graph. This result,

aln]= () n—2]Jan—1], (6)
can be established by generalizing the proof of a closely
related theorem due to Hoover and Poirier.” Using (6)
recursively, one has the further relation

aln]= (=) DD arm)n—2) Y im—2) 1,

m<n;
(7

where 2z is the least number such that there exists a
nodified star Sy[r™] which has a wiggly-line graph of
the same type as Si[#]. Examples of both (6) and (7)
can be found in Fig. 2. From (7) we see that whenever
an m-point modified star of the jth type has zero star
content, then all higher-point modihied stars with the
same type of wiggly-line graph have zero star content
and do not contribute to the virial coefficients.

Mo, Ao O

Fic. 3. Five modified star types which have zero star content.
ﬁci61=0.
7W. G. Hoover and J. C. Poirier, J. Chem. Phys. 38, 327
{1963}, Appendix ITL

Figure 4 shows several general wiggly-line graphs
which correspond to modified stars of zero star content,
These modified stars all have nonzero integrals for one-
dimensional hard lines. However, because their star
content is zero, these integrals do not contribute to B,.
Other than {(&)., no wiggly-line graph contributes
to B, for one-dimensional hard lines [see remarks
following Eq. (10)]. We prove that the first of the
wiggly-line graphs in Iig. 4 has zero star content,
leaving proofs for the others to the reader. Accordingly,
consider the labeled wiggly-line graph shown in Fig. 5.
This type of graph appears in the modified star graphs
of » or more points, so that according to (7), we nced
only to calculate the star content of that particular
n-point modified star which has the wiggly-line graph
shown in Fig. 5. Let us call that modified star S;[r*].

jl ll

12 ------- Jk-l. }2 2
jl Jk I 1
{ \

‘\\ I’

jk-l ) .
(A) I o K

(B) k

i-point
=7 complele star
772
. j~point

complets stor
S k-point
complate star

Fi1c. 4. Some general wiggly-line graphs which correspond to
modified stars of zero star content. In (D), points in ¢ and b are
connected to those in ¢ by f functions, but points in @ are con-
nected to those in & by f functions.
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4

Fis. 8. A particular labeled (#-2)-point s

wiggly-line graph corresponding to an n-point
modified star Si[n] with zero star content,

nel
n

2

Each Mayer star that we can make by removing f func-
tions from those of S, "] either contains or does not
contain the f function fo:. Because each Mayer star that
we make must contain both fi; and fy, there is a one-to-
one correspondence between stars with fy and stars
without fz. Because corresponding stars contribute to
(4) with opposite signs, the sum vanishes and the star
content of S,[r™] is zero.

Using (7) we need to calculate the star content for
only one member of each set of corresponding modified
stars {those with the same type of wiggly-line graph),
namely that member of the set with the least number
of points, s, The contribution of this entire set of modi-
fied stars to all of the virial coefficients can then be
written down immediately:

P -1- §< -) G -G &]-[?ﬁ]@,-l:n] (Si[?l]) . ’
v (m—2)1

# gma]

(8)

where j is chosen such that S;[m] and S;[#] have the
same type of wiggly-line graph.

From (8), we sce that the contribution to B, (for
repulsive potentials) of a particular type of wiggly-line
graph has the same sign for any #>m, since Si[#] has
the sign

(~) (’2‘)“"’
where 7 is the number of f functions in the corresponding
wiggly-line graph. The number of ways to label Si[#]
can also be represented in terms of the number of points

# connected by wiggly lines in the corresponding wiggly-
line graph and the number of ways to label S;{m]:

8, [n]= (:)3.‘[1}3]. (9)

We see from (8) and (9) that the # dependence of a
particular type of wiggly-line integral in B, is

)P E0. )
(n—p) |

Thus the combinatorial aspects of the reformulation of
the virial series are solved. In the next section we show
how to cast our results {5)-(9) into a general form
which can be summed (term by term) over #, giving

1639

a set of successive approximations not only to B,, but
to the equation of state itself.

