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The consequences of cach of the three appm\unau()ns made by Kirkwood in deriving the Leonard-Jones—
Dievonshire cell theery are elucidated by a comparison with exact results in the one-dimensional casc of
hard rods, This comparison gives an explicit calculation of the one-dimensional communal entropy and

shows that the single-occupancy approximation is cxact at close packing, al

though it docs not lead to thermo-

dynamic propertics which are analytic {functions of density, For two- and three-dimensional systems, nu-
merical results show that the cell-theory entropy predictions are more accurate than in one dimension
because the particles are more localized. The more-than-one-particle-per-cell theories provide simple and
rigorous lower bounds on the entropy, but the convergence to the thermodynamic limit by considering more

and more particles is slow.

I. INTRODUCTION

ELL theorics have gained in interest recently

because it could be shown that the pressure for
particles with hard-core potentials is given correctly
in the limit of close packing.!® This result was first
suggested by numerical experiments.t These numerical
experiments have also yielded the result, through inte-
gration of the equation of state, that in both two and
three dimensions the entropy is alse nearly correctly
given at close packing by the Lennard-Jones-Devon-
shire cell theory® It was therefore thought worthwhile
to reexamine the foundation of the cell models in the
hope of developing theories which could account for
the small deviations.

The physical reason that the pressure is given cor-
rectly in the limit is that the only characteristic volume
on which the partition function can depend is the
volume of the system less the volume of the particles,
the free volume. The N-particle partition function is
proportional to the Nth power of the free volume.
This functional form is sufficient to determine the
pressure, but not the entropy, for which the coefficient
multiplying this functional form is required. This co-
efficient depends sensitively on the cooperative mo-
tions possible in the system, since the magnitude of the
effective free volume is determined by how localized
a particle is. It is therefore surprising that the entropy
is given so well by the cell theory, and this work was
undertaken in an effort to understand this result.
A further incentive for establishing the absolute en-

* Work performed under the auspices of the U.5. Atomic Energy
Commission,
(I;GZZ')W. Salsburg and W. W. Wood, J. Chem. Phys. 37, 798

M. E. Fisher, J. Chem. Phys. 42, 3852 (1965).

W, G. Hoover, J. Chem. Phys. 40, 937 (1964) ; 43, 371 (1965);
44, 221 (1966).

"I\ Metropolis, A, W, Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21 1087 (1953).

¢B. J. Alder and W. G. Hoover, “Studies in Molecular Dy-
namics. V. High-Density Equatmn of State and Entropy for
Hard Disks and Spheres” (to be published).

tropy at close packing is that it would enable one to
draw the tie line between the solid and fluid branches
of the hard-particle equation of state.® Once the limiting
properties have been theoretically determined, it might
be possible to go on and show that away from close
packing, the partition function, and hence the thermo-
dynamic properties, are rigorously expressible in a
power series in the free volume,” just as at low densities
it can be proved that they are expressible in a power
series in the reciprocal of the free volume.®

Kirkwood® showed that the Lennard-Jones—-Devon-
shire cell theory could be derived from the partition
function by making three separate approximations.
First, it was necessary to impose a fixed-cell structure
on the system and to require that no particle leave its
private cell. This so-called single-occupancy approxi-
mation can be expected to be exact only in the limit
of close packing. Second, it was assumed that the cor-

relation between the motions of neighboring particles-

could be neglected. This “product of singlet dis-
tribution functions” approximation cannot be a very
good approximation at high density. It is only rigor-
ously valid in the limit of very low density where the
particles are far enough apart to be independent. It
can thus be predicted that, just as the self-consistent
Hartree-Fock wavefunctions overestimate the energy,
the self-consistent singlet distribution function, treat-
ing all particles alike, will considerably overestimate
the free energy of a classical system. Hence, it might
be expected that it is better not to choose the self-
consistent solution but to choose a solution more in
keeping with the product approximation; namely, the
one where all neighboring particles are localized at
their most probable position, at the centers of their cells,
and hence uncorrelated with the central particle. This

8B, J. Alder and T. F. Wainwright, Phys. Rev. 127, 359 (1962).

