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The usual graphical representation of the virial coefficients is reformulated in terms of graphs containing 
not only J:..Iaycrf functions, but alsol functions [J=f+1 s exp(-<t>lkT)]. 

This reformulation has three main advantages: 
(1) The number of intq;ral~ of topologi"a] graphs contributing to the viri:ll coellkicnts is reduced; 

this silllJlli:ies numerical calculations. 
(2) In Mayer's forl11u!ation none of the star integrals contributing to the virial coenlcients (for hard 

potentials. at least) (;ould be ignored; each made a nonnegligiblc contribution. In the new formulation 
(again, lor hard potentials) many integrals make negligible (or ever. zero) contributions; the extensive 
cancellation of positive and negative terms found in Mayer's formulation is reduced. 

(3) Several new ways of summing the virial series by successive approximation are suggested by the 
new formulation. One such way is worked out, in the first three approximations, for ga,es of hard parallel 
squares and cubes; the third approximation reproduces the first fIve vidal coei1kients exactly. 

The reformulation is not restricted to the virial series alone. We also generalize our treatment to the radial 
distribution function. It can be applied to any series whose coefficients are integrals of graphs. 

1. INTRODUCTION 

ir;'1XI'ERIMENTAL measurements of the pressure P 
.i'.J of an iV-particle system in a volume V and at a 
temperature T are conveniently expressed in virial form: 

(1) 

The Bli are the virial coeiTtcients and k is Boltzmann's 
constant. The first few virial cocfTicien ts can be deter­
mined from experimental compressibility data. 

1Iavcr and othel'sl were able to deri ve (1) for classical 
systel{1s of particles with a pairwise-additive potential 
9 in the specific limit that LV and V are infll1ite, with 
flxed ratio p. When the series converges, the nth virial 
coefllcien t Bn is proportional to a sum of in tegrals of all 
the labeled topological stars of It points, 

(The notation used in this paper is found Il1 the 
Glossary.) Using the notation ( )n to indicate 

Bn can be written in the following way: 

(1-n) 8" t 
Bn=~- L(S,[rn])n. (2) 

n! ;-1 

Each n-point star represents a complicated function of 
the coordinates of n particles ern]. The lines in the stars 

*Thls work was performed under the auspices of the U.S. 
Atomic Energy Comrr,ission. 

1 J. E. ?\iaycr and M. G. Mayer, Statistical Mechanics (John 
\Vilcy & Sons, Inc., New York, 1940); H. D. Ursell, Proc. Cam­
bridge Phll. Soc. 23, 685 (1927); M. Born and K. Fucbs, Proc. 
Roy. Soc. (London) A166, 391 (1938). 

join pairs of Points i and j, and the occurrence of such 
a line stands for the ~1ayer f function 

exp ( - 4>dk T) - 1. 

As an example, the 10 S;[r4] contributing to the fourth 
virial coeiTtcient are shown in Fig. 1. They are of three 
different topological types (we indicate ty'Pes of stars 
by Si[n]), so that three different kinds of integrals 
need to be evaluated in the computation of the fourth 

FIG. 1. The 10 labeled stars of four points. The numbering 
convention for the points is the same for each star 

Notice tbat the stars are of three di11erent types. S·t= 10; S·t =3. 

virial coefficient for a given potential function 4>. Intro­
ducing l3i[nJ for the number of ways a star of t.he ith 
type can be labeled, we can write (2) in the following 
form: 

(3) 

The number of tY'Pes of star integrals in Bn according 
to :Mayer's formulation is a rapidly increasing function2 

of It, which probably has the asymptotic It dependence 

2 R. J. Riddell, Jr. and G. E. Uhlenbeck, J. Chem. Phys. 21, 
2056 (1953). 
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5 nt;::::Qn(n-1)/2/n !. The quantities 52!, 53!, ... ..Ii..... are 
1, 1,3, 10,56, and 468, respectively. 

Calculations for hard potentials show that the net 
contribution of positive integrals to 13n?' is roughly 

to that of negative integrals. Separating the 
po"itive and negative terms in (3) gives 136/(132)4= 

7.902-7.793=0.110 for hard spheres3,4 and 6.364­
6.352= 0.012 for hard cubes.o The final value of Bn is 
small in compari~on to both the positive and negati \'e 
contributions, being about the same order of magnitude 
as the contribution of the smallest star integral [0.024 
for spheres and 0.020 for cubes in the case of 130/ (132)4]. 