IV, SUCCESSIVE APPROXIMATION TECHNIQUES

Using the results of Sec. 111 it is possible to formulate
scveral successive approximation techniques for the
equation of state and for the virial coefficients. We list
the three most obvious of these, and apply the results
derived in Sec. III to gases of hard parallel squares and
cubes. From Fig. 2 we see that only the complete star
integral in which all lines are f functions [denoted by
(&) ] contributes to By and By, while B, includes the

additional integral
and By includes
AN 22
( — ), ( . ), and (Q)

as well. Therefore, a natural way of approximating the
virial series is to include all wiggly-line integrals which
contribute to a particular B.. The lowest-order approxi-
mation (exact for By and B;) includes only the complete
star integral (&), in B, and can be written

”

Bo(1) = (= )H(B)u/m, ;E@ a1, (10)

The factors multiplying (&), arise because &[n] is
— (= )*(n—2)! for the complete star [from (7)],
while 8,7 ] is 1. For hard one-dimensional lines of unit
length, {Zf}, is known to be (—)*s, so that B, is +1
for all # and the equation of state is

PV/NET=(1-p), 0<p<], (11)
as Herzfeld and Mayer showed® by a direct integration
of the canonical partition function for this system.
Equation (10) gives their derivation a graphical
meaning. The second approximation, exact for By, Bj,
and By, is

n=8.0-05"7)(] | ), w>1a2

while the third approximation, exact for B, through B,
is

=B - (2" )

(A 2)H2)AD) =
(13

* K. F. Herzfeld and M. G. Mayer, J. Chem. Phys. 2, 38
(1934).



Tasre I Values of modified star integrals and contributions to B, for hard parallel squares and cubes of unit side length

Wiggly-line

( )(;)

Correspouding modified star integrals ) (-

Contributions to B,

graphs Squares Cubes Squares Cubes
& (n>2) n? n? 7 e
8 24 (nt—n+2) (n—2) (n—23) 3(n—2) (n—3) {n2—n-+2)
z % (n>4) - —_— - -
(n—1)2 (n—1)3 2(n—1) 2(n—1}?
§ (n25) 16 48 (n3— 212+ 3n—4) 4(n—3) (n—4) 4(nd— 224 3n—4) tn—3) (n—4)
»f\\ e (n—1)*(n—2) (n—1)3(n—2)1 3(n—-1) (n—1)(m—2)
‘ 288# dn(n—3) (n—1)
& % (n>3) 0 0

o

(n-—-l)‘(?:——-Q);

40(2n—5) 60 J i 13 11

e n—=22(1—=3)2 (i—1) (1—2) (n—=3) | n—1 n—3 (n—1)?

3 3

- .{,‘
(n—2)% (n—3)?

22n—5)(n—4)

In—-1(n—2)(n—3)

(D2

( 4)J {1 13 it
n—
|

1
A=l n—3 (a—1)?

8 3
L }
(n—2)* (n—3)?
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In each of the Egs. (10), (12), and (13), the @[] and
8. n] have been combined with [(1—2u)/nl] to give
the numerical factors muitiplying the wiggly-line inte-
grals. Other successive 1pproxinmtion schemes can be
Pased upon (i) the inclusion of all wiggly-line integrals
containing fewer than a given number 0{ J functions,
or (i) the inclusion of all wiggly-line integrals whose
§ functions connect less than a given number of points.
All three of the suceessive approximations converge to
the exact virial equation of state as the order of the
approximation is increased. For particular potentials,
still other kinds of approximations may be worthwhile.
It appears possible to sort out those modified star inte-
grals which make the most important contributions to
the equation of state at high density. Combining the
highest-order terms should give a reasonable approxi-
mation to the behavior of the high density virial equa-
tion of state,

The mathematical simplicity of the hard square and
cube potentials makes it possible to evaluate the mod-
ihed star integrals as functions of n. Details of the
evaluation appear in the Appendix. The results, for
the five kinds of wiggly-line integrals contributing to
the first five virial cocficients, are given in Table L
Tables 1L and I11 also include the contribution of cach
kind of wiggly-line integral to B, for n<8; notice that
the third approximation (13) gives reascnably accurate
values for By (where 18 integrals are omitied from the
exact cquation by the approximation) and B {where
166 Integrals are omitted). Because, in each of the
approximations (10), (12), and (13), all virial coefi-
cients are given explicity as functions of 7, it is possible
to obtain corresponding approximations to the virial
equation of state. For hard squares and cubes the
resulting equations of state are plotted in Tigs. 6 and 7
[the seven-term virial expansion is shown for com-

I f i | i
16— —
9= SR—
1.{+} i
. 2{¢ n}
| s {2 220} _ ]
P ® SEVEN~-TERM VIRIAL
alz EXPANSION
HE St —
! | 3 I
0z ) 08 0.8 1.0

PE_

Fic. 6, Equations of siate for hard parallel squares of unit
side length, using modified star integrals. The curves labeled
1, 2, and 3 are based upon approximations (discussed in the text)
which reproduce the first three, four, and five virial coefficients,
re~pc€t1vcly The seven-term virial equatxon of state from Ref. §
is included for comparison. The number density is 1 at the

close-packed volume V.