7 B. J. Alder, W. G. Hoover, and T, E. Wainwright, Phys. Rev.
Letters 11, 241 (1963).

8. E. Mayer and M. G. Mayer, Stotistical Mechanics (John
Wiley & Sons, Inc., New York, 1940).

'1G. Klrkwona, J. Chem. Phys 18, 380 (1950).
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third approximation does then lead to the Lennard-
Jones-Devonshire cell theory, which is nearly quanti-
tatively successful for disks and spheres at high density.

Each of these approximations has been quantita-
tively evaluated in the one-dimensional hard-rod system
for which the exact partitien function is known.'® This
is an appropriate system from the point of view that
a particle is abways confined to a cell formed by its
neighbors. It is this feature of the theory, however,
which restricts its applicability in higher dimensions
to the solid phase. From the point of view of the second
and third of the above approximations, the hard-rod
syvstem presents a particularly severe test. This is
because a particle is less localized if it has fewer neigh-
bors to restrict its motion. The singlet distribution
function, for example, can be shown in one dimension
to have an infinite half-width in the thermodynamic
limit. This means that a particle moves over distances
large compared to the nearest-neighbor distance. It is,
however, not clear whether for disks and spheres the
singlet distribution function is bounded either. Locali-
zation in the hard-rod system is also less because of the
absence of any potential minimum in the interaction.
Thus, the Lennard-Jones-Devonshire theory should be
more valid for real systems at low temperature, since
the intermolecular potential localizes the particles.®

In order to obtain the exact thermodynamic prop-
erties in the limit of close packing, it is necessary to
work out the single-occupancy partition function
without further approximations. Although this task
can be carried out in one dimension, in higher dimen-
sions this does not seem possible. Instead, successively
more particles per cell are considered in the hope that
the resulting scheme converges rapidly to the thermo-
dynamic limit. The cell-cluster theory" is such an at-
tempt, but it gets bogged down in a difficult comibina-
torial problem. An alternative scheme®® in which this
problem is avoided and an identity is written which
gives the partition function as a product of ratios of
partition functions appears to converge very rapidly.
However, this result is deceptive. The correction to the
single-particle cell theory, which is always the first
approximation, is known to be small for hard disks and
spheres. The second approximation, the ratio of the
two-particle to the square of the one-particle partition
function, is indeed very close to 1; however, the cor-
rection is very small compared to the small correc’ion
needed to reproduce the numerically established re-
sults for the entropy. Another approach is to carry
out Kirkwood’s three-approximation scheme, outlined

16 1. Tonks, Phys. Rev. 50, 9535 (1936).

U § Barker, Lattice Theories of the Liquid Siate {Macmillan
Co., New York, 1963). This book should be consulted for a de-
scription of cell-theory calculations and extensive references to
original papers.

27, de Boer, Physica 20, 655 (1954); see also W. J. Taylor,
g;f %}é?ni.ll’hys. 24, 454 (1956); and the references listed on p. 95

1® F, H. Stillinger, Z. W. Salsburg, and R. L. Komegay, J. Chem.
Phys. 43, 932 (1965).
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above for one particle, for successively more particles
per cell and ascertain its convergence. This is discussed
for the hard-rod system in the third section of this
report,

Since all these schemes show slow convergence—
that is, it is difficult to represent with a few-particle
partition function the highly cooperative motions
present in dense systems—an alternative approach is
to incorporate into a simple few-particle model some
of the correlations present. Such an empirical approach
is represented by the correlated cell model for disks.?
By having some of the particles perfectly correlated
and others not at all, the model simulates quite success-
fully the cooperative motion necessary for melting. In
addition, this model almost quantitatively accounts
for the correction of the equation of state away from
close packing.

II. ONE-PARTICLE CELL THEORIES

The starting point of any classical high-density
theory is the configurational integral, Qy, the volume-
dependent part of the partition function

-
On=(ND § exp <E"~> drv

=fV exp (;—f) dr¥ (0

{ordered).