In the following section we introduce t.he J function 
1 exp( -4>/kT)]. This ''1 wiggle" function is 

indicated graphically by a wiggly line (as in 2). \\'e 
tilen write 13" in terms of modified star integruls which 
con lain both Jand f functions, ~vith each n-poin t modi­
Jied star con laining (~) J and f functions in all. The 
number of integrals which must be evaluated for a 
particular 13n is considerably reduced, being 2, 5, 23, 
and 1716 jor It equal to 4, 5, 6, and 7, respectively. The 
excessive Glncdia lion is also reduced. When 130/ (B2)4 
is e\'alua led u"ing modified star integrals, separating 
the positive and negative terms gives 0.EiS-0.04S= 
0.110 for hard spheres and 0.120-0.108=0.012 for 
hard cubes, 

For hard particles the two kinds of lines (j and J) 
reslrict particles to be overlapping and nonoYCriapping, 
rbpectivcIy. In tne :'IIayer stars some pairs of particles 
are restricted to overlap by f functions, but the overlap 
or nonoverlap of the other pairs which no lines 
appear) is ullspecilicd. The removal of these degrees of 
freedom results in the reduced can cella lion ~hown above 
for spheres and cubes. 

All of the ~Iayer star integrals are generally nonzero, 
while many 01 the modifted star integra\;;; are identically 
?,ero for p~rticular choices of potential function 4>. The 
number of zero-valued modified star integrals contrib­
uting to Bn increases with 11 and decreases with dimen­
5ionalit\,. For one-dimensional hard lines all but one 
or the ~ontributing modifted star integrals are zero. 

In the l\Iayer representation the complete star 
in tegral gives the smallest contribution to the 11th virial 
cocfIicient; in our reformulation, this integral gives the 
largest contribution of all the modified star integrals to 
the hard sphere and cube virial coefficients through B7• 

In addition to detailing the reformulation in Sec. lII, 
we give a graphical interpretation of the coefJicient 
associated with each kind of modified star appearing 
in Iin • In Sec. IV we cast our results in a more trans­

~ S. Katsma and Y. Abe, J. Chern. Phys. 39, 2068 (1963). The 
value of B,/(Bz)', 0.1097±0.002,found by these authors for 
11rm: spheres agrees \\ith that found by us (Ref. 4), 0,1103± 
0.0003, 

, F. H. Ree and W. G. Hoover, J. Chem. Phys. 40,939 (1964). 
, W. G. Hoover and A. G. De Rocco, ]. Chern. Phys. 36, 3141 

(1962).· . 
6 We are calculating values of BT for hard spheres and dlSks 

using these modified stars. 
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parent series form. Truncating this series, we obtain 
approximate equations of state for gases of squares and 
cubes by summing over a small number of infmite sets 
of modified star integrals. A similar kind of summation 
appears in determinations of the equation of state from 
approximate integral equations for the radial distribu­
tion function. In Sec. V we show how to generalize Our 
treatment to the number density expansion of the radial 
distribution function. Section VI is reserved for con­
cluding remarks and a discussion of our results. 

II. GLOSSARY 

Meanings of symbois used, givcn in order of their 
introduction in the tcxt. 

J f wiggle function, exp[ -4>/kT]
f l\'layer j function, 

J 1=[exp(-4>/kT)]-1 

4> painvise-additivc interparticle potential 
function 

kT product of Boltzmann's constant and abso­
lute temperature 

P pressure of system 
N number of particles in system 
V volume of system 

coellicient of pn in the number density ex­
pansion of P/kTj 13n is the nth virial co­
el1icient 
number density, iV/V 
the ith labeled star of n points 
the total number of different laheled stars 
of n points 

( )n 	 integral operator: V-I Jv( )dr" for stars and 
modified stars, Jv( )drn for doubly rooted 
graphs and modilied doubly rooted graphs 

rn the coordinates of 1L particles 
5.[n] the ith type of n-point star 
\li[n] the number of ways of labeling the ith type 

of Il-poin t star 
the total number of differcn t types of 
stars of 11 points 

Bi[r"] the ith labeled modifIed star of n points 
u,[ll] 	 star content of an u-point modified star of 

the ith type 
the ith type oj n-point modifted star 
a Mayer star with j functions forming a 
subset of those in SiCrn] 
the total number of ;\Iayer stars withjfunc­
tions forming a subset of those in Bj[rn] 
the number of f functions in B{rn] which 
are not in Sk[j) r"] 

TJ number ofJfunctions in a wiggly-line graph 
p 	 the number of points connected by wiggly 

lines in a wiggly-line graph 
the complete st,l[ integral, 

V-I! llfijdrnj 
V·<1 
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>0 is also used (in Fig. 8) to indicate 

(f12)-1!v t~fijdra .• ·drn+2 

II m 
B,,(1) first approximation to B n , exact for 1l<4 
Bn (2) second approximation to Bn, exact for 11 <5 
Bn (3) third approximation to Bn, exact for n <6 

y function of P, 

n ...... l 

g(r) radial distribution function 
g,,(r) 	 coefficient of p" in the number density ex­

pansion of g(r) exp[q,(r)/kT] 
the ith labeled doubly rooted graph of 1l+2 
points with Rootpoints 1 and 2 
the ith type of doubly rooted graph of 11+2 
points with Rootpoints 1 and 2 
the ith labeled modified douL!y rooted 
graph of 1l+2 points with Rootpoints 1 
and 2 
the ith type of modified doubly rooted graph 
of 11+2 points with Rootpoints 1 and 2 
the number of ways of labeling the ith type 
of doubly rooted 11+2 point graph 
the total number of different labeled doubly 
rooted graphs of 11+2 points with Root­
poin ts 1 and 2 
the total l1umLer of different types of 
doubly rooted graphs with Rootpoints 1 
and 2 

ai=nJ 	 the doubly rooted graph content of an n+2 
point doubly rooted graph, of the ith type 

j the crossed-line function, j= 1 
U =(11-1) 1J-l 

11k (n-k)! 

