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Recent quantum calculations and high-pressure experiments both 
agree on the magnitude of the forces with which hydrogen mole­
cules interact. The calculated forces have to be determined in two 
steps: the repulsion is determined by HartreeFock calculations 
while the attraction is deduced semiempirically. The "experimen­
tal" forces are inferred from recent data on hydrogen shock­

1. Introduction 

Hydrogen is of interest because it is simultaneously 
the simplest, commonest, and most dangerous of the 
elements. Hydrogen appears simple because it has only 
two electrons per molecule. Despite this apparent sim­
plicity, convincing calculations of its thermodynamic 
properties have not been carried out. This is because 
the forces with which hydrogen molecules interact are 
not yet understood in a fundamental way. Despite its 
overwhelming abundance in the solar system, most of 
that hydrogen exists under esoteric thermodynamic 
conditions hard to duplicate in terrestrial laboratories. 
In the Sun, fusion maintains temperatures of several 
million degrees. Pressures in Jupiter and Saturn are 
near 100 Mbar so that the hydrogen in the centers of 
these planets is compressed to less than 1 % of the 
normal liquid volume (DEMARCUS, 1958). Despite its 
ultimate importance as a source of fusion power, prac­
tical application of the source still appears to lie de­
cades in the future. 

Recently, both the theoretical and the experimental 
studies of this fundamental material have become more 
sophisticated. The theoretical calculations of the H2-H2 
interaction appear at last to be converging with inferen­

* This work was perfonned under (he auspices of the United 
States Atomic Energy Commission. 

compressed to 214 kbar. The agreement indicates the usefulness 
of a pair-potential description of dense hydrogen and suggests, 
using potentials consistent with both theory and experiment, that 
pressures of at least 1.7 Mbar will be required to make metallic 
hydrogen. The expected lifetime of the metal at atmospheric 
pressure is very short. 

ces made from high-pressure experiments. The new ex­
periments, carried out by Van Thiel and Hord at Liver­
more (VAN THIEL, 1972) and by Dick at Los Alamos 
(KERLEY, 1971) have pushed direct experimental knowl­
edge of the equation of state of hydrogen to a pressure 
of2l4 kbar and a temperature of order 5000 K. In view 
of these new theoretical and experimental advances, it 
is the appropriate moment to look at the extent of the 
agreement between them and to see what conclusions 
can be drawn from the comparison and applied to 
further advances in the study of hydrogen. 

The most interesting form of hydrogen has not yet 
been directly observed on Earth, although it is sup­
posed to be the principal component of both Jupiter 
and Saturn. This is metallic hydrogen. In addition to 
possible applications as a room-temperature supercon­
ductor or fusion fuel (ASHCROFT, 1968), there is in­
trinsic interest in metallic hydrogen as the simplest 
alkali metal. Because the metal would be metastable at 
atmospheric pressure, or at any other pressure less than 
that required to produce it, the initial production is 
technologically complicated. The tremendous compres­
sions required (nearly tenfold from the normal liquid 
volume) rule out direct shock experiments. Instead, as 
described here by Ron Hawke, isentropic compres­
sion with high magnetic fields, or huge static presses 
(GROSS, 1970) should eventually lead us to an experi­
mental, rather than just theoretical, description of the 
metaL 
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2. What are the forces in hydrogen? 

2. 1. Theoretical 

Theoretical descriptions of the Hz-Hz interaction are 
still incomplete. In principle, we would like 10 use the 
Schr6dinger equation to determine the energy of the 
ground state of four electrons in the presence of four 
protons with two of the proton~proton distances fixed 
in the vicinity of the experimental H-H distance in 
hydrogen, namely 1.4 bohr* (about 0.75 A). In order 
to calculate accuratc low-pressure thermodynamic 
properties, we would need to know this energy ac­
curately. A tolcrable uncertainty would be 10- 5 har­
tree**, corresponding to the attractive interac­
tion between two molecules. In practice, the best cal­
culations so far carried out et al., 1971; BEKDER 
and SCHAEFER, 1972) are too high in total energy by 
about 10- 2 hartree. Until better functional forms for 
molecular wavefunctions are developed to improve this 
situation, we will have to continue to rely on approxi­
mate calculations of the H2~H2 interaction in which 
the energy relative to separated molecules is used rather 
than the absolute energy with its unacceptably large 
errors. 