The total potential energy of the system, &, is a func-
tion of the coordinates of all of the particles rVe=r,
Iy, ==+, Ty, For the hard particles considered in this
paper ¢ is either zero or infinity for a particular choice
of r¥. The particles are restricted to lie within the
volume V throughout the integration. In the second
form of the configurational integral, the ¥ particles
are to be ordered in any one of V! equivalent ways. Any
convenient ordering, such as ay<<ay<<---<ay, can be
used; in approximate theories the particles are often
ordered by confining them to individual cells.

Particles in the solid phase are ordered (“‘distinguish-
able”) and confined to small volumes of the order of
the volume per particle by their nearest neighbors.
Dynamically, the center of each particle sweeps out,
as time goes on, a microscopic “free volume.” Although
there is no rigorous relation linking this physically
imagined free volume to the ¥-particle partition func-
tion, one expects, intuitively, that this free volume
will approximately equal the Nth root of the configura-
tional integral, (Qn)Y¥=sv,. This idea was the basis for
the cell and free-volume theories

4 H. Eyring and J. O. Hirschielder, J. Phys. Chem. 41, 249
(1937); J. E. Lennard-Jones and A. . Devonshire, Proc. Roy.
Soc. (London) A163, 53 (1937); Al65, 1 (1938); Al69, 317
(1939); A170, 464 {1939).
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CELL THEORIES FOR HARD PARTICLES 2363

In order to derive a cell theory from the configura-
tional integral, Kirkwoodl® divided the volume V into
N equal cells. Kirkwood’s first approximation is to
ignore the contributions of all but the single-occupancy
configurational integral, (1(N),

- -\, . :
(V)= . exp <})T)r1r" (2)

{kth particle in kth cell).

It 15 anticipated that at verv high density doubly
occupied cells will be vare, assuming that the cell struc-
ture is chosen wisely, and that the approximation
Qv (N will be accurate in this Hmit.

In order to analyze the single-occupancy approxima-
tion in detail, (1 (V) for hard rods is worked out below,
The svstem of .V rods has a total length ¥V so that each
rod is confined to a cell of length V/Vea=p, lor
convenicence, the length of o hard rod is set cqual to
unitv. With this choice of units the length per particle,
%, and the density, p, both approach unity at close
packing. In the single-occupancy configurational in-
tegral the coordinate of the jth rod, xj, is restricted to
the jth cell: (j=1)A<a;<jA. By introducing Mayer’s
f functions® 1-4f; ;1= exp(—¢; a/kT), for j=N 1,
N—2, N=3, -+, the following relation is obtained:

Q) =Qu(N-1)Q" (1) +Qu(N =2)Q"1(2)
F+0:(V=3)04(3) +--+, (3)

where the prime indicates that all £ particles in (1(%)
are not only restricted to their cells but also linked to
their nearest neighbors by f functions

i k
Quty=[ T fism 1 ;. @

Q"1(k) is zero when the % particles can no longer over-
lap, that is, for densities less than (£—2)/(k—1).
Thus the sum of preducts in Eq. (3) truncates, giving
a closed-form recursion relation for Q1(V) in terms
of the integrals Q/;(%). These latter can be evaluated
by making a change of variable

Q{k) = (=)1[(k=1) = (R=2)2 /L (5)

With the help of these Q'1(%), a generating function
can be written for the single-occupancy configura~
tional integral

