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The three examples of ideal gas, square well, and 
harmonic oscillator particles illuslrale the equivalence of 
lhe constant-energy and constant-temperature de.~cription8 
of statistical mechanics if the nUrrWer of degrees of freedom 
is large. Significant differences between these descriptions 
appear, however, in the opposite extreme, i.e., the few­
particle limit. The analysis presented here supports the 
conclusion that three degrees of freedom are nec.essarll 
to localize a particle in the oscillator potential. This result 
is discussed in connection with the stability (finite rrns 
particle displacmnent) of three-dimensional harmonic 
crystals. 

I. 	INTRODUCTION 

From the vie\vpoint of thermodynamics, the 
state variables describing large systems with 
many particles are constant, Thus, constant­
energy systems are thermodynamically indis­
tinguishable from the corresponding constant­
temperature systems. The viewpoint of statistical 
mechanics, however, reveals fluctuations in state 
variables. Applied to small, few-partide 
the statistical approach exhibits interesting dis­
tinctions between the constant-energy and con­
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stant-temperature descriptions. These statistical 
distinctions provide insight into the stability of 
real three-dimensional crystals. 

As a particular example, consider a single 
particle in a classical one-dimensional harmonic 
oscillator potential. For such a system, with fixed 
energy E, the oscillating particle is most likely to 
be found at its turning points (where the velocity 
vanishes). ,From the momentum viewpoint, the 
most likely value is again the maximum (where the 
force vanishes). For the same system maintained 
at temperature T with mean energy E, however, 
the particle is most likely to be found at the 
potential energy minimum with x and p both zero. 
(See :Fig. 1.) 

As the number of degrees of freedom increases, 
how is the thermodynamic limit (where the energy 
and temperature descriptions agree) approached? 
We illustrate the correspondence between fixed­
energy and fixed-ternperature results by working 
out three examples: partieies 'which are free, 
particles bound by nonuniform square well 
potentials, and particles bound by oscillator 
potentials. We find that three degrees of freedom 
are neeessary to localize a particle near its 
potential minimum. This result is useful in 
understanding the well-known stability of three­
dimensional crystals and the less well-known 
instability of one and two-dimensional erystals. 
(The stability question is diseussed, for example, 
by Frenkel.!) 

II. 	FREE PARTICLES IN ONE DIMENSION 

Consider N classical noninteracting particles 
confined to a potential-free one-dimensional box 
of length L. If the box is maintained at tempera­
ture T, then the probability density for momen­
tum Of:; < p< 00 of any particle is given by 

Prob(p)dp= (27rmkT)-!i2exp[ -p2/(2TrlkT) Jtlp. 

(1) 

If, instead of the temperature, we maintain the 



total energy between E and E+dE, 'we find that 
the momentum distribution depends on N. For a 
single particle (N = 1) the momentum can only 
have the values ± (2mE)1/2= ±EIJ2. (Here and 
in what follows we shall take m= 1/2 to simplify 
notation.) For N?:. Z, the energy is given by 
P12+P22+ • .. +PN2 and we can represent all 
allowed momentum states as the set of points 
(i.e., the volume) lying between two N-dimen­
sional hyperspheres: 

If we focus attention on a single particle with 
momentum PI, this relation becomes E-P12;:; 
P22+P32+ •• ,p.,.l;:;E+dE-P12, and we are con­
cerned vdth the volume in hyperspace between 
(N 1) -dimensional spheres of radius E - P12 

and E+dE-PI2
• Since the volume of an (N -1)­

dimensional sphere of radius r is proportional to 
tN-I, we find (omitting redundant subscripts) : 

Prob(p) dp 0: [(E+dE - p2) (N-l)/2 

- (E-p~) (N-l)!2]dp 

~[(E_p2) CN-ll12 

+... _(E_p2)C.V- llI2]dp. (Z) 

q (COOfd. or moml _ 

I"IG. 1. Constant-energy and constant-temperature prob­
ability distributions (coordinate or momentum) for a single 
particle in a one-dimensional harmonic oscillator potential. 
The curves have been normalized to the same area. 
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FIG. 2. Normalized momentum distributions for free 
particles of fixed total energy in one dimension; a sequence 
of curves for various N (number of particles) showing the 
approach to the fixed-temperature result, 7r-112 exp( _ p2), 
as N goes to infinity. 

