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Synopsis 

for the isothermal elastic constants, C't~, Ci~, and C~~, are derived 
whose molecules interact with pairwise-additive central forces. The 

exact contain fluctuation terms, omitted by Born, which make important 
contributions at nonzero temperatures. 

\Ve use the Monte Carlo technique to evaluate C'tk, and C~~ for argon at 40, 
60 and 80 K The isothermal compressibility P == 3/(C'f~ 2Cf~), calculated fromT 
the numerical results, is in good agreement with experiment at three temperatUl'es. 

1. Introduction. Both experimentalists and theoreticians are attracted to 
rare-gas crystals. Because systems are the simplest available, the hope 
of understanding their properties on a molecular level and achieving quanti ­
tative agreement between experiment and theory is best. Solid-phase proper-

are slightly more complicated than those of the fluid because shape as 
well as volume and temperature can be changed. The work required to dis­
tort a solid is described by the elastic constants, which are analogs of the 
bulk modulus for a fluid. For the rare-gas crystals, straightforward measure­
ment of the work of distortion is difficult. At low temperatures the crystals 
are very brittle; at higher temperatures, near melting, they have a mushy 
consistency. Instead of a direct measurement, an indirect approach is used. 
High-frequency sound velocities can be measured. In a cubic crystal such as 
argon, measurement of longitudinal and transverse sound speeds in a 
known direction allows the three independent adiabatic elastic constants 
Cfl' and Cf4 to be determined. These velocities have recently been 
reported for argon as functions of temperature by Moeller and Squire 1). 
The isothermal elastic constants, which describe the change in free energy 
with slO'vv distortion of the crystal, as opposed to the rapid adiabatic dis­
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tortion caused by a sound wave, have never been measured in rare-gas 
crystals because of the tendency of the crystals either to crack or to flow, 
depending on the temperature. 

The lattice theory of elastic constants was first developed by Born 2). 
Since Born had no access to modern computers, his results were restricted 
to the simplest case, perfect crystals at absolute zero. Computers make it 
possible to study the more complicated finite-temperature case in detail, 
without, however, providing a useful analytic theory. It is the lack of a 
simple theory for treating anharmonic effects in crystals that still hampers 
quantitative calculations of the elastic constants, as well as other thermo­
dynamic properties, at temperatures different from absolute zero. Limi­
tations of present theories are discussed at length by Leibfried and Ludwig 3). 

Since the :Monte Carlo computer method for calculating thermodynamic 
properties takes all interactions into account exactly (within the assumptions 
of a gi ven force-law and classical mechanics) it seems to us ideally suited for 
determining elastic constants for solid argon. \Ve vrill not describe the Monte 
Carlo method itself because that has already been done 4, 5). 

In section 2 the theoretical development of expressions is given for the 
isothermal elastic constants as ensemble-average functions of particle co­
ordinates and the interparticle force law. No approximations, such as treating 
vibrations as small or quasi-harmonic, are made. vVe follow Born's treatment 
for the energy, applied to the Helmholtz free energy, deriving expressions 
for the derivatives of the Helmholtz free energy with respect to strain com­
ponents (distortions of the lattice structure). The only difference between 
our expressions and Born's is that ours include fluct~tation terl1tS which vanish 
at absolute zero, but which become important, contributing as much as 30% 
of the simpler Born terms, for the solid at high temperatures. 

In section 3 the results of the Monte Carlo calculations are presented. It 
is shown that the results for isothermal compressibility are in good agreement 
with the experiments of Peterson, Batchelder, and Simmons 6). In the last 
section the results are compared to previous work, and the conclusion is 
drawn that a new theory is needed to calculate the fluctuation terms as well 
as the high-temperature form of the Born terms. It is hoped that experiments 
on the isothermal elastic constants will eventually be carried out to check 
further the adequacy of the pair potentials used in theoretical calculations. 