Ne=0
where L is 24[p/(1—p)] and the brackets [ ] in-
dicate the greatest integer function. Each of the con-

figurational integrals on the left-hand side of Eq. {6)
is evaluated at the particular value of the density ap-

s o
-3 o
I I

{S-SarproxiMaTE }/NK
o

~N

i

16, 1. The crror made in calculating the hard-rod entropy,
using 1, 2, or all 3 of Kirkwood's approximations, Curve 1 shows
the commumnal endropy, the crror resulting from the single-occu-
pancy approximation alone, Curve 2 is the entropy error resulling
trom the solution of Kirkwood’s approximate integral cquation.
Curve 3 is the entropy error incurred after all three approxima-
tions, the Lennard-Jones—-Devonshire cell-theory error, The dotted
curve shows the error ebtained using the double-occupancy approx-
imation to the partition function,

pearing on the right-hand side, so that Eq. (6) is no!
a grand partition function. The analytic form of the
single-occupancy partition function changes at densi-
ties of %, 2, 4, 4 --+. Thus O:{N) is not analytic at
these densities and the thermodynamic properties de-
rived from Q1() have discontinuous derivatives char-
acteristic of phase transitions. In the thermodynamic
limit this conceptually simple partition function thus
produces an infinite number of fictitious phase transi-
tions. In the thermodynamic limit, 4(V) is related
to the smallest zero, z, of the polynomial appearing

.on the right-hand side of Eq. (6):

1m0y () =L T ‘ )

The differences in entropy and pressure between the
exact!® configurational integral and the single-occupancy
configurational integral are plotted in Figs. 1 and 2,
respectively. The difference in entropy is the communal
eniropy which has not previously been calculated for
interacting particles. It is shown to be a monatomic,
smoothly decreasing function of the density. The
entropy from the single-occupancy configurational
integral is, as it must be, always too small. The pressure
is also too small, with the greatest discrepancy, about
309%, occurring near three-fourths the close-packed
density. Both the pressure and entropy discrepancies
vanish at close packing, making the single-occupancy
partition function exact in that limit.

For low densities, 0<p<}, the smallest zero in the
denominator of the generating function given by Eq.
{6) is found by solving a quadratic equation

Zo=A— (\2—2) =224 (X~2) (1-V2)
+A=DN2/4— A=2)N2/d+-0, (8)
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Fra. 2. The error made in caleulating the hard-rod compres-
sibility factor (PV/NET) using 1, 2, or all 3 of Kirkwood's
approximations. Curve 1 shows the error resulting from the single-
occupancy approximation alone. Curve 2 shows the result ob-
tained from Kirkwood’s approximate integral equation. Curve 3
is the result according to the Lennard-Jones-Devonshire cell
theory (all three approximations).

so that the pressure from the single-occupancy con-
figurational integral is given by the expressions

PV/NET =X (W2=—2)~¥i= (1 —2g2) 12
=1+p 3+ 505+
—VA[3-1(0-2)

0= 1 )

The even-numbered virial coefficients are all zero in
this density range. In the next-higher density range,
1< p<%, the analytic form of (1(V) changes, accord-
ing to Eq. (6). In this region 3 is glven by the expres-
sion

50=2—VZ+(A=2) (1=V2) +1 (A= 2)2V2

—1r(A—2)*(28—1V2) +-+-, (10)

which should be compared to Eq. (8). The pressure
has the form

PV/NET =VINE—3(A=2) +(VI—§) (A=2)2—---],

(11)

Comparison of Eq. (9) with Eq. (11) shows that the
curvature of the single-occupancy isotherm, 9*P/8V%,
changes discontinuously at half the close-packed den-
sity, and from Eq. (6) it is clear that successively
higher derivatives will have discontinuities at suc-
cessively higher densities,

Although an analytical single-occupancy treatment
for two- and three-dimensional hard particles is difficult
to carry out, even at low density, the three qualitative
effects found in one dimension have analogs in the
higher dimensional cases too: (1} The analytic form

B<p<il

ALDER

of 0i{V) will change as the density increases and more
complicated clusters become possible; (2) the single-
occupancy approximation becomes exact at close-
packing for hard parallel squares and cubes,’® and this
is also likely true for disks and spheres but a proof is
lacking; and (3) the pressure derived from (4{N) can
be shown to have no virial expansion; the first devia-
tions from ideality arc proportional to p*? and p¥% in
two and three dimensions, respectively.

