THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 46,

]

o .
[ LV S

NUMEBER 2 15 JANUARY 1967

Studies in Molecular Dynamics. IV. The Pressure, Collision Rate, and Their
Number Dependence for Hard Disks*

Wiiriax G. Hoover anp Berxt J. ALbeR
Lawrence Radiaiion Laboratory, Universily of California, Livermore, California
(Received 12 August 1966)

Tlhie pressure for four, 12, and 72 hard disks determined dynamically from the virial theorem or the col-
lision rate is shown to be identical to that determined by the Monte Carlo miethod. To show this equivalence,
it is necessary 1o take into account that the center-ef-mass velocity is kept fixed in the dynamic system, This
numerical agreement suggests the validity of the quasicrgodic hypothesis even for small systems. The
{InN) /N dependence of the phase-transition pressure on the number of particles I is simply explained in

terms of the communal entropy.

I, INTRODUCTION

FESHE equation of state for a small number of disks
4 was originally investigated to determine whether
or not the two-dimensional system would show a phase
transition more convincingly than the three-dimensional
hard-sphere system. For spheres the phase transition
was not drmly established because the two phases
only coexisted for the brief time of a rarely observed
jump between the solid and fluid phases.? The possibility
of coexisting phases typical of a first-order phase transi-
tion was thought more likely in two-dimensional
systems because boundary effects, which could inhibit
coexistence, are less serious in two than in three
dimensions for a given number of particles.

First, it was determined that disks behaved similarly
to spheres in the phase-transition region for small
numbers of particles; that is, for very small systems
no phase transition is seen, while for slightly larger
systems jumps between the two phases are observed,
but coexistence is not achieved. Subsequently, a large
system of 870 disks was investigated and showed the
hoped-for coexisting phases. The behavior of 870
particles in the coexistence region has already been
described?; a more complete equation of state for that
system, emphasizing accurate solid-phase thermo-
dynamic properties, will be published in a separate
paper.

In this paper, the effort is concentrated upon the
less accurate results obtained for small systems, with
particular emphasis upon the intercomparison of
various ways to calculate numerically a thermodynamic
property for identical systems. The more difficult
problem of extrapolating finite system results to
infinite systems has been discussed already by a
number of workers*% and this report touches upon

*This work was performed under the auspices of the U.S.
Atomic Energy Commission.

13, J. Alder and T. E. Walnwright, J. Chem. Phys. 33, 1439
(1960).

2B, J. Alder and T. . Wainwright, Phys. Rev. 127, 359 {1962).

¢ 1. Oppenheim and P. Mazur, Physica 23, 197 (19537).

4 J. L. Lebowitz and J. K. Percus, Phys. Rev. 124, 1673 {1961).

5W. W. Wood, “Monte Carlo Caleulations of the Equation of
State of Systems of 12 and 48 Hard Circles,” Los Alamos Scien-
tific Laboratory Rept. LA-2827, July 1963.

this aspect only by pointing out that the predominant
number dependence in the phase-transition region can
be simply explained on the basis of the communal
entropy.

In the intercomparison of finite systems the large
effect of the nature of the boundary on the results is
not discussed either. In a future report it will be shown
that periodic boundaries generally lead to a smaller
dependence of the results on the number of particles
than hard-wall boundaries. However, it was found
that the qualitative features of the equation of state,
including the behavior in the phase transition, are
independent of the boundary conditions used.

The intercomparison of the pressure of identical
small periodic systems, as obtained dynamically and
by the Monte Carlo method,’ involves the assumption
that time averages are equivalent to statistical space
averages. Insofar as numerical agreement between the
data is obtained, the quasiergodic hypothesis is justified
for small systems. Before discussing these results, the
pressures calculated dynamically both by the virial
theorem and the collision rate are compared. This is
done to straighten out a previously unexplained
discrepancy. Finally, an additional number-dependent
effect, not previously discussed, arising only in the
phase-transition region, is described and compared to
the numerical data.