If we keep only the first order term in dE, we have 

Prob (p )dp = CN(E _p2) (N-3) 12dp. 

We can identify CN from the normalization 
condition, 

f ,JE 


Prob(p)dp 1, 

-,JE 

vi (E7r) r(N .1/Z) 

arriving at the following expression for the 
probability: 

Probe )d = r(N/--,-Z)__ 
p p 

X (l-p2/E) (N-3)!2dp 

with 

r(n) E" exp( -x)xn-1dx. 
o 

For large N this distribution approaches the 
constant-temperature result [Eq. (1)] with 
E=:J.tNKT; i.e., the usual correspondence between 
kinetic energy and temperature for a one-dimen­
sional system. The approach is illustrated graphi­
cally in Fig. 2 for N = 1, 2, 3, 4, 10, and N-'>rL), 
where we have set kT 1 for simplicity. The 
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FIG. 3. The non-uniform square well potential discussed 
in Sec. III. 

transition to Eq. (1) for N~oo is obtained 
mathematically by means of the following cor­
respondence: 

Prob(p) dp <X (I-p2/tNkT) (lHl/2dp 
•v_oo 

=exp( -p2IkT)dp. 

The error in this replacement is of order liN, 
which vanishes in the limit N ~ oc • 

The distributions for N = I, 2, and 3 are clearly 
distinct, while for N =.4 a qualitative resemblance 
to the thermodynamic large-system limit has 
already begun to emerge. The N = 3 case is an 
interesting and significant boundary between 
systems in which high momenta are more probable 
and systems in which low momenta prevail. 1\10­
mentum independence of the distribution for N =:3 
arises from the quadratic dependence of kinetic 
energy on momentum, and while it occurs here 
in connection with 1V = 3, the result is clearly 
peculiar to the momentum space of two particles. 
The probability of a given value of PI is deter­
mined by the volume in momentum space avail­
able to the remaining two particles, a quantity 
,,,,-hich turns out to be independent of PI [see 
Eq. (2)]: 

Prob(Pl) 0: [(E+dE- P12) 11 2J2 

- [(E-PI2) 1/2J2= dE. 

There is a simple geometric analog for the con­
stancy of the N = 3 probability distribution: the 
cross-sectional area of a plane cut through an 
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idealized three-dimensional orange peel (spherical, 
uniform thickness) is independent of the cut's 
location so long as it does not lie entirely ,yithin 
the peel. 

III. PARTICLES IN A NON-UNIFORM 
SQUARE WELL 

In this section we extend the preceding discus­
sion to include a potential of the form shown in 
Fig. 3. Momentum distributions can be derived by 
straightforward extension of the methods de­
veloped in Sec. II. Here we shall determine 
instead the expectation values (nl).v and (n2)av, 
the average number of particles in regions 1 and 2. 
We determine the equilibrium numbers by sta­
tistical weighting of the various possible con­
figurations for a given value of the total energy . 
A configuration is specified by giving the number 
of particles in regions 1 and 2, nl and n2. The 
phase space statistical weight associated with the 
partition [lh,n.~J consists of two elements. The 
coordinate space statistical weight, given by 
LIn l L 2"z can be set equal to unity if we choose 
L1 L2 1. The momentum space statistical weight 
is given as in Sec. II by the volume in N-dimen­
sional space between hyperspheres corresponding 
to the maximum momenta (E-iP+dE)1f2 and 
(E - iP) 1/2. The potential energy iP is equal to 
n1<p1+nZ<pZ=n2<p2 (see Fig. 3). Hence, 

.:lVp 0:. [(E -rtz<p+dE) liZ}" - [(E-n"2<p)1/2J\' 

0: (E - nz<p) (N-2l /2dE +0 (dJi]2). 