Kirkwood’s sccond approximation, unlike the first,
is rather poor at high density. This approximation
states that the probability distribution function for ¥
particles in their cells is a product of single-cell single-
particle distribution functions

Py (r¥) =II Py(r)

celis

(12)

(kth particle in kth cell).

Py(r) is to be chosen to minimize the Helmholtz free
energy; this leads to an integral equation for the de-
termination of P¢(r). For hard particles it is not neces-
sary to consider the integral equation at all. The solu-
tion of the minimization problem is simplified in this
case because minimizing the free energy corresponds
to maximizing the entropy. The entropy is propor-
tional to the logarithm of the volume in each cell for
which the probability density is nonvanishing. For hard
spheres Wood pointed out that £1(r) is nonvanishing
in those parts of the cell separated by at least half of
a particle diameter from the cell boundary. In order
for hard rods to be independent of one another, no
particle can be allowed within distance § of its cell
walls, so that the solution of the minimization problem
in this case is equivalent to the configurational integral

Ox=L(V/N) =1 (13)
(first and second approxima;ions) .

This result should be compared with the exact result,
eN[(V/N)—17V. Interestingly enough, in one dimen-
sion the error introduced in the pressure by the first
approximation {as shown in Fig. 2) is exactly offset by
the second approximation, so that the pressure ob-
tained from Eq. {13) is exact at any density. However,
the error introduced by the second approximation in
the entropy contributes a constant net entropy error
of Nk at any density. Because correlations, particularly
at the highest densities, are important for hard par-
ticles, the product approximation is poor.

It is only in one dimension that the first two ap-
prosimations exactly offset each other, vielding the
exact equation of state. The molecular dynamics studies
indicate that at high density the pressure can be ex-

%5 The argument given on p. 226 of the last paper of Ref. 3
can be applied to hard parallel squares and cubes to prove this
statement.
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CELL THEORIES

sanded in powers of the relative free volume g,
PV/NET = (D/a) +Cot+-Crat+Coa® - < -,

shereais (F/ Vo) —1 and Vy is the close-packed volume.
In D dimensions, Wood" found that the free-volume
equation of state, P V/NET = (1~p4¥P)~1 results when
the first two approximations are made. This equation
of state reproduces the first term, D/e, in Eq. (14) cor-
rectlv. However, the constant term is in error when
caleulated by this free-volume equation of state. The
value of Co from molecular dvnamics data® is 1.9 in-
stead of 1.5 for disks, and 2.3 instead of 2.0 for spheres.
1n two or more dimensions this two-approximation
frec-volume equation of state is also known to be quali-
satively wrong at low density, since it does not lead
1o the virial series.

It is clear that the entropy derived from the first
two approximations is a rigorous lower bound on the
correct entropy, for all of the configurations counted
in the solution of Kirkwood’s integral equation do
contribute to the correct Qn, but many other configura-
tions are left out by these approximations. The entropy
error at close packing is Nk in one dimension, about
1.4Vk for disks, and about 2X% for spheres. Thus, the
product approximation neglects important correlations
at high density.

The results of the minimization procedure just re-
ferred to are in fact less accurate than those obtained
from the Lennard-Jones—Devonshire cell theory, which
requires one additional approximation. In order to get
the Lennard-Jones-Devonshire cell theory Kirkwood
makes his third approximation, assuming that Pi(r)
is a delta function located at the center of the cell. This
approximation is sensible pravided the particles are
localized, as they are at low temperatures in real
svstems where the molecules make small oscillations
about their equilibrium positions. The initial step in
solving by iteration the integral equation mentioned
above is to substitute the delta-function guess into the
integral equation. This first iteration generates exactly
the Lennard-Jones-Devonshire theory. Thus, the free
volume per particle is evaluated by placing all neigh-
boring particles at the centers of their cells. This is,
of course, inconsistent in that the particles are not all
treated alike in evaluating the free volume. For hard
particles the choice that Py(r) is a delta function might
appear particularly poor. Wood® found in fact that the
iteration scheme starting from this choice does not
converge.