II. INTERCOMPARISON OF PRESSURE

The pressure has been determined dynamically in
two different ways. The direct way is a straightforward
application of the virial theorem. The pressure can also
be determined indirectly, but also exactly, from the
measured collision rate. In comparing these pressures,
it is necessary to consider in detail the effect of keeping
the velocity of the center of mass zero. The result of
this constraint is to introduce velocity “correlations’”;
that is, once the velocity of a particular particle is
known, the remaining particles must on the average be
moving in the opposite direction. This accentuated
motion of particles toward one another increases both
the frequency and momentum transfer of collisions,
and thus the pressure. When these increases, here
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calculated to be of order 1/, where ¥V is the number
ol partides, are taken into account, it is found that
poth ways of calculating the pressure dynamically
agree qh&llill&t]\'u\

l;‘s comparing the dynamic pressure with that
caleulated by the AMonte Carlo method,® the velocity
“eorrelations’” must again be taken into account. Once
this is done, the agreement of the pressures is within
the accuracy of the results. In this comparison, the
accuracy of the Monte Carlo results suffers somewhat
inasmuch as an extrapolation of the pair distribution
to its value at contact is required, while no such
gxtrapolation 1s required dynamically. It is also
interesting to point out that the fluctuations in pressure
are not the same in the three different methods of
catculating the pressure. The pressure calculated by
the virlal theorem converges more rapidly to its
equilibrium value than the one calculated by the
collision rate. The pressures obtained by the Monte
Carlo method and eollision rate ave roughly comparable
in their convergence rates,

The dynamic pressure caleulation is based on the
virial theorem,

)}')/I inT

e (Z e By )/m Z(v)2- (Nuir)“lz eV,
VkT f=] =1
(1)

where the final sum is over all collisions ¢, occurring in
the time r. The compressibility factor, PA/NET, is
glven in terms of the particle mass m and the particles’
coordinates, velocities, and forces, 1, v and F,
respectively. The mean-squared velocity is #® and
the brackets () indicate an average over the time 7,
which has to be sufficiently long. In the last part
of Eq. (1), the time average is replaced by a collision
average of the velocity changes upon collision. Since
these velocity changes upon collision are independent
of density for hard particles {only binary collisions),
these can be readily calculated. The sum over collisions,
divided by 7, can thus be written as a product of the
average velocity change per collision times the density-

TaBLE 1. The dynamic equation of state {or four hard disks
with periodic boundary conditions.

1000
Ajds PA/NETs collisions
1.25 10.24 1
1.33 8.57 5
1.40 7.63 .5
1.45 6.46 5
1.50 5.80 7
1.60 4.86 7
1.70 4.21 5
1,80 3.80 3
1.90 3.49 3
2.00 3.25 3
2.10 3.11 1
3.00 2.16 1

# These data are accurate within about 1%.
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Tanre II. The equation of state for 12 hard disks with periodic
boundary conditions. Comparison of dynamic and Monte Carlo
results.

1600 Monte Adjusted

A/ A PA/NETs collisions Carlo Monte Carlo
1.100 21.9 2 20.62+4:0.00 22,46
1.250 .99 2 9.18::0.06 9.93
1.330 8.10 20 7.42:£0.08 8.01
1.400 7.42 10 6.804:0.08 7.39
1.450 6.93 10 6.2740.09 6.75
1.475 6.61 20 6.21:40.08 6.069
1.300 6.33 20 5.912:0.05 6.36
1.525 6,17 20 5,794-0.06 6.22
1.530 5.04 10 5.5240.00 5.94
1.600 5.56 10 5.23:4£0.07 5.61
1.630 5.20 10
1.700 4.80 7 4.06640.07 4,99
1.800 4.26 4 4.0730.06 4.34
1.900 3.93 4 X
2.000 3.54 4 3.3740.06 3.59
2.100 3.30 2
3.000 2.10 2 2.034:0.03 2.12