SERIES FOR CLAS

SICAL FLUIDS 1641
I I I
16~ —
9 - -]
1 {s}
t 4 - z'{"“}\ _
S {2,200} .
‘:iz ® SEVEN-TERM VIRIAL
EXPANSION
[ bl -
3
L ! ! ! i
0.2 04 08 o8 Lo

P

I'16. 7. Equations of state for hard parallel cubes of unit side
tength, using modified star integrals. The curves labeled 1, 2, and
3 are based upon approximations discussed in the text which
reproduce the first three, four, and five virial coefficients, re-
speclively, The seven-term virial equation of state from Ref, § is
included for comparison. The number density is 1 at the close-
packed volume V.

parison]] and given analytically below:

(1) P/kT(squares)=p{1~p)72, {14a)
P/ET (cubes) =p(1+p) (1—p) 3 (14b)

(2) P/RT (squares) =p(1-+p—15p%) (1—p)~
+oln(l—p), (15a)

P/kT(cubes) =p{14p—13p*—13p%) (1—p)~2
—~6pIn(1—p)—6py; (15b)
(3) P/ET (squares)=p{1+6p—T3p*—3p%) (1—p)~2

+p(6+130+35%) In(1—p), (16a)
P/ET (cubes)
=p(1—98p+2885p*— 276§p*+611p*+15%p%)

X (1—p)344p(—24-+6p-+3p%) In(1—p)

+p(3—16p—3p%)y; (16b)
where y is defined by the expression
== ]
y”z"Zp"n‘2=/ in(1—p)d Inp. (17)
fi==] r

For both squares and cubes the third approximation
(16) to the cquation of state {exact for the first five
virial coefficients) exhibits a maximum in pressure, and
predicts negative pressures at higher densities. It may
be that this represents the true behavior of the virial
expansion of such systems; another possibility is that
higher approximations will contain large positive terms,
so that taking these into account gives either (i) a van
der Waals wiggle, or (ii) an isotherm which is monotone
increasing with density.



Tasre IT. Contribution of various wiggly-line integrals to B, for hard squares. B,{1) reproduces exact values of B, up to n=3. B.{2) reproduces exact values of B, up to n=4. The
expression in the next-to-last column, Ba(3) reproduces exact values of B, (Ref. 5) up to n=35.

» () AN (D)

(o 1)

IR ®)

7 B.(1) Ba(2) B.(3) Exact
2 2 0 0 0 2 2 2

3 3 0 0 0 3 3 3

4 4 —1/3 0 0 3.6667 3.6667 3.6667
5 5 —27/36 —24/36 5/36 4.2500 3.7222 3.7222
6 6 —54/45 —72/45 7/45 4.8000 3.3556 3.0230
7 7 —100/60 —160/60 9/60 5.3333 2.8167 1.6306

Tasre II. Contributions of various wiggly-line graphs to B8, for hard cubes. B, (1) reproduces exact values of B, up to n=3. B,(2) reproduces exact values of By up to n=4.
The expression in the next-to-last column reproduces exact values of B (Ref. 3) up to n=3.

o CH) () ()

() E ) e AEAD)

n B.(1} B.(2) B.(3) Exact

2 4 0 0 0 0 4 4 4

3 9 0 0 0 0 9 9 9

4 16 ~14/3 0 0 0 11.3333 11.3333 11.3333
5 25 —1782/144 —2064/144 —120/144 8217144 12.6250 3.1597 3.1597
6 36 —1728/75 —2844/75 —108/75 479/75 12.9600 —20.0133 —18.8796
7 49 —44000/1200 —83840/1200 —2240/1200 762771200 12.3333 ~53.0442 - 43.5054
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16, 8. The modified doubly rooted graphs of three, four, and five points resulting from the expansion of {RJ3]}, ER;E}{]% and

(R:{5]). The number of times a particular type of modified doubly rooted graph appears in the full expansion a;

n X tin] is

prefixed to each topological type of doubly-rooted modified graph. Open circles indicate Rootpoints (Points 1 and 2). Whether or
not open circles appear in the doubly rooted modifted graphs, Points 1 and 2 are not connected by an f function.