For hard rods the delta-function approximation
gives, for all densities greater than half the close-packed
density, a free volume of 2[(V/N)—1], and this 45
in fact the average free volume. It is also, however,
exactly twice the true solution of Kirkwood’s integral
equation. After applying all three approximations the
entropy is too low by Nkinie while the pressure is

W, W. Wood, J. Chem. Phys. 20, 1334 (1952).

(14)

FOR HARD

PARTICLES 2363

unchanged from the two-approximation stage. The
entropy discrepancy has thus been reduced from Nk
to 0.307Vk and the pressure remains exact. At densities
less than half of close packed, the free volume from all
three approximations is V/V, the pressure is ideal,
and the entropy is too low by Nk[1-+In(1—p) ]

The effect in two or three dimensions is similar, The
entropy is increased {near close packing) by DN In2
in I dimensions over the exact solution of the integral
cquation. The discrepancy between this entropy pre-
diction and the exact entropy at close packing is not
known precisely, but it is evidently quite small. Pre-
liminary estimates from molecular dynamics indicate
that the high-density Leunard-Jones-Devonshire en-
tropy is slightly too low (0.064%) for hard disks and
slightly too high (~0.1N%) for hard spheres. Thus,
a vast improvement has resulted over the two-approxi-
mation scheme where the discrepancies were 1.4V4
and 2Xk. However, for hard disks and spheres the pres-
sure does not remain unchanged, as for hard rods.
PV /NET is increased a little. Cy increases from 1.300
to 1.556 for disks, and from 2.000 to 2.123 for spheres.
A comparison of the values of Cp to the ones obtained
from molecular dynamics® (1.9 and 2.3, respectively),
shows that the delta-function approximation improves
the pressure too. The details of these molecular dy-
namics results will be published soon.

III. MORE-PARTICLE CELL THEORIES

Squire and Salsburg” generalized Kirkwood’s ap-
proach by dividing the volume ¥V into ¥/2 identical
cells, each of which is doubly occupied. Their first ap-
proximation is

Ov=0(\), (15)

where (5(¥) is the double-occupancy configurational
integral. For hard rods, just as in the single-occupancy
case, it is possible to derive a closed-form recursion
relation for Qu(N) and to find a generating function
for Q2(NV, A). In the low-density case, 0<p<%, one
finds the result

[e23
2 0Nz
Ne=Q
even
1-+222

RN E TS PN G W P Wy

(16)

where X is again the volume per particle, V/N.

The entropy from the double-occupancy partition
function is the dotted line plotted in Fig. 1. Although
the results are closer to the exact entropy than the
single-occupancy results, the improvement is greatest
at low density. It appears that at high density the

7). R, Squire and Z, W. Salsburg, J. Chem. Phys. 35, 486
{1961). The correlated cell model of Rell 7 is essentially a two-
dimensional analog of the three-dimensional hard-spliere model
obtained here.
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properties of (H{Y) resemble those of i(NV) more
closcly than those of Ox. This is an indication that quan-
titative results in the solid phase will not be obtained
with a few-particle model. Many particles are neces-
sary to reproduce the cooperative motion and corre-
lations present in o dense infinite system.

The virial expansion for the double-occupancy con-
figurational integral can be derived from Eq. (16) by
expanding the smallest zero of the cubic polynomial
as a power series in p. The resulting virial expansion,

PV/NET =143+ +30 5o+, (17)

gives o second virial coefficient within 309 of the cor-
rect value, unity, as opposed to the value zero for the
single-occupancy case,

Squire and Salsburg” derive an integral equation
for the distribution function for two particles in a cell,
based on the minimization of the Helmholtz free energy,
under the restriction

Px(x¥) =11 Pu(). (18)

cells

The solutionn of this integral equation must be self-
consistent (all particles treated alike). Squire and
Salsburg did not actually solve this integral equation
for Py(r?), but it is clear that the results would be
analogous to the one-particle theory. Again each par-
ticle must stay at least one diameter distant from
particles in neighboring cells, so that the problem in-
volves the partition function for two particles confined
to a rigid box. In one dimension the result is