Ill. REFORMULATION OF THE VIRlAL SERlES 

In a previolls publication' we described a new method 
ior writing each virial coefficient in terms of modified 
"tar integrals. This method starts with Eq. (2)) which 
expresses BIl in terms oj labeled star integntls, and sys­
tematically introduces illto each Si[r"] the identity
J- j ( 1) for each pair of poin ts which are not con­
nected by j functions in that star. When these factors 
oj1-j arc multiplied out, each Mayer star is expressed 
as a Sllm of modifIed stars, each of which has G) lines 
(coun ting both Jand j functions). We indicate the set 
oflabcled modified stars by {Bi[rnJ 11S;iS; Sntl. There 
is an obvious one-to-one correspondence between Si[rnJ 
and g,[r n ], such that both have identical j functions. 
Con1)ining the modified star expansions of all labeled 
~Iayer stars of u points gives Bn in terms of modified 
star integrals. The results of this expansion arc note­
worlhy; the number of integrals appearing in the new 
expression for Bn is considerably reduced from the num­
ber appearing in the Mayer expansions. The new ex­

pressions, for 11 less than 7, arc given in Fig. 2. In this 
figure, and throughout this paper, we use the conven­
tion of drawing only the wiggly-line graph corresponding 
to a particular modified star. The wiggly-line graph 
consists only of the lines which represent] functions in 
the modified star; the lines not drawn are understood 
to be Mayer j functions. This convention has the 
advantage that a single type of wiggly-line illtegral can 
be used to represent an infinite class of corresponding 
modified star integrals. For example, 

The expansion of the Mayer stars by introducing 
products of the form TI[]- JJ is somewhat unsatis­
factory; in order to determine how many times a 
particular modified star Bi[rn 

] contributes to B n , it 
is necessary to expand all of the Mayer stars of n points. 
\Ve have sought and found a more satisfactory way to 
determine the coefficient, ai[n], which multiplies each 
of the modified stars of type Bi[nJ in the full expansion. 
Notice that a particular modified star Si[rnJ, chosen 
to be of Type Bi[n], is produced only by expanding 
those Mayer stars whose j functions form a subset of 
thej functions in Bi[r"]. Let us call this set of Mayer 
stars (Sk[j, rnJ 11S;kS; nSi), and denote by t,jk(?::.O) 
the number of functions in Bi[r"J but not in Sk[j, rn]. 
It is clear that the Sk[j, rnJ arc exactly those stars which 
can_ be formed by removing t,jk j functions from those 
in S;{rn]. We see that a/[nJ is given by the expression 

(4) 

the minus sign appears because the expansion of 
TIU-j) introduces j functions together with minus 
signs into Sk=j, rn]. Equation (4) can be expressed by 
the following rule: COl/ill the Humber oj labeled ]v!ayer 
stars ';."hich can be jormedby successively removing 
0,2,4, .. . j junctions jrom the j jwzciiol1s oj any modified 
star BXrnJ oj type Bi[nJ; then subs/rad lhe number oj 
labeled Moyer slars which can be jormed by removing 
1, 3, 5, •• .j junctions from the j jtmctions oj tile same 
modified star. The resulting number ewhich can be posi­
tive, negative, or zero) is a;[l1J. We call ai[nJ the "star 
content" of the modified stars of type Si[n]. Knowing 
the ai[nJ, we can express the nth virial coefficient in 
terms of modified star integrals: 

(1-n) B"t 
Bn=-- LI'l;[lt](Sj[nJ)n

nl ;-1 

Srlt 

LI'l;[l1]i1 i[ltJeSi[n])n. (5)
nl i-I 
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{S,[r']l- [IX 1]0' 

(S,[r]I-[-2xl]0' +[IX3] I ! 
ISi[r']I~(-6XI]0' +[3XI5] II +[-lX30]::: +[IXIO] =- HIXI2] 0 
(Si[r']1 =[24Xl]0' H -12X45] I +[8XI80] --:::::- H -4X60] -=- +[-4X72] 0 

+[16XIS] I I I H-4X90] AA +[~5Xl80Jl n+[-6X(,oJlf\l+c-IXJOOJO 

+[4X45] !0 +[3XI80] Dr +[4XIO] fj/J +[4X60JO HIX360] 0 
+[3XJ60] <::5 +[-2X90] lSJ 1+[-2X360J G> H -lX90J<.J1> +[- 2X1B01Q 
HIXIS] L8J 1 HIXI80] Q +[lX60] e 

FIG. 2. The modified stars of 2, 3, 4, Sj and 6 points resulting from the expansion of [S,[4J)' IS,[SJL and IS,[6JI. jS,[2Jl and 
IS,{3JI are identical with [S'l2Jl and ISiL3JI, respectively. The number of times a particular type of modified slar appears in the 
full expansion, Gl[nJx \lienJ, is prefixed to each topological type of modified star. 