’i
«
xr
i

* lln se didn pre accurnte wlthu\ about V7.

dependent collision rate. One can now proceed by cither
evaluating the wvelocity change per collision or alter-
natively by taking the ratio of Eq. (1) with its low-
density form:
(PA/NET)—1 T
Bz(Z\'/,A> I‘oi
where By (N/4} is the low-density limit of

(PA/NET)—1,

(2)

namely the second virial coefficient, and T'/Tg is the
ratio of the high-density to the low-density collision
rate. Once the constraint of zero center-of-mass velocity
is taken into account in increasing both B; and Iy by
terms of order 1/N (see Appendix A), Eq. (2} is
satisfied; that is, the left-hand side calculated by the
virial theorem agrees with the right-hand side cal-
culated from the measured collision rate. Accordingly,
only the pressure calculated by the virial theorem is
given in Tables I, II, and III, which list the results
for 4, 12, and 72 particles, respectively. The relative
sizes of the three systems studied are shown in Fig. 1.
Furthermore, these same considerations when applied
to small three-dimensional systems! also bring the
various ways of calculating the pressure into agreement
within the 19 accuracy of the results. Thus, the
disagreement previously noted! between the pressures
obtained by the virial theorem and the collision rate
is removed.

Table II shows as well the results in a Monte Carlo
study® of an identical 12-particle system. In the
Monte Carlo method the pressure i3 calculated by

2] Tk —
LD~ o), ©
2(N/4)

where g{o) is the radial distribution function at contact
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TapLe III. The cquation of state for 72 hard disks with
periodic boundary conditions.

AND B. J.

1000
A/ A, PA/NETs collisions
1.10 21.2° 3
1.25 10.06 3
1.28 9.38::0.01 300
1.29 9.16::0.03 400
1.30 9.6:40.5 400
1.31 9.2£0.4 300
1.32 9.5:4-0.3 300
1.54 9.440.3 300
1.36 9.2040,07 300
1.40 8.25 9
.45 7.47 10
1.50 6.67 9
1.53 6.08 10
1.60 5.56 10
1.65 5.13 10
1.70 4.76 10
1.80 4,724 3
1.90 3.78 4
2.00 3.39 3

B These data are accurate within about 19 except in those cases where esti-
mated errors are given explicitly.

o. The pressure calculated in this way is not equivalent
to that obtained dynamically unless account is taken
of the difference in the center-of-mass motion. As
above, the fixed center of mass leads to a larger pressure
by the dynamic method as given by therelation,

(PA 1) N (PA X
NET dynamic Y —L\NET
Once this adjustment is made the two alternative
schemes yield, within the accuracy of the numerical
data, identical results, as shown in Table II. This
seli-consistency of the numerical work then gives

evidence for the assumption of quasiergodicity for
fAinite systems.

.

)Monte Carlo

III. COMMUNAL ENTROPY

The question of how to deduce rigorously from these
computer studies of finite systems the behavior of
infinite systems presents formidable problems. It is
necessary theoretically to predict the dependence of
the results on the number of particles so as to be able
to extrapolate. This is, in general, a more difficult
problem than to solve the infinite case in the first
place. Part of the difficulty is that a number of different
effects have to be considered and that these in turn
depend on the nature of the boundary conditions.

One of the finite-number effects that can be rigorously
corrected for with periodic boundary conditions is the
usual neglect of a small integer compared to the
number of particles N; that is, N—1 can no longer be
replaced by ¥. This leads to a correction®® to the nth
virial coefficient B,, whose leading term is of order
1/N. The results, to order 1/, for the first few virial
coefiicients for disks, when these are calculated in a

ALDER

fixed center-of-mass system, have been obtained®:
By(N) = By(),
By Ny =B3{e0 ) [ 14-(0.357/N) ],
By(N) = By()[14-(0.708/N) ],
By(N) =B =) [ 14+(0.74/N)].