Qu=2[(V/N)—=1]¥ (19)
{first and second approximations),

so that the entropy has increased by 0.347N% over the
one-particle entropy at this stage, but is still too low,
over the entire density range, by 0.653¥% The geom-
etry involved in this problem is complicated for disks
and spheres, but for hard parallel squares or cubes it
is easy to show that the increase in entropy over the
single-occupancy theory at the same two-approxiam-
tion stage is also 0.347Nk. For squares and cubes the
known rigorous lower bounds on the entropy near
close packing® show that the double-occupancy result
lies further from the correct entropy than in one di-
mension: thus the convergence to the thermodynamic
limit, obtained by considering bigger .and bigger cells,
is slower In two and three dimensions than in one.
Although it is tedious to obtain multiple-occupancy
configurational integrals for greater numbers of par-
ticles per cell,® it is possible to consider the effect
of the first two approximations combined for the

% The dependence of communal entropy on the number of
particles per cell is discussed by O. K. Rice, J. Chem. Phys. 6,
?78 (3938}; and by R. W, Gurney and N. F. Mott, ¢bid. 6, 222

1938).
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general hard-rod case, M particles per cell with

Py(e¥y =] Pu(r™). (20)

celis

The probability distribution function maximizing the
entropy gives the approximation

On=MN[(V/N) —1]¥ (M 1)=V1H, (21)

In the limit of large M, Eq. (21) passes over to the
exact configurational integral, as it must. It is note-
worthy that the pressure from Eq. (21) is correct for
any M, while the entropy rises monotonically with M
to the coirect value. The guess that Py (r¥) is a
product of M delta functions is always better than the
true solution of the integral equation, for any value of
M. For M as large as 10, however, the error in the
entropy from the delta-function approximation is still
of the order of G.1Nk. This indicates that extension of
the free-volume theories by considering bigger and
bigger systems of particles confined to rigid containers
converges so slowly that analytic work is ruled out.

IV. CONCLUSIONS

That the Lennard-Jones-Devonshire cell model pre-
dicts the thermodynamic properties of hard spheres
remarkably well is a surprising result. For real solids it
was to be expected that the model would be a very good
approximation at low temperature because the at-
tractive potential localizes the molecules. In that case
the first and third approximations of single occupancy
and localization at the cell centers are quite realistic.
The accuracy of the second approximation, that the
particles move independently in the vicinity of these
cell centers (shown to be accurate in the case of real
solids at low temperature by harmonic oscillator calcu-
lations'®) gives a clue as to why the cell model works so
well for spheres too. The reason is that the thermo-
dynamic properties are only sensitive to the high-fre-
quency motions in the solid. The low-frequency co-
operative motions do not affect the thermodynamic
properties much, although an instability to a long-
wavelength shear mode no doubt leads to melting.
Thus, even for spheres the cell model nicely approxi-
mates the surroundings of a typical particle, on a short
time scale and in the solid phase. One can thus conclude
that for any pair potential and at all temperatures the
Lennard-Jones—~Devonshire cell niodel is the best quick
route to accurate solid-phase thermodynamic properties.

In view of the above it should, however, not be sur-
prising that the cell model does not predict the one-
particle distribution function well. The exact dis-
tribution function can be worked out analytically in one
dimension; it does not have the sharp boundaries and

Y. W, Montroll, “Theory of the Vibration of Simple Cubic
Lattices with Nearest-Neighbor Interactions,”” Proc. Symp. Math,
%tegxgs;ics Probability 3rd Berkeley, Calif,, 1934-1955 3, 209
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CELL TUHFORIES
Jat top predicted by the cell model. To caleulate dis-
tribution functions accurately or to predict melting
iransitions, it is clearly necessary to consider highly

_cooperative motions. The inclusion of correlations is,
\f course, also necessary if the prediction of thermo-
dynamic properties from the ccll model is to be im-
proved upon. It will be difficult to make further
progress from such a good starting point. The attempt
1o treat a two- or three-dimensional system more
accurately by making only the single-occupancy ap-
proximation fails, except in one dimension, because
the simplification of single occupancy is not enough to
permit an analytic treatment.