The resulting expression for the expectation 
value (nl)av can then be written 

1 N VI - L n"~ . [E- (N -n)<pJ(.Y-2)/2
Z n~O n!(N -n)! 

with 

N VI 
Z = -'-'~-'- [E- (N -n)<p]<N-2)/2. (3) 

1!~O n! (A -n) ! 

The binomial coefficients give the number of 
ways N distinguishable particles can be par­
titioned into groups of nand N - n. If [E­
(N-n)<pJ becomes negative, it means that the 



corresponding partition is energetically forbidden. 
Such terms are simply omitted in the sum over n 
for both Z and (Ill)". 

We can find by a similar calculation, or 
more directly from (n2 =N - Jay. The be­
havior of the ratio (112 as a function of N 
is most easily illustrated graphically. However, to 
define the parameters E and ep it is useful to 
consider first the limiting form of for 
X -;.::c. From Sec. II, we know that for large N 
the system becomes equivalent to one for which 
the temperature is specified. The ratio (n2)"v/ (n1)av 
is therefore determined by the Boltzmann factor 
corresponding to the potential energy difference ep; 

=exp( ep/kT) =exp( -ep/2c). € rep­
resents the average kinetic (thermal) energy per 
particle and corresponds to tkT for a one-dimen­
sional system. Therefore. if wc wish to observe the 
approach to this limit in a consistent manner as N 
goes from 1 to 00, \ye should evaluate (nIl"v 
and in each case for fixed €. This requires an 
iterative procedure since € depends on the value 
of (n2 i.e., €= (E- (n2)avep) . We choose a 
value of E, calculate (nl and (n2 and then 
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FIG. 4. The particle number ratio (n2 >av/ (n, >av as a func­
tion of N for fixed rdean kinetic enfJrgy • in the potential of 
Fig. 3. The curves for different <I> approadl the correspond­
ing vah,e of exp (-<1>/2.) as N becomes large. 
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FIG. 5. The particle number ratio (n2 (nl)av as a func­
tion of mean total energy for vt1rious values of N. The 
limiting curve for N-HO corresponds t.o the Boltzmann 
factor exp( - ¢/kT) with fikT""'E. 

find the corresponding value of € from the relation 
just given. A fe,v iterations of thii" procedure "vith 
suitably revised values of E "vill usually produce 
the desired value of • to sufficient accuracy. 

Figure 4 is a plot of the ratio as a 
function of N for four values of ep ranging from 

to 5•. In each case, the only value of N for 
,vhich the paTticle density is greater in the region 
of higher potential occurs for N 1. For a single 
particle, the value of (n1)av as given by 

just as one expects, the ratio TdTl 

of the times spent in region 2 and region 1 for a 
part.icle with t.ot.al energy E: 

(-!-)1/2 
E-ep 

For N 2, we have (112 for any choice 
of ep so long as E> 2ep. Since E = LV€ + )avep, this 
condition cannot be satisfied for ep> 2., and we 
note t.hat. the curve for ep 5€ passes through t 
at III 2 instead of 1. The equality of 
and (n2 (for LV = 2 and ep <2€) 2 is another 
manifestat.ion of the unusual behavior of a two 
particle system resulting from t.he quadratic 
energy-momentum relationship. The specific value 

t for ep 5E can also be traced to the 
same cause. For N.>2, (nl)av is less than 
one for all N, decreasing monotonically in each 
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FIG. 6. Coordinate probability distributions for a single 
particle of total energy E in the one-, two-, and three­
dimensional harmonic oscillator potentials. The curves 
have been normalized to the same area. In two and three 
dimensions, we distinguish Prob(r) from Prob( I r I ); e.g., 
in three dimensions, Prob( I r I )dr = 4-n-r2 Prob(r)dr. 

case to the limiting value exp ( - c/>/2E) for large N. 
We can interpret the results for large N as the 

probability, in a one particle system main­
tained at temperature T, for finding the particle 
in region 2 or in region 1. We thereby identify a 
qualitative difference between one particle sys­
tems of given energy and given temperature. The 
particle "prefers" the region of high potential if 
the energy is specified, the region of low potential 
if the temperature is specified. 