2. Theory. In this section we derive expressions for the isothermal elastic 
constants which can be evaluated conveniently by Monte Carlo calculation. 
The elastic constants describe the change of Helmholtz free energy, which 
is -kT times the logarithm of the canonical partition function, with changes 
in the shape of a crystal from an initial cube. In order to derive expressions 
for these constants in terms of particle coordinates, the partition function 
is first written for a crystal of general shape. This gives the free energy as 
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a function of temperature and the so-called tensor, which 
the distortion from a perfect cube. Straightforward differentiation then 

the desired for the elastic constants. 
Follmving Born 7), we describe the crystal with a set of three molar 

basis vectors, at, which determine the lattice sites by means of the equation 

(1) 

In this equation, and in those that follow, the unbarred indices (i or f) range 
over the values 1, 2 and 3. An unbarred index which occurs twice in the 
same term will imply a summation. A barred index (l or 1f~) for the 
three integers used to label the lattice sites in the crystal. For example, 1 
stands for {ll, l2, \Ve ultimately consider a face-centered cubic argon 
crystal, for which the only allowed values for the barred indices are those 
for which the sum of the three components is equal to an even integer. 
The vector ri. gives the position of the lth lattice site. 

vVe restrict ourselves to the description of homogeneous deformations and 
we allow the molar basis vectors to change as the lattice is deformed. Thus, 
when the lattice is undeformed, the three vectors at are mutually orthogonal 
and are identical in length; but the lattice is deformed, the lengths of 
the ai and the between them may change. We as a measure of 
strain, the tensor 

1 
1]ij = aU (2) 

a22 

where aij a,t'aj is the metric tensor of the molar basis vectors, Oij is the 
Kronecker delta, and a is the of the molar vectors in the un­
strained state. The quantity 1]ij, defined in eq. (2), is the nonlinear Lag­
rangian strain tensor 8). 

The position vector, xi of the lth particle is the sum of ri given by eq. (I) 
and a vector, qT, which gives the displacement from the lattice site due to 
the thermal motion of the particle. If qli are the coordinates of qi with 
respect to the basis vectors ai, then we have 

(3) 

where are the coordinates of the position vector with respect to the molar 
basis vectors. As a final geometrical consideration, we can use eqs. (2-3) to 
express the scalar distance, rim, between the lth andtiith particles in the form 

(4) 

Vie now assume that the particles in the interact in a pairwise 
fashion and that the interaction depends only on the distance between them. 
If we use ~(r) to represent the potential energy of the interaction, then the 
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classical partition function for a perfect lattice will be given by the equation 

(2mnkT)3N/2 f f i 'iiiz ... dx··· dx exp 2: rp(r)jkT) , (5)
h3N 

c,. c,. 

where Z is the canonical partition function, m is the particle mass, N is the 
number of particles in the system, k is Boltzmann's constant, h is Planck's 
constant, and T is the temperature. The L'l's indicate that in eq. (5) each 
particle is constrained to stay closer to its own lattice site than to any other. 
The summation symbol in eq. (5), and in the following equations, denotes a 
sum over all distinct pairs of particles, and the argument of rp is the inter­
particle distance rrm of the pair under consideration. Finally, since the 
Helmholtz free energy is related to Z by the equation 

A ~ kTln Z, (6) 

we can use eqs. (4-6) to obtain the derivatives* of A with respect tor/ij. We 
have 

(7) 

and 

C1' 
ijpq 

X mq
)) ~ 

x17ii)] . 

mq 
X )])} + 

mq
X )) 

_Xmq)). (8) 
I 

In eqs. (7-8) the symbol <X> stands for the thermal average of X defined 

*) We have left out the "kinetic" contributions to the elastic constants in eqs. 
(7) and (8) because these are generally negligible for solids. These contributions, 
which come from the additive term ·-NllT In V in the Hehnholtz free energy, are 
-NkToi1 for (8Aj81]ij) and 2NkT'Siq'Sjp for (8 ZA/81]ij81]pq). These terms are included in 
egs. (10) and (12). Note that Cf4 = ;i(Cf212 + Cf221 t· Cf112 Cfl21)' 
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by the equation 

(2rr:mkT)3N/
2 f J'" ­<X> = ... dx'··· dx tn X ·exp( - 1: q;/kT). (9)Zh3N 
li Ll. 