Equations (14) through (16) show that the partial
summations of wiggly-linc integrals converge up to the
close-packed density {p=1). For squares the difference
between {14a) and (16a) is less than 109, for all
densities less than half the close-packed density.

V. REFORMULATION OF OTHER SERIES

As pointed out in the introduction, our reformulation
can easily be generalized to the radial distribution func-
tion. Any serics expansion in the fugacity or number
density whose coefficients are integrals of products of
f functions can be so treated.® We will quote some re-
sults for the radial distribution function g{r), defined by

) (22 )= 14 355,
e

Mayer and Montroll'® showed that each g.(r) can be
written as a sum of integrals (over the coordinates of
the # particles 3, 4, «++n+2) of labeled doubly rooted
(Rootpoints 1 and 2) graphs of n+2 points. Fach of
these graphs will become or remain a star if the f func-
tion joining the rootpoints, fi, is added to the graphs.
We denote the graphs by [R,[r**] | 1<{< R, types
of topologically different graphs by

(Rn+2] ] 1<i< R,

and the number of ways to label R{r*?] by vln ]
Then we have the relations

(18)

ot

an(r) = ()Y [ RLE™7 0 - dTnss,

FE

ot
= (n)" o v [nJ(R{n+2])

=1

(19)

By introducing f-—f for each pair of unconnected points
in R{r**}{omitting the term fi;—f;2) we have a re-
sult for ga(r) analogous to (3) for B,:

pnt

()= <n!)-1Z{m&z]&-[aj(ﬂ-[nJrz])n. (20)

# Specific functions that can be treated include the fugacity
scries for the pressure and the number density, series for the
surface tension LA, Bellemans, Physica 28, 493 (1962) ], series for
s-particle ‘distribution functions, and series for s-particie poten-
tials of mean force.

1 1, E, Mayer and E. W. Montrol, J. Chem. Phys. 9, 2 (1941},

The modified doubly rooted graph integrals Ril n+27 and
the doubly rooted graph conlents &fn | are defined by
analogy with the virial cocfhicient treatment, The re-
cursion relation for &{#n], analogous to (6) for @n],
becomes

&(n]=(—)"maln—1]. (21)

As examples of the reformulation of the radial dis-
tribution function, the modified doubly rooted graph
integrals contributing to gi(r), g(r), and g(r) are
listed" in Fig. 8. Again the number of integrals to be
evaluated is reduced; a similar reduction occurs if the
potential of mean force rather than g(#) is reformulated.

VI. CONCLUDING REMARKS AND SUMMARY

In the preceding sections we have presented a general
method for reformulating the virial series and the radial
distribution function in terms of graphs containing not
only f functions, but also f functions. The original mo-
tivation for this work was to simplify the Monte Carlo
calculation of virial coeflicients for hard spheres.® Be-
sides reducing the number of integrals to be evaluated,
the reformulation produces a set of integrals of widely
different values, some being much larger than others.
For hard disks, for example,* 8 of the 23 modified star
integrals contributing to the sixth virial coefficient are
identically zero. Our reformulation is also of value for
more realistic potentials, such as the Lennard-Jones-
Mie or exponential-six potentials, except at low tem-
peratures. At very low temperatures neither the Mayer
formulation nor our own promises accurate virial co-
efficients by numerical techniques.®

Equation (5) has a form adaptable to Monte Carlo
calculation of virial coefficients for gases interacting
with hard potentials. This can be done with a high speed
computer by placing Particles 2, +++ nat random (1 at
the origin) in a sufficiently large volume [large enough
to accommodate all geometrically accessible configura-
tions in (Si[#])»]. Each configuration corresponds to
many Mayer stars but to at most one modified star.
The star content of a randomly selected modified star
can be found by using the adjacency matrix?

1N, Kecler and F. H. Ree are currently working on the calcu-
lation of gs{r) for hard spheres and disks using our reformulation.
B Unpublished work.
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The ieasibility of making successive approximations
to the virial coeflicients, radial distribution function,
and cquation of state, through the neglect of certain
wiggly-line integrals has been demonstrated in the case
of parailel hard squares and cubes. Such caleulations
can also be made for various lattice gases; {for particular
chulces of lattice gas interparticle potentials, a great
number of the modified star integrals vanish, Tor
example, in the case of a two-dimensional lattice gas
of hard particles covering four sites on a plane square
lattice, the sixth virial cocfhcient has only six non-
vanishing modified star sums (analogs of modified star
integrals) in addition to the complete star sum (&),
and five of these star sums have the same value!?