The slow convergence of systematic more-particles-

FOR

HARD PARTICLIES 2367
per-cell theories is partly due to boundary cffects. In
molecular dynamics or Monte Carlo calculations, which
are after all just such theories treated numerically, it
was found that much more rapid convergence to the
thermodynamic results was obtained with periodic
boundaries than with rigid boundaries. Another ad-
vantage of periodic boundary conditions is the auto-
matic introduction of additional correlations between
the particles. An attempt in this direction, the cor-
related cell model for two disks, leads to significant
improvements over the Lennard-Jones-Devonshire
model. The correlated cell model not only predicted
melting at the correct density, but gave an almost
exact solid-phase equation of state,
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Isenthalpic Solidification and the Specific Heat of Supercooled Liquid Phosphorus

M. E. Guicksman anp R. J. Scuacrer*
U. 8. Naval Research Laboratory, Washington, D. C.
(Received 3 June 1966)

Isenthalpic solidification of a unary {one-component) supercooled liquid results in either two-phase
invariant equilibrium or in single-phase univariant equilibrium, depending on the degree of supercooling

prior to solidification.

When postsolidification univariant equilibrium obtains, a determination of the specific heat at constant
pressure, C;?, of the supercooled phase relative to the stable, solid phase can be made by measuring the

adiabatic temperature rise during recalescence.

Values of €, for highly supercooled phosphorus over the temperature range —1° to -+18°C have been
determined with this method. No evidence for the changes in molecular association deduced from earlier
viscosity data on supercooled phosphorus was found in the temperature variation of the specific-heat
function. The enthalpy and specific-heat values determined for supercooled liquid phosphorus agree with
published values for the stable liquid above the normal melting point, T,=44°C.

INTRODUCTION

ANL?MBER of recent investigations on both the
equilibrium and transport propertics of various
pure monatomic liguids have shown that these prop-
erties vary in a smooth and continuous manner as a
liquid is cooled from the region of stability above the
thermodynamic melting point into the supercooled
state. The effects of clustering, or extended local order—
if present at all in these supercooled liquids—appear to
be below present levels of experimental detection for
equilibrium properties such as x-ray structure (atomic
radical distribution),! specific heat,? and mass density®;

* National Academy of Sciences—National Research Council
Postdoctoral Research Associate, Metallurgy Division, U.8. Naval
Rescarch Laboratory.

. 'S, E. Rodriguez and C. J. Pings, J. Chem, Phys. 42, 2435-2437
(1963},

, 2H. 8. Chen and D. Turnbull, Bull. Am. Phys. Soc. 11, 329-330
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and for transport properiies such as electrical* and
thermal® conductivity, and viscosity.® Nonethcless, a
substantial body of experimental data also exists which
indicates wvarious properties exhibiting anomalous
behavior in the vicinity of the melting point; these
so~called precrystallization phenomena were discussed
recently by Turnbull” in a comprehensive paper on the
liquid state and the liquid-solid transition. Turnbull’s
words are so apt, that we quote from Ref. 7 directly:

“We note that the thermodynamic crystallization
temperature is not an intrinsic property of either the
crystalline or the amorphous phase but is rather the
temperature at which two quite independent functions

1G. A, Colligan and J. M. Lo, Tech. Rept. SCP-4, ONR,
Thayer School of Engineering, Dartmouth College, Hanover,
N.H., October 1965.
{ 5 A. G, Turnbull, Z. Physik. Chem. (Frankfurt) 42, 243-246
1964).
¢ D. Ofte and L. J. Wittenberg, J. Metals 13, 692-693 (1961).
¥ D. Turnbull, Trans. AIME 221, 422-439 (1961).
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