The results of SCHAEFER et at. (1970) for the simpler 
four-electron problem of two interacting helium atoms 
indicate that the interaction problem can be separated 
into repulsive and attractive parts. We will use the 
same separation in describing the interaction. 
The repulsive forces can be approximated by a Hartree­
Fock calculation in which two molecules are allowed 
to interact without any explicit correlation between the 
electrons in one molecule and those in the other mole­
cule. The Hartree-Fock wavefunction does not ac­
count for the long-range attractions (dispersion forces) 
arising from explicit electron correlation. The helium 
results indicate that the dispersion energy terms of 
order R- 6 and R- 8 closely approximate the difference 
between the Hartree-Fock repulsive energy and the 
total interaction energy. 

An extensive series of computer studies of the H2-H2 
interaction was carried out by Magnasco and his co­
workers (MAGKASCO et al., 1967). These authors used 
single Is exponential orbitals as bases for molecular 
orbitals. The resulting interaction energies depended 

* 1 bohr = 1 atomic unit of length = ao. 
u 1 hartree = 1 atomic unit of energy = e2 /ao. 

strongly on the angular orientations of the two inter­
acting hydrogen molecules; the ratio of the energy for 
the colinear parallel configuration 0 was 
approximately five times that of the '''''HU'!; 
configuration obtained by rotating each molecule 90° 
in the plane of the paper. Unfortunately, the thermo­
dynamic properties obtained from the Magnasco re­
pulsion (NEECE et at., 1971) disagreed with experimental 
data. Predicted pressures at 0 K were about a factor 
of two above the experimental data. The discrepancy 
could be explained either by experimental error or by 
theoretical inadequacy of the wavefunctions. More ex­
tensive calculations of the H2~H2 repulsion were car­
ried out (TAPIA et al., 1971; BENDER and SCHAEFER, 
1972) combining both spherical (s-type) and angle­
dependent (p-type) Gaussian functions on each proton 
to build up molecular orbitals. The results were a sub­
stantially reduced repulsion with a much smaller angle 
dependence, only a factor of two variation be­
tween the highest and lowest energies at fixed inter­
molecular separation R. The reduced angular variation 
from these new results is small enough so that zero­
point energy provides relatively free rotation over the 
whole range of densities for which the solid phase is 
stable. A spherical average over the four orientations 
for which the quantum Hartree-Fock calculations have 
been carried out gives the repulsive part of the H2-H2 
interaction: 

+ 4 oi 0-0 + 0- 00-0] 
o HF 

=8.2exp [-1.74R], 

in where R, the center-to-center H2~H2 se­
paration, is measured in bohrs. It is interesting to note 
that over the range from 3 to 8 bohr this potential 
agrees with that derived by TRUBITSYK (1966),12.15 exp 
( 1.8IR), within 20 Trubitsyn's calculation was 
based on the interactions of hydrogen atoms 
over spherical surfaces. The spheres were centered at 
distance R apart, and the sphere radii were half the 
experimental H-H The new theoretical re­
pulsive potential is shown in fig. 1. The corresponding 
spherical average of the older Magnasco repulsion is 
also shown; the difference between the two is approxi­
mately a factor of 2. 

The attractive part of the interaction has been 
determined by a combination of experimental and theo­

http:1966),12.15
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Fig. 1. Pair potentials for the H r H 2 interaction. The potential 
(in hartrees) is plotted on a logarithmic scale as a function of R 
(in bohrs), the distance between molecular centers. The volume 
scale at the top of the figure indicates the volume occupied by a 
mole of H2 in a close-packed structure with nearest-neighbor 
distance equal to R. The two theoretical calculations of the re­
pulsive interaction are shown as solid lines; the repulsive part of 
the low-density Lennard-Iones potential is also shown. The ar­
rows indicate the shift in potential corresponding to the attractive 
dispersion energy. When the best theoretical repulsion and the 
semiempirical attraction are combined, the result (bottom of the 
arrows) is in agreement with the pair potential deduced from the 

shock experiments. 

retical efforts. The large-R expansion has been derived 
from experimental oscillator strengths (DALGARNO, 
1967) : 

This attractive potential agrees fairly well with empirical 
potentials fitted to gas-phase virial and transport co­
efficients. The total interaction energy obtained by com­
bining the repulsive and attractive parts is also shown 
in fig. 1 by arrows. At high density, the attraction can 
be expected to be damped. Trubitsyn suggested, using 
the observed H-H damping, a multiplicative factor of 
exp (-400R- 6

), for the H 2-H2 attraction too. This 
cuts the attractive part of the energy in half at about 
R = 3 bohr, corresponding to a molar volume of about 
2 cm3jmole H 2 . 