Notice th~t whenever any <J,,[nJ is zero, the corre­
sponding modif:ed st~rs of the ith type make no con­
tribution to the 11th vidal coefllcient. All of the types 
of modified stars of less than seven points which have 
nonzero star contents ai[nJ are listed in Fig. 2. Five 
modified star types for which a,[6J is zero are illus­
trated in Fig. 3. Notice that the number of types of 
contributing six-point modified star integrals is 23, 
while ~1ayer's formulation gives B6 as the sum of 56 
di lTercl1 t in tegrals. 

A particularly tlseiul result relates a;lnJ to a;[n-l] 
when the modified star types 8;[IIJ and 8;[n-1J have 
the same type of wiggly-line graph. This result, 

a{n]= ( 2]a;[n-1J, (6) 

can be cstablis:1ed by generalizing the proof of a closely 
related theorem due to Hoover and Poirier.7 Using (6) 
recursively, one has the further relation 

a{n]= (-) m-G')ai[m](1~-2) V(m-2)!, m<nj 

(7) 

where m is the lmst number such that there exists a 
modified star 8k[rm J which has a wiggly-line graph of 
the same type as 8i[11]. Examples of both (6) and (7) 
can be found inFig. 2. From (7) we see that whenever 
an m-point modified star of the jth type has zero star 
content, then all higher-point modified stars with the 
same type of wiggly-line graph have zero star content 
and do not contribute to the vi rial coefficients. 

LA, [3, A,6, <[}>, 

FiG. 3. Five modified star types which have zero star content. 

!1iC6]=O. 

7 W. G. Hoover and J. C. Poirier, J. Chem. Phys. 38, 327 
(1963), Appendix III. 

Figure 4 shows several general wiggly-line graphs 
which correspond to modified stars of zero star content. 
These modified stars all have nonzero integrals for one­
dimensional hard lines. However, because their star 
content is zero, these integrals do not contribute to B". 
Other than (>zJ) n, no wiggly-line graph contributes 
to En for one-dimensional hard lines [see remarks 
following (10)]. \Ve prove that the first of the 
wiggly-line graphs in Fig. 4 has zero star content, 
leaving proofs for the others to the reader. Accordingly, 
consider the labeled wiggly-line graph shown in Fig. S. 
This type of graph appears in the modified star graphs 
of 1t or more points, so that according to (7), we need 
only to calculate the star content of that particular 
n-point modified star which has the wiggly-line graph 
ShO'lVil in 5. Let us call that modified star 8k[r"]. 

j . 
. 2'-----_ Jk_1. 

il 

ik 

i2,, 
\ 
I 
I 

I"V'" 
ik-1(A) 

FIG. 4. Some general wiggly-line graphs which correspond to 
modified stars of zero star content. In (D), points in Ii and bare 
connected to those in c by f functions, but points in a are con­
nected to those in b by I functions. 

http:lX90J<.J1
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FIG. 5. A particular labeled (n-2)-point 
wi~gly-Iine grapb corresponding to an n-point 
m;dified star Sk=nJwith zero star content. 

E~,ch Mayer star that we can make by removing/ func­
t;ons from those of Sk[rnJ either contains or does not 
contain the / function/no Because each Mayer star that 
we make must contain both/12 and/la , there is a one-to­
one correspondence between stars with /2~ and stars 
without !zJ. Because corresponding stars contribute to 
(4) with Ol?posite signs, the sum vanishes and the star 
content of o,[r"J is zero. 

Using (7) we need to calculate the star content for 
only one member of each set of corresponding modified 
;;tars (those with the same type of wiggly-line graph), 
namely that member of the set with the least number 
of points, m. The contribution of this entire set of modi­
lied stars to all of the virial coefficients can then be 
written down immediately: 

Bn= _~~(- ) m - (2') iiXmJ\3,[nJ(S'[nJ)n , 
(8)

n~l 2)! 

wherej is chosen such that SXmJ and Si[nJ have the 
same type of wiggly-line graph. 

Fro;n (8), we see that the contribution to 13" (for 
rCDulsive potentials) of a particular type of wiggly-line 
gr~ph has the same sign for any 1t~m, since Bi[nJ has 
the 

(_)m-ll, 

where T) is the number ofJfunctions in the corresponding 
wiggly-line graph. The number of ways to label Bi[n] 
can also be represented in terms of the number of points 
pconnected by wiggly lines in the corresponding wiggly­
line graph and the number of ways to label Bi[m]: 

(9) 

We see irom (8) and (9) that the 1t dependence of a 
particular type of wiggly-line integral in Bn is 

) m 	(Si[n]),,(n-l) ! 