In conformity with these results, it is found that at low
densities the pressurc decreases from a 48- to a 72- to
an 870-particle system, and that the latter is slightly
higher than the pressure predicted on the basis of the
virial cocfficients for an infinite system. For smaller
systems as well as at higher densitics for the larger
systems, the number dependence is found to be more
complicated. This is because an additional number
dependence arises in the higher virial coefiicients which
is connected with the interactions of chains of particles
stretching completely across the system.* This effect
is difficult to account for. It is hence necessary to rely
on the empirical observation that once systems larger
than a few hundred particles are studied, the observed
dependence of the results on the number of particles
outside the two-phase region is smaller than the
present statistical accuracy of the data. The number
dependences In the pure phases thus become apparently
rapidly negligible as the system increases in size.

In the phase-transition region there is an additional
strong number dependence of the results. This is such
that for the very small systems of 4 and 12 disks no
signs of the first-order transition are evident. However,
for two particles with periodic boundary conditions, 2
distorted van der Waals-like loop can be established
at about the density and pressure where the larger
systems have a first-order transition.” This transition,

Fia. 1, Dimensions of the periodic cell used for N =4, 12, and
72 hard disks.

$The expressions given in Rei. 5, using the exact infinite-
system virial coefficients through B: [J. S. Rowlinson, Mol. Phys.
7, 593 (1963)~(1964); P. C. Hemmer, J, Chem. Phys. 42, 1116
{1965)7] and the Monte Carlo estimate for Bs [F. H. Ree and
W. G. Hoover, ébid. 40, 939 (1964)7, were muitiplied by
[14+(1/N)7] to get these results.

7B. J. Alder, W, G. Hoover, and T. E. Wainwright, Phys. Rev.
Letters 11, 241 (1963).
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for two particles, which is believed to be a crude model
of melting, 1s to be contrasted with the fake transitions
of higher order present in all small systems when the
analytic form of the partition function changes.
Exanmples of these fuke wansitionsare given in Appendix
B, where the behavior of four hard squares is evaluated
for botl rigid and periodic boundary conditions. This
example also illustrates that the nature of the boundary
conditions in small systems can effect the phase
ransition  qualitatively, Both four-particle systems
have two phase transitions, but all are of higher order
except that again in the periodic case one is first order.
For the larger system of 870 disks, however, as pointed
out before, the same behavior in the phase-transition
region was established with either rigid or periodic
boundary conditions,

The absence of a first-order phase transition for small
systems {4 and 12), the lack of coexistence for slightly
larger systems (48), and the van der Waals-like loop
for still larger systems (72 and 870) can all be qualita-
tively explained on the basis of interfacial tension®®
The interfacial free energy in small systems is so large,
even i the surface is kept to a minimum size, that
coexistence is energetically prevented. The van der
Waals-like loop arises from stabilization of the pre-
dominant phase by the surface terms. A quantitative
analysis of the 870-particle results reveals, however, a
shortcoming of this argument, in that the surface free
energy per particle is rather small, £77/60,

Besides the qualitative differences in the phase
transition for small numbers of particles, it is desirable
to establish, once the two phases coexist, how the
phase-transition shifts with still further increase in
size of the system. The important thing in extrapolating
to infinite systems is to make sure that the phase
transition does not change in character again, or
disappear entirely for macroscopic systems. It is thus
gratifying to be able to calculate quantitatively the
difference between the transition pressures for 72 and
870 particles. Although in the 72-particle system the
pressure fluctuations are large since the two phases
just begin to coexist, the tie line connecting the fluid
and solid isotherms can be quite well determined with-
out going to the large computational efiort® required
to establish the van der Waals-like loop accurately.

The predominating dependence of the transition
pressure on the size of the system once the phases
can coexist can be simply traced to the number de-
pendence of the communal entropy. The entropy
change across the transition AS is related to the
transition pressure for hard-particle systems by the
thermodynamic requirement of equal chemical poten-
tials in the two phases,

P(N)AA/NET=AS{N)/Nk,

where A4 is the area change across the transition.