2.2. Experimental 

Until Van Thiel and Alder (VAN THIEL and ALDER, 
1966) determined the density of hydrogen shock-com-

R (0 0 ) 

pressed from the normal liquid volume to a pressure 
of 40 kbar, there were no data beyond the 20 kbar 
maximum reached by STEWART (1956) in static experi­
ments. Two techniques using explosives to generate 
high pressures have extended the experimental results 
to much higher pressures. Ron Hawke has described 
here his magnetic implosion experiments, which cor­
respond to isentropic compression, and Norris Keeler 
has described recent Livermore shock experiments 
along the Hugoniot pressure-volume curve which links 
low-pressure liquid hydrogen with high-pressure high­
temperature states through a rapid adiabatic shock 
process. The shock experiments provide higher temper­
atures than do the isentropic compressions because 
more of the compression energy is converted into ther­
mal motion. The combination of high temperature and 
pressure is particularly valuable for exploring intermo­
lecular forces at small separations. This unique char­
acteristic of the shock experiments makes them par­
ticularly useful for extrapolation to even higher pres­
sures. For example, in the highest-pressure shock ex­
periments, the temperature is about 5000 K and the 
molar volume about 7 cm3 

. The collision diameter from 
the repulsive H r H 2 potential is about 3.6 bohr under 
these conditions, which corresponds to the nearest­
neighbor separation in a crystal compressed to about 
3 cm3

, near the volume at which hydrogen becomes 
metallic. Thus the shock experiment tests the potential 
function over a wider range of distances than can con­
ventional static experiments. 

In fig. 2, we show the pressure-volume states reached 
in the Livermore experiments together with Dick's Los 
Alamos experiments as reported by KERLEY (1971). 
Although some of the experiments used hydrogen and 
others deuterium, under slightly different initial condi­
tions, we have adjusted the data shown in fig. 2 to 
compensate for these minor differences. Thus all the 
data shown correspond to deuterium compressed from 
an initial liquid volume of 23.8 cm3 jmole. Despite the 
scatter in the experimental data one can, for a given 
form ofthe H 2-H2 potentialfunction, determine bounds 
on the parameters in the potential. For example, two 
exponential-6 potentials provide reasonable upper 
and lower bounds on the effective potential consistent 
with the shock experiments. The two Hugoniot curves 
drawn in in fig. 2 correspond to the pair potentials 
7.8e -1.71R_17R- 6 and 11.7e-1.7 9R -16R- 6. The two 
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Fig. 2. Experimental determination of the H r H 2 interaction 
from shock experiments. The pressure--volume results of Van 
Thiel and Dick are plotted on a common scale, taking into ac­
count the slight differences among the various initial conditions 
of the experiments. The various experimental data on Hz and D z 
are consistent with the range of effective pair potentials of the 

exponential 6 form lying between the two solid curves. 

potentials are shown also in fig. 1 for comparison with 
the theoretical potential obtained by adding <Prepulsion 

from the Hartree-Fock calculations to <Pallraction from 
the measured oscillator strengths. We see that the theo­
letical and experimental results for the H r H2 inter~ 
action are consistent with one another. This ncw result 
is of fundamental importance. Besides indicating that 
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Fig. 3. 0 K isotherm for hydrogen showing the transition 
from the low-pressure molecular solid to the high-pressure me­
tallic form. The lower transition, at 840 kbar, is based on the 
obsolete theoretical calculations of MAGNASCO et al. (1967). The 
upper curve, with a transition pressure of 1.7 Mbar, is based on 
the steeper of the two potentials shown in fig. 2. The upper curve 
establishes a lower limit for the transition pressure consistent 

with the Hugoniot shock experiments. 

dense molecular hydrogen can be described with a 
pairwise-additive potential function, the agreement 
using the newer quantum calculations resolves the fac­
tor-of-two discrepancy between the less accurate cal­
culations based on Magnasco's potential and experi~ 
ment. 

3. Metallic hydrogen 

Wrm"ER and HUNTINGTON (1935) attribute to Bernal 
the observation that any material becomes metallic at 
high pressures. Since the energies required to free va­
lence electrons are a few electronvolts, the pres­
sures required are of the order of mega bars (1 e V 
corresponds with 1 Mbar . cm3

). 