The quantities C~;l)q are the second-order isothermal elastic constants of the 
lattice 9). For a cubic crystal, only three of the Ch'pq are nonzero and unique: 
Ci~, Ci~, and Ci~· The number of subscripts has been reduced by the usual 
Voigt 10) notation. 

For these particular cases, eq. (8) becomes 

2Nl~T 
(10)~ \ 1: ~; (AX)4) - ~ (1::~ (AX)4) V 

Ci2 V~T {\1: ~' (Ax) 2 ) \ 1: ~' (Ay)2)­

\ 1: ~' (Ax)2. 1: ~' (Ay) 2)} + 

+ ~ \ 1: ~: (Ax)2 (Ay) 2 ) - ~ \ 1:t~ (Ax)2 (Ay) 2), (11) 

1 / q;' .) NkT+ I /1: q;," (Ax)2 (AY)2) V \ 1: ~ (AX)2 (Ay)2 + ~V'V \ r2 

(12) 

where the quantities Ax, Ay, and Az represent the x, y, and z Cartesian co­
ordinates of (xi X"fi). In the remainder of the paper we will refer to the 
term in braces as the "fluctuation term", while the following terms in each 
of these expressions will constitute the "Born term" and "kinetic" term. 

3. Nu.merical results. To calculate the isothermal elastic constants for 
argon, it is necessary to determine the ensemble averages which appear in 
eqs. (10-12). We nse the pairwise-additive Lennard-Jones potential, 

[(
' (J' )12 ((J' )6Jq;(r) = 48 -; - -; , (13) 

with the values of e and (J' determined for crystalline argon by Horton and 
Leechll) : 

elk 119 K, (J = 3.40 A. 
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Fig. 1. A two-dimensional single-occupancy system. In this system (heavy lines) each 
particle is restricted to a celL In the 1vlonte Carlo calculations periodic boundary 
conditions were used so that each particle interacted with the N - 1 particles or periodic 
images (light lines) closest to it. To illustrate the periodic boundary one particle and 

three of its images have been shaded. 

These values of the parameters, and the Lennard-Jones potential function 
itself, appear to roughly describe the thermodynamic properties of solid 
argon. This has been borne out in recent Monte Carlo calculations of the 
pressure and internal energy in an investigation of thermal defects in solid 
argon 12). 

The classical system considered for these calculations contained 108 parti­
cles initially located at the lattice sites of a face-centered cubic lattice. The 
x-ray lattice spacing13) at the corresponding values of the temperatures 
were used. Surface effects were eliminated by using periodic boundary con­
ditioils, as shown for an analogous two-dimensional system in fig. I. The 
molecules were constrained to remain inside spherical cells centered at the 
lattice sites. The cell radius was one-half the nearest-neighbor distance. The 
choice of these cells rather than the larger vVigner-Seitz cells has no effect 
upon the results. Less than 0.01 % of the Monte Carlo moves were disallowed 
by this geometric restraint. Most of these moves would have been rejected 
anyway because of the resulting high energy. 
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As the quantities which we are interested in calculating depend upon the 
lattice being infinite in extent, the results for the actual finite system were 
corrected by considering the lattice outside the fundamental Monte Carlo 
cell to be a static lattice. The correction term for a given quantity was de­
termined by taking the difference in the static lattice value of the quantity 
for the finite system and the static lattice value for the same quantity for 
the infinite system. This technique was found to be satisfactory in earlier 
Monte Carlo calculations12) on systems containing 32 and 108 particles. 
The number-dependent corrections gave values for both energy and pressure 
in good agreement for the two different sized systems. 

TABLE I 

The isothermal elastic constants (in units of 1010 dynes/cm2) as functions of temperature and lattice 
spacing for solid argon. The first three sets of data are near zero pressure, while the last two sets 
describe the solid under tension and compression, respectively. The expected error in the Born 
terms is about I %, while the expected error in the fluctuation terms varies from about 5% to 

10%. The perfect-lattice nearest-neighbor distance is d. 