In Fig. ;'), we plot the ratio (n2)av/ (nl)av for 
N = 1, 2, 4, and N----,wJ as a function of E/Nc/>, 
the mean total energy in units of c/>. For N = 1, 
the curve is derived from (n2)av/ (nl)av= 
(E/E-c/» 112 and can be described as follows: 
(n2)av/ (nl!av is zero until E becomes equal to 
c/>+o, at which point the particle has velocity 
"""'0 112 in region 2; (n2)av/ (nl)av----+ 00 therefore as 
0----+0. For N?, 2, a similar description in terms of 
energetically forbidden configurations applies, 
with "thresholds" at E = C/>, 2c/>, ... up to N C/>, for 
permitting an additional particle in region 2. 
Beyond N = 1, however, there are no further 
infinities in (n2)av/(nl)av; configurations having 
particles of zero velocity in region 2 are com­
pensated by those configurations having partides 
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with zero velocity in region 1. Due to the prop­
erties of a two particle system noted earlier, 
the curve for N = 2 is horizontal between energy 
thresholds. For N = 4 there are thresholds at E = C/>, 

2c/>, 3c/>, and 4c/>. The slope of the curve between 
thresholds follows directly from Eq. (3) with the 
omission of terms corresponding to forbidden 
configurations. It is apparent that the degree of 
discontinuity decreases with increasing N as the 
sequence of curves approaches the limiting result 
for N----+oo, which has been derived from the 
Boltzmann relationship, 

As E/Nc/> becomes large, the influence of the 
potential difference c/> decreases and the curves for 
different N all approach unity. 

IV. PARTICLES IN A HARMONIC 
OSCILLATOR POTENTIAL 

\Ve have been dealing thus far with a Hamil­
tonian of the form 

N 

E= L (pN2m+koxN2) 
i=l 

or 2N 

E= L qi2 

i=l 

if for convenience we choose m = 1/2, ko = 2, and 
represent both p and x by q. With the energy 
bounded between E and E+dE, the . statistical 
,,'eight associated ,,;ith a particular qj is given by 
the volume in phase space between hyperspheres 
corresponding to E and E +dE: . 

with eN a constant of proportionality. LcttiIfg 
III = 1, .we find' the distribution IJrOportionaJ i "to 
(1- q2/ E) -112 ,"yhich is the usual harmonic 
oscillator probability function for the partiCle 
coordinate or the' momentum. 



For two particles, it is more interesting to 
consider the distribution function corresponding 
to the simultaneous specification of both particle 
coordinates. The physically realizable space of Xl 

and Xz is a circular disk of radius equal to VE. 
The probability associated with any point in this 
disk (value of Xl and X2) is proportional to the 
area in two-dimensional momentum space (PI 
and pz) corresponding to the energy range dE. 
As we have already seen, however, this area is 
energy independent: 

= dE. 

The probability is therefore over the disk 
X12+X22SE, independent of Xl and X2. 

We can interpret this result for two particles in 
one dimension as a description corresponding to 
one particle in two dimensions. The Hamiltonians 
are the same for an isotropic oscillator: 

E= 

Since all allowed values of r are equally probable, 
there is no tendency toward stabilization in any 
location. 