For hydrogen, the properties of the metallic phase 
are more easily calculated than are those of the heavier 
alkali metals. This is because the core potential for 
hydrogen is the pure Coulomb potential. The major 
complications in the metallic hydrogen calculations lie 
in the nonuniformity of the electronic density (varying 
by a factor of six from a nuclear to an interstitial posi­
tion) and in the importance of the zero-point energy 
(which makes a contribution equal to about t of the 
crystal's binding energy relative to isolated atoms). 
Rogers has carried out a self-consistent field calcula­
tion of the properties of metallic hydrogen using local 
exchange and correlation potentials and including the 
effect of zero-point motion et al., 1971). He 
approximated the necessary integrals over Wigner­
Seitz polyhedra by integrating over spheres instead. 
M ore recent Hartree-Fock calculations of the electro­
nic structure of metallic hydrogen (HARRIS et al., 1971) 
have shown that the Fermi surface for metallic hydro­
gen is indeed nearly spherical, just as in an ideal elec­
tron gas, so that Rogers' approximate integrations 
should be quite close to the truth. 

As a check on his metallic calculations, Rogers car­
ried out parallel calculations for lithium and sodium, 
comparing his theoretical results with experimental 
compressibility data (which extend to about 200 kbar) 
and obtaining excellent agreement in both cases. This 
impressive correspondence with experiment suggests 
that his metallic hydrogen calculations are the best now 
available. The theoretical zero-pressure volume of the 
metallic phase is 3.5 cm3fmole H2 corresponding to 
eight-fold compression from the normal liquid state. It 
is not yet known if it will prove possible to observe the 
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metastable portion of the metallic hydrogen isotherm 
at lower pressures than that required to make the 
metal. Although the metal is stable relative to isolated 
hydrogen atoms by 0.059 hartreejmolecule Hz, the 
molecular phase is more stable than the isolated atoms 
by 0.16 hartreeJmolecule Hz. Thus if the cold metal 
were to decompose to the molecular form, the energy 
given off, about 3 e V per molecule formed, would leave 
the molecular phase at a temperature of severall000 K. 

Considering that the metal has never been directly 
observed, it seems paradoxical that its thermodynamic 
properties are better understood at high pressure than 
are those of the solid molecular phase. But knowledge 
of molecular-phase properties is crucial in determining 
whether or not a proposed experiment will reach con­
ditions at which the metal is more stable. How much 
pressure is required to stabilize the metallic form relative 
to the molecular form? The most straightforward pre­
dictions are based on the shock experiments. Two pair 
potentials shown in fig. 1 are consistent with the shock 
data; the more repulsive one predicts that, if the hydro­
gen were kept cold, the transition from the molecular 
solid to the metallic one would occur at 1.7 Mbar ~ 
this is to be contrasted with the earlier prediction of 
0.84 Mbar based on the purely theoretical calculations 
of Magnasco et al. If the softer potential consistent 
with the shock data were used, it would be difficult to 
pin down the transition pressure, principally because 
the form of the attraction at high density is uncertain. 
Presumably, the molecular phase would be rather simi­
lar to the description of TRUBlTSYN (1966) or LIBER­
MAN (1971), leading to transition pressures between 2 
and 3 Mbar. 

At present, the experimental data are not accurate 
enough to furnish a clearcut prediction of the transi­
tion density and pressure. Additional shock experi­
ments will clear up the uncertainty. The experiments 
planned in the range of a few Mbar should also serve 
to furnish experimental, rather than just theoretical, 
metallic-phase properties soon. 

The possibility that metastable metallic hydrogen 
could be preserved at low pressure has been suggested 
by Ashcroft. CHAPLINE (1972) considered the instability 

of metallic atoms to recombination within the crystal 
and obtained lifetimes less than lis for the zero­
pressure metal, SALPETER (1972) has just carried out a 
semiclassical tunneling calculation which indicates that 
even with optimistic assumptions a crystal of metallic 
hydrogen could persist at low pressure for no more 
than 100 s. About the same kind~ of estimates can be 
obtained by considering the probability that particles 
will link up to form molecules on the crystal surface 
due to zero-point vibration. In any event, despite the 
technological importance of a room-temperature super­
conductor, it appears that metallic conductivities for 
hydrogen will always be measured at high pressure. 
Such high pressure experiments are still of great intrin­
sic interest for the light they will shed on fundamental 
quantum-mechanical calculations and the structure of 
the solar system. 
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