8 1, E. Mayer and W. W. Wood, J. Chem. Phys. 42, 4268 (1965).

The value of A4 has been established to be nearly the
same for both the 72- and 870-particle systems, namely
AAJA==0.03, where Ao is the arca at close packing.
The transition pressure, on the other hand, was found
to be more strongly dependent on the size of the system
than the pressure in the one-phase regions and thus,
similarly, must the transition entropy be strongly
dependent on N. Although the major contribution to
the transition entropy does not arise from the communal
entropy but rather from the area expansion,? the major
number dependeice does arise from communal entropy
siuce, as was just pointed out, the area expansion is
only weakly dependent on N.

The appearance of the communal entropy across the
phase transition is justified here since for the larger
systems under consideration both the solid and fluid
phases exist. Both the {ree area per particle a; to which
a solid particle is confined and the volume accessible
to a fluid particle (4~ Nb), the lolal area less the
effective area of the particles, must be properly taken
into account to calculate quantitatively the communal
entropy.’ However, to calculate the number dependence
of the communal entropy it suffices to make the usual
qualitative arguments, namely that the configurational
partition function of the solid, (a)¥~(A/N)¥, differs
from that of the liquid, (A—~Nb)¥/NI~A4Y /N by the
indistinguishability of the particles. Under these simple
approximations the transition entropy is, with the aid
of Stirling’s approximation for ¥4,

AS(N)/Nk=const— [ In(2xN)¥2/N +0O(N9),

with the value of the constant of unity. A quantitative
calculation leads to a value of the constant of 0,36, the
communal entropy part of which is an order of magni-
tude smaller. From the number-dependent part of the
communal entropy, —iln(2x) /N, the pressure shift
of the tie line is calculated:

[AS(870)/NE]—[AS(72)/NE]=—17rsln(17407)
+d4In(144x) =0.038,
[P (870~ P(72) JAo/NET=0.76,

by using the previously determined area change. This
calculated difference in the transition pressures cor-
responds closely to the one found numerically, as
shown in Fig. 2. The communal entropy argument
leads to a shift of Pde/NkT from 7.7 at the 870-
particle transition to 7.8 for the infinite system,
provided it can still be assumed that the area change
remains constant,

The same (IniV)/N dependence of the iransition
pressure should be found in three dimensions. Since
hard-sphere systems large enough for the two phases to
coexist have not been studied, the transition pressure

® Only for one-dimensional hard spheres has an exact calcula-
tion of the communal entropy been carried out EW. G. Hoover
and B. J. Alder, J. Chem. Phys. 45, 2361 {1966} |.
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Fre. 2. Hard-disk equation of state. Dynamic results for 72
disks are indicated b} bullets (). The two smooth curves
shown fit the high-density 870-particle isotherm and the low-
density virial series. Both the 72 and 870 tie lines are shown. The
vertical arrow indicates the magnitude of the difference in transi-
tion pressures between 72 and 870 as predicted from the N de-
pendence of the communal entropy.

for each value of ¥ can be roughly identified with the
fluid pressure at the highest density for which the
jump from solid to the fluid can be observed.® The
& dependence of this estimated transition pressure is
found to be in agreement with the (InV) /& prediction.
It thus appears that even in the phase-transition
reglon the pressure is within 0.19 of its infinite-system
value so that, for practical purposes, the results are
indistinguishable from those in the thermodynamic
limit once & exceeds about 10 000,

APPENDIX A

The second virial coefficient and the low-density
collision rate are calculated for D-dimensional hard
particles. The system has periodic boundary condi-
tions and zero center-of-mass wvelocity. The velocity
“correlations” present because the center-of-mass
velocity is zero tend to increase both the collision rate
and the second virial coefficient for finite systems.