(n-p) J 

Thus the combinatorial aspects of the reformulation of 
the virial series are solved. In the next section we show 
how to cast our results (5)-(9) into a general form 
which can be summed (term by term) over n, giving 
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a set of successive approximations not only to B", but 
to the equation of state itself. 

IV. SUCCESSIVE APPROXIMATION TECHNIQUES 

L'sing the results of Sec. III it is possible to formulate 
several successive approximation techniques for the 
equation of state and for the virial coefficients. We list 
the three most obvious of these, and apply the results. 
derived in Sec. III to gases of hard parallel squares and 
cubes. From Fig. 2 we see that only the complete star 
integral in which all lines are / functions [denoted by 
(.0')"J contributes to B2 and Bs, while B. includes the 
additional integral 

( I I ),,' 

and 150 includes 

(~ ),,' (~ t (0)"
and 

as welL Therefore, a natural way of approximating the 
virial series is to include all wiggly-line integrals which 
contribute to a particular B". The lowest-order approxi­
mation (exact for B2 and B3) includes only the complete 
star integral (0) n in Bn and can be written 

11> 1; (10) 

The factors multiplying (0)" arise because ii;[nJ is 
( )h(n-2) 1 for the complete star [from (7)J, 

while £Ii[nJ is 1. For hard one-dimensional lines of unit 
length, (0)" is known to be (- )hn, so that Bn is +1 
for alln and the equation of state is 

(11) 

as Herzfeld and Mayer showed8 by a direct integration 
of the canonical partition function for this system. 
Equation (10) gives their derivation a graphical 
meaning. The second approximation, exact for B 2, B3) 

and B4, is 

B,,(2) =Bn(1) ( -)h~83(n-31)( I I ),,' n>l; (12) 

while the third approximation, exact for B2 through 13., 
IS 

(1/.-1)
Bn(3) =B.. (2) - (_)h 4 

x[-2( ~ t+~( ~ ),,+~( O)j n> 1. 

(13) 

8 K. F. Herzfeld and M. G. Mayer, J. Cbern. Phys. 2, 38 
(1934). 
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TABLE r. Values of filodiGed star integrals and contribl!tions to Bn for hard parallel squares and cubes of unit side length. 

Corresponding modified star integralsX ( ..- ) '" Contribu tions to B. 
Wiggly-lim: 

graphs Squares Cubes Squares Cubes 
>:1 

n2 nl 	 n nto (n~2) 
::r::

8 24(n!-n+2) 	 (n-2) (n-3) 3 (n-2) (tI-3) (nL n+2)1(n~4) 	
l'"~ (n-I)' (n-I)I 	 2(n-l) 2(tI-IP 
t-1 
t-1 

16 48 (n'-2n'+3n-4) 	 4(n-3) (n-4) 4(n'-2n'+3n-4)(n-3) (,,-1) >­1\1 (n~5) 	 Z(n-I)2 (n- 2) (n-1)3(n-2)t 	 3(n-I) (n-I)2 (n- 2) 
t;j 

~ 
288n 	 4n(n-3) (n-4)6 !(rl~5) 0 	 0 

Cl(n-I)3(rl-2)2 	 (n-1)'(1I-2) 

::r:: 
40(2n-5) 60 11 15 11 2(2n- 5) (n-4) 15 11 o 
--~~,-o (n~S) 	 (n- 4) ---+---- o 

(n-1)2(tI-2)2(n-3F (n-I) (n-2) (n-3) n-I n-3 (n--ll' 3(n 1) (n-2)(n-3) n-3 (n-I)2 	 -< 
t-1 

8 3} 	 -- 8 3} l'" 

+----+--­
(n-2)' (n-3)' 	 +(~-2)~+ (n--3)2 

----==========================~===============~ 
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In each of the Eqs. (10), (12), and (13), the (li[nJ iwd 
have been combined with [( 1 It) /n 1J to give 

the numerical iactors multiplying the wiggly-line inte­
Other successive approximation schemes can be 
upon (i) the inclusion of all wiggly-line integrals 

containing fewer than a given number of J functions, 
or (ii) the inclusion of all wiggly-line integrals whose 
1functions connect less than a given number of points. 
Ali three of the successive approximations converge to 
the exact virial equation of state as the order of the 
approximation is increased. For potentials, 
still other kinds of approximations may be worthwhile. 
It appears possible to sort out those modified star inte­
grals which make the most important contributions to 
the equation of state at high density. Combining the 
highest-order terms should give a reasonable approxi· 
mation to the behavior of the high density virial equa­
tion of state. 