The equations of state given for squares and cubes in
Figs. 6 and 7 are almost certainly better approximations
to the virial equation of state than are the correspond-
ing (same number of exact virial coefficients) truncated
virial expansions. The density range over which the
virial expansion converges to the true equation of state
remains unknown; in this connection Monte Carlo or
molecular dynamics measurements of the equations of
state for finite systems of hard squares and cubes would
be useful, and yield interesting results. For these poten-
tials one has the low-density seven-term virial expan-
sion,’ the approximate equations of state (14), (135),
and (16), and knowledge of the exact finite-system
high-density equation of state.® “Experimental” equa-
tions of state would be useful in determining the
applicability of these theoretical results.

For squares and cubes, it may be possible to sort out
those modificd star integrals which make the most
important contributions to the equation of state at
high density. In two dimensions, for example, the con-
tributions of the five wiggly-line integrals contributing
to B; (see Fig. 2) to B, are, respectively, of order #, »,
n, 0, and 1/n for n large.

ACKNOWLEDGMENT

We wish to thank Dr. Theodore Einwohner for
illuminating discussions related to the present work.

APPENDIX

In this Appendix we list some intermediate results
necessary to the calculation of the wiggly-line integrals

(~IME)w=wp,
..(_):{ % )nz(vg-—l’yz)d-{—zvzw,

<-—)"< %i >"=(Vo"4v2)0'+41/2'w,

S AN I

n

4vy) o+ (4ve—

1B, G. Hoover, J. Chem. Phys. 40, 937 (1964).

W, G. HOOVER

for hard lines, squares, and cubes. The calculation

itself consists of many trivial steps not easy to describe

in a formal way, so that we quote results rather than

taking the considerable space necessary to give a com-
plete proof.

We introduce the crossed line f to indicate that the
two particles connected by such a line are independent,
f=1. This definition makes it possible to adhere to our
convention of writing explicitly only those lines in a
graph which are not Mayer f functions. Then, using the
identity f=f-+/, any wiggly-line integral over the co-
ordinates of # points can be written as a finite sum of

crossed-graph inlegrals:
+5i

(Q) (Q—%—aﬁ—{—a
i),

n

N

The crossed-graph integrals are just the usual Mayer
stars, where the crossed lines make up the complemen-
tary graph of the star in question:

(L) Qoo
(LA @ o

In one dimension each crossed-graph integral can be
expressed in terms of nl subintegrals (as defined in
Ref. 5) corresponding to the n! ways of ordering #
particles on a line. In this Appendix we evaluate only
those wiggly-line integrals which contribute to Bs. The
only kinds of subintegrals which occur in the related
crossed-graph integrals are those called o, w, ww, z, and
wzx by Hoover and De Rocco.® It can be shown that the
values of these subintegrals are, respectively, «, 2u, 3u,
3u, and Su, where # is [ (s— 1) I]7% For the ten Mayer
stars contributing to By, there are ten corresponding
crossed line integrals, Their decomposition into 7! sub-

_integrals is as {ollows [where v,= (n—k) |]:

dus) w2 (ww-tx),


http:state.la
http:value.12
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- (= )A( /\ % ),,= (vo— 612} o (6vz—Ava) w23 (wrwx) ,

- {1
- A,
(A1),
),
- ),

Substituting the values of the subintegrals into the
above expressions gives explicity the values of the 10
one-dimensional hard-line star integrals. As an example,
the last crossed-graph integral shown corresponds 'to

&
v

) = (vp— 6wz) o+ (Ova—8vat 2w wt (dva—20) (ww+x) + vz,
) = (so6v2) 7+ (Gva—1205) w60 (ww-x),

) = (vp—8v) 0+ (82— 12v3) w+6vs (w2},

) = (vo—Bim) o+ (83— 120 +dv ) wt (615 dos) (ww+) oo,
)

= (1’0"' 10112)6-{" (10113"‘ 20V3+ 101’4)%"*" (10113—“ 101/;) (W’—“i?) +10v.;wx.

for n=7. With »o=>5040, »,=120, »;=24, v,=06, the
above integral for n=7 is 6780/720, in agreement with
Ref. § (seven-point star Number 441 in Appendix 1.
Using the results just given, the crossed-line integrals
can be combined to give the values listed in Tables II
and III of the text.
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