The velocity space probability density, Py(v), is
assumed to be Maxwellian for a typical particle, (1)
for example,

Pi(vy) =[D/(2ru?) PP exp(— Dvi*/2u),

where D is the number of dimensions. The Maxwellian
assumption is distorted at the high-velocity tail
because the maximum speed is of order N'*u; even for

M. Ross and B. J. Alder, Phys. Rev. Letters 16, 1077 (1966},

(AL
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N as small as four, the approximation is adequate g
present purposes.

The remaining momentum, NV—vi=—vy
energy, Nu?~v,?is, on the average, distributed equally
among the remaining V-1 particles. Any one of thest

particles, (2) for example, will also have a ‘\IaxWelhan

veloczt;, <hstr1but10n, but with most probable vel ocity
—vi/(N—1):

putviw) = ()" exp{ 2Lect L )

2n§ 28

(AY)
g=[(Nut—v?) /(N—1)]—[w¥/ (N—-1)].
(A3)

e

Effects of order 1/N can be calculated by expanding *

Py (VZ)V1>7
Po(va;vi)

= P1(vy) {14+ Dl (vi— vo) 2— i — vi2v? ]/ (2N},

Using the probability density (A4), the calculation of
the low~densxty collision rate Ty and the average rate

of momentum transfer {Q_F.-T.)o can be camed out
in the usual way:

r N
Ty== L%} f/ P(vy) P{vo;vy) (&—io) dvidve
1>y
_ [2DBy()u 4D+1 ~
B LUVDUZWUJ <1+ SND ) (A5)
<Z E-rc)oz [ZDB?'( )mjl [f
B>y
X P (vi) P(vo;v1) (#1—22) "dvidve
_ [ T L e

In each equation the last factor in the parentheses is
the deviation of the result from that obtained without
the fixed center-of-mass restriction.

The collision rate is increased by about 1-4(2N)™,
and the effective second virial coefficient by 1-4+(1/N}.
By 18 o, 7¢%/2, and 2x6%/3 in one, two, and three di-
mensions, respectively, Thus the dynamic system,

through the second virial coefficient, has the low-density _

equation-of-state characteristic of an infinite system,
the velocity correlations just canceling out the usual
N dependence [which comes from the binomial co-
efficient (3)].
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APPENDIX B

The configurational integrals for four hard parallel
sruares of unit sidelength can be cvaluated {or both
periodic and rigid-boundary conditions. These results
d,(m that (1) the free-volume form of the equation
of state is obtained in the I“lgld boundary case, and (2}
a looped isotherm is found in the periodic case. The
configurational integral is defined in the usual way:

(Gu= (457 ) e\p<AT>a’r“ (B1)

where @ is the potential energy of the system. The
region of integration is the square container of area 4.

5 T T T

0
10 i5 20 25 30
Afhg

Fi6. 3. Equation of state for four hard, parallel squares. The
upper curve corresponds to rigid boundaries. The lower curve
corresponds to periodic boundaries with a fixed center of mass.
The periodic isotherm has a first-order phase transition near
A/Aa=2.25, where Aq is the area at close packing, )

The integral Is most casily evaluated by expanding
the exponential in Mayer f functions, The resulting
integrals, which are related to simple one-dimensional
integrals, can then be evaluated. The results are as
follows:
Qu (Periodic Boundary):

A< ALY A A(AVBH1) (A12—2)5,

9<A<16: P (443244716843 (312 452

44836 4%~ 76804214280 4),
16<4 wr{3A4—T248--6124%—18644).

(B2)
Qs (Rigid Boundary):
4< A< K (4V—-2)8
9<A<16: wrw(1144—064A472—400434473645*
— 16 98842426 496 4%2—11 2964
—13 52041211 426),
16<A4: aa(1244— 96 47248 4341344 4572
— 254442 5952432415 456 4 7984 A V2 — 26 462),
(B3)
The isotherms corresponding to the two kinds of bound-
ary conditions are shown in Fig. 3. In plotting the
periodic boundary case PA/NkT—1 has been multi-

plied by 4, so that the results correspond to a system
with-a fixed center of mass.
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