The mathematical simplicity of the hard square and 
cube potentials makes it possible to evaluate the mod· 
ified star integrals as functions of n. Details of the 
evaluation appear in the Appendix. The results, for 
the five kinds oi wiggly-line integrals contributing to 
the first five virial coefTicients, are given in Table I. 
Tables II and III also include the contribution of each 
kind of wiggly-line integral to Bn for n<8; notice that 
the third approximation (13) reasonably accurate 
values for Bo (where 18 integrals are omitted from the 
exact equation by the approximation) and B7 (where 
166 integrals are omi tted). Because, in each of the 
approximations (10), (12), and (13), all virial coeffi· 
cIents are given explicity as functions of 11, it is possible 
to obtain corresponding approximations to the virial 
equation of state. For hard squares and cubes the 
resulting equations of state are plotted in Figs. 6 and 7 
[the seven-term vi rial expansion is shown for com­

,6 

9 

4 

01 ....> '" 
Q. Z 

I{+} 
2 { ".11 } 
~. {•• II.:::: .~.O } 
• SEVEN-TERM V'RIAl 

EXPANS'ON 

FIG. 6. Equations of for hard parallel squares of unit 
~ide length, using star integrals. Thc curves labeled 
1, 2, and 3 are baEcd approximations (discusscd in the text) 
which reproduce the three, four, and five virial coefficients, 
respectively. The seven-term vidal equation of state from Ref. 5 
is ii1cluded for comparison. The number density is 1 at the 
close-packed volume Vo. 
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9 

0.2 

I. {. } 

z.{.,II} 
3. {+,II,::::,e,O} 
• SEVEt;-TERM VIRIAl 

EXPAt;SIOt; 

0.1 

• 
~ 

FIG. 7. Equations of state for hard parallel cubes of unit side 
length, using lllodified star integrals. The curves labeled I, 2, and 
3 are based upon approximations discussed in the text which 
reproduce the first three, four, and five virial coefficients, re­
spectively. The seven-term virial equation of state from Ref. 5 is 
included for comparison. The number density is 1 at the Close­
packed volume Vo. 

parisonJ and given analytically below: 

(1) 	 P/kT(squares) 1-p)-2, (14a) 

P/kT(cubes) =p(l+p) (l-p)-3; (14b) 

(2) 	 P/kT(squares) = p(1+p-1!p2) (1- p)-2 

+p In(1-p), (lSa) 

P /kT( cubes) = p(1 +p-1~p2-1~p3) (1- p)-a 

-6pln(1-p)-6py; (lSb) 

(3) 	 P /kT(squares) = p(I+6p- 7jpL i p4) (1 

+p(6+1ip+tp2) In(1-p), (16a) 

P/kT(cubes) 

1 98p+288ip2_276ip3+61i'p·+1Slp6) 

X (1-p)-3+4p( -24+6p+3p2) 1n(I-p) 

+p(3-16p-3p2) y; (16b) 

where y is defined by the expression 

(17) 

For both squares and cubes the third approximation 
(16) to the equation of state (exact for the first five 
virial coefficients) exhibits a maximum in pressure, and 
predicts negative pressures at higher densities. It may 
be that this represents the true behavior of the virial 
expansion of such systems; another possibility is that 
higher approximations will contain large positive terms, 
so that taking these into account gives either 0) a van 
der Waals wiggle, or (ii) an isotherm which is monotone 
increasing with density, 



-----

.... 
~ 
N 

TABLE II. Contribution of various wiggly-line integral:; to Bn for hard squares. reproduces exact values of B. up to 11=3. Bn(2) exact values of B~ up to n=4. The 
expression in the next-to-last column, reproduces exact values of Bn (Ref. 5) up to n = 

( ~ I ) (/\1 ) (0) (0+ l l ) (0+ l I +/\l+61+0)(0) 

n B~(1) B.(2) Bn(3) Exact 
---_. ­
:2 2 0 0 0 2 2 2 

3 3 0 0 0 .3 3 3 

4 4 -1/3 0 0 3.6667 3.6667 3.6667 "'l 

5 5 -27/36 -24/36 5136 4.2500 3.7222 3.7222 ::r; 
6 6 -54/45 -72/45 7/45 4.8000 3.3556 3.0250 

;>::1
7 7 -100/60 160/60 9/60 5.3333 	 2.8167 1.6506 

t::1 
t=l 

:> 
Z 
tJ 

::;::: 

I:) 
TABLl!. III. Contributions of various wh::l!lv-line I!ranhs to 13. for hard cuhes. Bn(l) reproduces exact values of B~ up to n 3. Bn(2) reproduces exact values of B" up to IS ",,4. 


next-to-last column reproduces exact values of B~ (Ref. 5) up to n=5. 
 :I: 

o( ) I ) (/\1) (6l) (0) (0+ 1 ) (0+ ~ I +l\l+~!+O) 
o 

<:
(0) 	 ~ t::1 

;>::1 

n Bn(l) 	 B R (2) B.(3) Exact 

2 4 0 0 0 0 4 4 4 

3 9 0 0 0 0 9 9 9 

4 16 -14/3 0 0 0 11.3333 11.3333 11.3333 

5 25 -1782/144 -20Cr!/144 -120/144 821/144 12.6250 3.1597 3.1597 

6 36 -1728/75 -2844/75 -108/75 479/75 12.9600 -20.0133 -18.8796 

7 49 -44000/1200 -83840/1200 -2240/1200 7627/1200 12.3333 -53.0442 -43.5054 
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iR,[r'JI-[- 2X IJ0+[1 x IJ +[1X2] II 
IR.{r']I-[-6XI]0+[3XJ] +[JX6] 11 +[IXO] II +[-2XJ] 1\ 

+[-2X6JV 1+[-2XI2J!\1+[-IX3J!\ I+[lxl],LJ. 