On considering three particles in one dimension, 
we can interpret the result as a description of one 
particle in three dimensions. We omit the now 
familial' line of and simply state the 
result: prober) <X (1 I r 12/E) 112. This function, 
which ranges over the interior of the sphere 
I r 12 SE, has a maximum for r=O as shmvn in 
Fig. 6 where we compare the distributions for the 
one-, two-, and three-dimensional oscillators. In 
contrast to the situation for a single particle in one 
and two dimensions, the distribution function in 
three dimensions a stable condition in 
which the particle is most likely to be fomld near 
the origin.3 

These results have an interesting analog in the 
theory of crystal stability. A harmonic crystal 
(meaning that the Hamiltonian is a quadratic 
form in the coordinates and momcnta and that 
diffusion is not allowed) can have a finite mean 
squared displacement only in three (or more) 
dimensions. If X is the displacement along anyone 
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coordinate (for a cubic crystal), 

The divergence of (",,-2) in one and t\VO dimel1flions 
occurs in exact calculations for 
and also follows from the Debye model, which is 
exact for those low frequencies causing the 
divergence: 

<~) 
where d is the dimensionality (1, 2, or 3) and 
""D is the Debye frequency. 

The divergence is very slow in two dimensions; 
a classical two-dimensional crystal with lattice 
spacing of three Angstroms stretching from here to 
the moon would have an rms displacement much 
less than one micron. 

The divergence can be understood in terms of 
the central limit theorem which implies that the 
number of particles in a fixed macroscopic region 
of space must fluctuate by an amount of order 
(N)112. Since the boundary of a one-dimensional 
region contains only two particles, the central 
limit theorem can only be satisfied if particles 
move (i.e., positions fluctuate) a distance of 
order (N)lIZ lattice spacings. In three dimensions, 
on the other hand, the surface of a sphere is of 
order N213 so that individual motions 'which are 
vanishingly small, of order N-l I6, can satisfy 
the theorem. The two-dimensional case is on the 
borderline, requiring displacements on the order of 
a single lattice spacing, and slowly diverges for 
N~XJ as noted above. 

The results \ve have just found for one-, t\\'o-, 
and three-dimensional oscillators are suggestively 
similar. The one-dimensional oscillator is most 
likely to be found at its turning points. The two­
dimensional oscillator is equally likely to be found 
anywhere in its allowed coordinate region, 0 S X2+ 

y2SE. For the three-dimensional oscillator the 
most probable location occurs at the origin with 
the probability going to zero at the turning 
radius. 

There are a number of anomalies associated 
\vith various hvo-dimensional systems. The neu­
tral stability exhibited here in the two-dimensional 
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oscillator has a counterpart in the t';m-dimen­
sional crystal, for which the force constant 
opposing displacement of a particle vanishes 
[k,,-,(ln1V)-1] as the size goes to infinity.4 (In this 
same limit for fluids, the transport coefficients 
diverge5 in two dimensions.) It is interesting to 
observe that the results derived here on the basis 
of a simple statistical approach are in qualitative 
agreement with crystal stability properties derived 
through more sophisticated treatments. 

* Work performed under the auspices of theG. S. Atomic 
Energy Commission. 

1 J. Frenkel, Kinetic Theory of Liquids (Dover, New 
York, 1955), p. 119. 
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To be precise, we have considered here the case 
1> = 2. -,) with') an arbitrarily small number. 

3 One argue that we should consider 2'1l'1' Prob(r)dr 
and 4'1l'1'2 Prob{r)dr in the two- and three-dimensional 
cases, While this would change the distribu­
tions, it would not, alter the conclusion; namely, that the 
probability maximum occurs at something less than rmn 

only in three (or more) dimensions, 
results for two-dimensional hard disks are 
D. A, Young and B. J. Alder, J. Chern. Phys. 

60, 1254 (1974). For two-dimensional classical close­
packed harmonic crystals, with nearest-neighbor inter-

the mean squared displacement varies as (InN) 
for N large [W. G. W. T. Ashurst, and R. J. 
Olness, J. Chern. 60,443 (1974)]. 

5 The divergence is still being studied. For references to 
recent work, see T, and 1. Oppenheim, Phys. Rev. A 
8,937 (1973). 
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