T d Corrected Fluctuation Kinetic Corrected Static-lattice 
(kelvins) (angstroms) Born term Term Term constant constant 

40 3.780 3.57 -0.76 0.03 efl 2.84 2.654 
2.03 -0.42 0.00 Cf~ = 1.61 1.601 
2.03 -0.36 0.01 Cf4 1.69 1.6C 

60 3.813 3.38 1.14 0.04 efl = 2.28 2.064 

1.90 -0.59 0.00 ef2 1.31 1.288 
1.90 -0.48 0.02 Cf4 = 1.44 1.288 

80 3.857 3.12 -·1.55 0.05 eT 
11 1.62 1.428 

1.72 -0.84 0.00 ef2 = 0.88 0.949 
1.72 -0.59 0.03 Cf4 1.16 0.949 

40 3.857 2.34 -0.63 0.03 eE = 1.73 1.428 

1.37 -0.49 0.00 ef2 = 0.88 0.949 

80 3.780 4.39 -1.61 0.06 efl = 2.83 2.654 

2.40 --0.89 0.00 eT 
12 1.51 1.601 

In table I we have tabulated the Born, fluctuation and kinetic terms for 
eqs. (10-12) at three particular temperatures: 40,60, and 80 K. The Monte 
Carlo runs for all results reported were 300 000 configurations in length. 
The initial 50 000 configurations were excluded in the computation of 
ensemble averages. In addition, ensemble averages were determined by 
averaging a given quantity for all three equivalent directions. For example, 
the ensemble average of <2.:: (¢'/r) (!lx) 2) used in calculating Ci~ was de­
termined by averaging the result for this expression with the results ob­
tained for <2.:: W/r)(ily) 2) and <2.:: (¢'/r)(ilz) 2). The corresponding Born 
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Figure 2. Isothermal Elastic Constants for argon at zero pressure as determined by 
IVronte Carlo calculation. From top to bottom at 40,60, and 80 K the points represent 
Monte Carlo values of Cf4' and C12' The theoretical (classical) zero-degree elastic 

constants are indicated by arrows. 

terms for the various lattice spacings but for an infinite static lattice are 
also listed table 1. The Monte Carlo isothermal elastic constants for zero 
pressure are plotted in fig. 2. 

The Monte Carlo results for the isothermal compressibility *, 

(14) 


are compared to the zero-pressure results of Peterson et al. 6) in table II. For 
the compressed lattice the Monte Carlo result at 80 K and 850 atmospheres 
is compared to Stewart's 14) experimental result at 77 K and 970 atmospheres. 

The compressibility was also computed from the following relation, 

I (av) (15)V3P T' 

* (14) is strictly valid only at zero pressure. 
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TABLE II 

Isothermal compressibility as a function of temperature and lattice spacing. The 
expected errors in both the Monte Carlo results and in the experimental values of 
Peterson et aT. 6) are All values for isothermal flT are in units of 

10-13 

using the pressure data from the two Monte Carlo runs at 80 K. This method 
yielded a value of 65 10 X 10-12 cm2Jdyne, in agreement with the static 
lattice and direct Monte Carlo computation. 

4. DiscZ·bssion. \Ve would now like to draw some tentative conclusions 
from the data given in the preceding section. We note that the ::.\iIonte 
Carlo Born term (table I) greatly exceeds the static-lattice elastic constant 
(which is just the value of the Born term when the particles are at rest). 
::.vIost of this excess is offset by the negative fluctuation term so that the 
final elastic constant differs by only about ten per cent from the zero-degree 
one. This near cancellation of the Born-term increase the negative 
fluctuation term is striking. It would be interesting to quantitatively 
the relative sizes of the Born and fluctuation terms from the standpoint of 
lattice dynamics. We hope that a theory capable of handling both kinds of 
terms will be forthcoming. 

Finally, we notice that the Monte Carlo and static-lattice values for the 
isothermal compressibility (which depends on both Ci~ and Ci~) agree well 
with each other but exceed experimental values by about ten per cent. The 
insensitivity of compressibility to temperature deserves further investigation. 
The disagreement with experimental compressibilities indicates that the two­
particle Lennard-Jones potential function is somewhat softer than the ef­
fective two-particle potential in argon. In the future we to report on 
applications to adiabatic elastic constants for both quantum and classical 
solids and fluids. 
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