+[IX6] 1V +[lX6](j+[lX6]O 

FJG.8. The moriilled doubly rooted .:r;J.phs of Ihree, four, and five points rc"ulting from the expansion of (R,[3JI. (Ri[4J~ and 
[Ri[S]). The number of times a particular type of moditied doubly rooted graph appears in the full expansion a,['l]XtiLn] is 
prefixed to each topological type of doubly-rooted modified graph. Open circles indicate Rootpoints (Points 1 and 2). Whether or 
not open circles appear in the doubly rooted modified graphs, Points 1 and 2 are not connected by an f function. 

EqU3.tions (14:) through (16) show that the partial 
summations of wiggly-line integrals converge up to the 
close-packed density (p= 1). For squares the difference 
between (aa) and (16a) is less than 10% for all 
densities less than half the close-packed density. 

V. REFORMULATION OF OTHER SERIES 

As pointed out in the introduction, our reformulation 
can easily be generalized to the radial distribution func­
tion. Any series expansion in the fugacity or number 
density whose coemcients are integrals of products of 
f functions can be so treated.9 We will quote some re­
sults for the radial distribution function g(r), defined by 

g(r) exp(<P(1) 1+?;gn(r)pn. (18)
k

::.rayer and .MontrolPo showed that each gn (r) can be 
written as a sum of integrals (over the coordinates of 
the II· particles 3, 4, •. ·n+2) of labeled doubly rooted 
(Rootpoints 1 and 2) graphs of 11+2 points. Each of 
these graphs will become or remain a star if the 1 func­
tion joining the rootpoints,112, is added to the graphs. 
We denote the graphs by !R.[rn+2] 11::;i::;Rn tj, types 
of topologica.lly different graphs by 

i l::;i::; Rnt l. 
and the number of ways to label R.[rn+2] by t.[n]. 
Then we have the relations 

n"t 
= (n!)-IL:t;[n](R i[n+2])n. (19) 

i=l 

By introducing for each pair of unconnected points 
in Ri[rn +2](omitting the term 112-1d we have a re­
sult for gn(r) analogous to (5) for B,,: 

n"t 
gn(r) (n!)-IL:ti[tt]a,[1l](Il,[n+2J)n. (20) 

i-l 

a Specific functions that can be treated include the fugacity 
series for the pressure and the number density, series for the 
surface tension [A. Dcllemans, Physica 28, 493 (1962)], series for 
s-particle distribution functions, and series for s-partide poten­
tials of mean force. 

10 J. E. Mayer and E. W. Montroll, J. Chern. Phys. 9, 2 (1941). 

The modified doubly rooted graph integrals Iti[lI+ 2J and 
the doubly rooted graph contents ai[n J are defined by 
analogy with the virial coefficient treatment. The re­
cursion relation for ai[nJ, analogous to (6) for di[lt] , 
becomes 

(21) 

As examples of the reformulation of the radial dis­
tribution function, the modified doubly rooted graph 
integrals contributing to gl(r), gz(r), and g3(r) are 
listedll in Fig. 8. Again the number of to be 
evaluated is reduced; a similar reduction occurs if the 
potential of mean force rather than g(r) is reformulated. 

VI. CONCLUDING REMARKS AND SUMMARY 

In the preceding sections we have presented a general 
method for reformulating the vidal series and the radial 
distribution function in terms of graphs containing not 
only 1 functions, but also 1functions. The original mo­
tivation for this work was to simplify the Monte Carlo 
calculation of virial coefficients for hard spheres.· Be­
sides reducing the number of integrals to be evaluated, 
the reformulation produces a set of integrals of widely 
different values, some being much larger than others. 
For hard disks, for example/ 8 of the 23 modified star 
integrals contributing to the sixth vi rial coefficient are 
identically zero. Our reformulation is also of value for 
more realistic potentials, such as the Lennard-Jones-­
Mie or exponential-six potentials, except at low tem­
peratures. At very low temperatures neither the .Mayer 
formulation nor our own promises accurate virial co­
efficients by numerical techniques. 1z 

Equation (5) has a form adaptable to Monte Carlo 
calculation of virial coefficients for gases interacting 
with hard potentials. This can be done with a high speed 
computer by placing Particles 2, •.. n at random (1 at 
the origin) in a sufficiently large volume [large enough 
to accommodate all geometrically accessible configura­
tions in (Si[n])n]. Each configuration corresponds to 
many Mayer stars but to at most one modified star. 
The star content of a randomly selected modified star 
can be found by using the adjacency matrix.l2 

II N. Keeler and F. H. Ree are currently working on the calcu­
lation of g,(r) for hard spheres and disks using our reformulation. 

lJ Unpublished work. 

http:matrix.l2
http:techniques.1z
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The ieusibility of making succcs~i\'C approximations 
to the virial coefticicnts, radial distribution function, 
and cC]uation of sta te, through the neglect of certain 
wiggly-line integrals has ueen demonstrated in the case 
of par:tllcl hard squares and cubes. Such calculations 
can abo be made for various lattice gases; for particular 
cJwiccs of lattice gas interparticle potentials, a great 
numuer 01 the modilied star integrals vani"h. For 
example, ill the case of a two-dimensional lattice gas 
of hard particles covering four siles on a plane square 
lattice, the sixth \'irial coe11i.cient has only six non­
vanishing modilied star sums (analogs of modified star 
int..:grab) in addition to the complete star sum (0) 6, 

and live of these star sums have the same value. 12 

The equations of state given for squares and cuues in 
Figs. 6 and 7 are almost certainly better approximations 
to the vidal equation of state than are the correspond­
ing (same number of exact virial coeflicients) truncated 
virial expansions. The density range over which the 
vidal expansion converges to the true equation of state 
remains unknown; in this connection Monte Carlo or 
molecular dynamics measurements of the equations of 
state for finite systems of hard squares and cubes would 
be useful, and yield interesting results. For these poten­
tials one has the low-density seven-term virial expan­
sion,6 the approximate equations of state (14.), (15), 
and (16), and knowledge of the exact finite-system 
high-density equation of state. la "Experimental" equa­
tions of slate would be useful in determining the 
applicability of these theoretical results. 

For :;ciuares and cubes, it may be possible to sort out 
those modified star integrals which make the most 
important contributions to the equation of state at 
high density. In two dimensions, for example, the con­
tributions of the five wiggly-line integrals contributing 
to 136 (see Fig. 2) to Bn are, respectively, of order n, tt, 

n, 0, and l/n for It large. 
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APPENDIX 

In this Appendix we list some intermediate results 
necessary to the calculation of the wiggly-line integrals 

) (VO-2V2) ()'+ 2V2U', 
n 

for hard lines, squares, and cubes. The calculation 
itself consists of many trivial steps not easy to describe 
in a formal way, so that we quote results rather than 
taking the considerable space necessary to give a com­
plete proof. 

We introduce the crossed line J to indicate that the 
two particles connected by such a line are independent, 

1. This dermition makes it possible to adhere to our 
convention of writing explicitly only those lines in a 
graph which are not Mayer f functions. Then, using the 
identity 1=J+I, any wiggly-line integral over the co­
ordinates of n points can be written as a finite sum of 
crossed-graph integrals: 

+5/\ +5 f f +5! +0)n>5 
-, 

The crossed-graph integrals are just the usual Mayer 
stars, where the crossed lines make up the complemen­
tary graph of the star in question: 

5(U )s=~J® dr ; 

( U). @) dr\ etc.1 

In one dimension each crossed-graph in tegral can be 
expressed in terms of n1 subintegrals (as defined in 
Ref. 5) corresponding to the n! ways of ordering tl 

particles on a line. In this Appendix we evaluate only 
those wiggly-line integrals which contribute to B5• The 
only kinds of subintegrals which occur in the related 
crossed-graph integrals are those called (J", U', Ww, x, and 
U'x by Hoover and De Rocco! It can be shown that the 
values of these subintegrals are, respectively, u, 2u, 3u, 
3u, and Sit, where It is [(n-1) 1J-l. For the ten Mayer 
stars con tribu ting to B5, there are ten corresponding 
crossed line in tegrals. Their decomposi tion into n I sub­
integrals is as follows [where 1I;,= (n-k) IJ: 

13 W. G. Hoover, J. Chern. Phys. 40,937 (1964). 

http:state.la
http:value.12
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-C-)h( A l ),.=(VO-6V2)0+(6v2-4va)w+2va(ww+x), 

- (- )h( n ),.= (VO-6V2)0+ (6V2-8v.+2v4)w+(4va-2v4)(WW+X) +2114WX, 

- C- )I{ D. ),.= (VO-6V2)0+ (6v2-12va)w+6va(WW+x), 

(_)I{ 6 t),.= (VO-8P2)0+(81/2-12va)w+6v3(WW+X), 

(_ )h( () ),.= (po-8p2)0+(8p2-12v3+4v4)w+(6va-4v,) (ww+x) +4V4WX, 

- (- )h( 0 ),.= (vo-lOv2)o+(10p2-20p3+lOv4)w+(10va-l0v,) (ww+x) +lOv,wx. 

Substituting the values of the subintegrals into the for 1<=7. With 110=5040, 112=120, v3=24, v4=6, the 
above expressions gives explicity the values of the 10 above integral for n= 7 is 6780/720, in agreement with 
one-dimensional hard-line star integrals. As an example, Ref. 5 (seven-point star Number 441 in Appendix I). 
the last crossed-graph integral shown corresponds to Using the results just given, the crossed-line integrals 

T 
can be combined to give the values listed in Tables IIt~f @ de and III of the text. 
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