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A novel fluid-transport calculation by computer simulation, via nonequilibrium molecular 
dynamics, of laboratory methods of transport measurement is described. Shear viscosity of 
soft-sphere (r -12 potential) and Lennard-Jones particles (r-12_r-S potential) has been obtained 
from molecular dynamic modeling of Couette flow. Soft~sphere deviations from Enskog 
theory are similar to those found for hard spheres by Alder, Gass, and Wainwright, using 
time-correlations of equilibrium molecular dynamic system fluctuations. For the Lennard­
Jones shear viscosity near the triple-point region, there is agreement between the equili ­
brium calculation of Levesque, Verlet, and Kurkijarvi and the nonequilibrium results using 
108 atoms in a cube. However, systems two and three cubes wide give lower results, which, 
when extrapolated with inverse width, yield close agreement with the experimental argon 
shear viscosity. Comparison of the Lennard~Jones shear viscosity with experimental argon 
data along the saturated vapor-pressure line of argon confi:-ms our successful simulation of 
macroscopic viscous flow with few-particle nonequilibrium molecular dynamic systems. A 
new result of the nonequilibrium molecular dynamics is the characterization of nonequili­
brium distribution functions, which might provide the basis for a perturbation theory of 
transport. Since momentum transport is primarily accomplished by the repulsive potential 
core for high temperatures, the Lennard-Jones shear viscosity must behave like the soft ­
sphere system for high temperatures [viscosity divided by (temperature)213 is a function of 
density divided by (temperaturel1/4L In fact, the calculated excess shear viscosity (that part 
above the zero-density temperature dependence) has been successfully correlated in terms-. of the 12th~power scaling variables for temperatures as low as the critical value (along the 
freezing line). The utilization of soft-sphere scaling variables yields relatively simple 
functions for describing both the excess shear viscosity and the thermal-conductivity be­
havior throughout the fluid phase. The introduction of these scaling variables also clearly 
reveals two features: (i) weak temperature dependence, and (ii) the sign of the temperature 
derivative at constant density (negative for shear viscosity and positive for thermal con~ 
ductivity). While both of these features have been experimentally observed in simple fluid 
experimental data, their cause has not been previously traced to the dominance of the core 
potential. Thus, the soft-sphere scaling variables should be useful for correlating experi­
mental data. 

I. INTRODUCTION 	 taneous transfers of momentum and energy be­
tween molecular centers occur in dense gases. 

Fluid transport of mass, momentum, and energy Comparison of dense-gas transport data (tempera­
is proportional,l as a first approximation, to linear ture range 225-350 0 K) with Enskog-model esti ­
gradients of concentration, velocity, and tempera­ mates4 indicates an adequate portrayal for densi­
ture. Many fluids experimentally obey these linear ties Na 3/V up to 0.2, which corresponds to 600 
relations and are known as Newtonian fluids. For times atmospheric density for helium and only 160 
dilute gases, where only isolated binary molecular times for argon. For liquid-argon shear viscosity, 
collisions are important, the Boltzmann equation the model of Enskog predicts a uniform dependence 
has excellent experimental agreement for the self­ upon density which is not observed experimentally. 
diffUSion D, viscosity 1/, and thermal-conductivity Therefore, to extrapolate transport properties 
A transport coefficients.2 For dense gases, where beyond available data, or for very dense fluids, 
finite molecular size affects the collision fre­ the alternative method of molecular dynamics 
quency, Enskog's rigid-sphere transport model offers the only realistic description of transport 
has been moderately successful. 3 In addition to phenomena. 
transport by molecular streaming motion, instan- Molecular dynamics means the numerical solu­-
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tion of Newton's equations of motion. With the 
availability of electronic computers, solutions for 
as many as 1000 interacting particles are feasi­
ble. 5 •6 Equilibrium molecular dynamiCs has pre­
viously been used to calculate the average time 
correlation of fluctuations in equilibrium systems. 
Green, Kubo, and others7 have given explicit rela­
tionships for the transport coefficients in terms of 
these time correlations. Molecular dynamics 
studies of rigid-sphere transport by Alder, Gass, 
and WainwrightS have revealed deviations from 
the Enskog model at high density. The exact rigid­
sphere shear viscosity is about twice the Enskog 
value near the freezing denSity. This failure of 
the Enskog theory indicates that long-time many­
body correlations, some decaying9 as (timet 3/\ 

are important in dense-fluid transport. However, 
a rigorous analytical treatment of the total corre­
lations is not possible. 

Many investigators have utilized the Green-Kubo 
relations combined with the Lennard-Jones inter­
molecular potential to describe transport in liquid 
argon. Rahman lO followed the motion of 864 atoms 
and calculated a self-diffusion coefficient within 
15% of experimental values. Verlee l has pre­
sented similar results. Bruin'2 presented results 
for a 54-atom system for D, 71, and Ie at one den­
sity-temperature point near argon's critical point, 
and Lagar'kov and Sergeevl3 presented D and 71 
for two combinations of density-temperature (using 
32 atoms). Comparison with experiment indicates 
disagreements of order 20%. 

To obtain the transport coefficients directly, 
without using the Green-Kubo relations, we gen­
erate nonequilibrium systems with the desired flux 
by numerically simulating laboratory methods of 
transport measurement. The method is described 
in Sec. II and the results in Secs. III-V. Two ad­
vantages of this novel approach are (i) more effi­
cient transport determination and (il) the charac­
terization of nonequilibrium velocity and spatial 
distribution functions. In this work we describe 
the successful simulation of Couette flow, which 
determines the shear viscosity coefficient. 

II. MOLECULAR DYNAMICS 

In most of this work we consider N (32 or 108) 
particles confined to a cube of volume V. The 
computer calculations have been carried out in 
reduced units. The reducing quantities are the 
molecular mass tn, the kinetic energy kTo, where 
k is Boltzmann's constant and To is the desired 
temperature, and the volume cube edge L ("'V,i3). 

Special boundaries on the z faces are used to pro­
duce nonequilibrium fluxes, and periodic x and y 

boundaries are used to reduce the influences of 

finite size on the results. We ha\"e fcll::·-;:;-ed Yer­
letll in using the explicit time-centered £:'::ite 
difference equation 

for the particle accelerations. Xcrice t!'.at :he 
particle velocities are not needed to fo:10-;:; particle 
trajectories. However, to define the :i:r::e 
dent kinetic energy, a centered partie 112 
is calculated as 

"i(t) (1/2.c:.t)[.c:.r(t+tb..t)..:-..::.r(f-i..::.t1 

where Sf (t =±r(t ±.c:.t) :;or (t). 'Cse the r.l:o 
increments Sf reduces truncation Errors rE:a:i':e 
to those resulting from differencing pal":icle p.:,si­
tions. 

Various types of boundaries ha,"e been erie::! to 

simulate nonequilibrium flow. The simpleS: '1lOdi­
fication of a periodic system is a co::di­
tion that an impulse to atoms in the x direc­
tion as they cross a particular z plane, ~T;:'rh the 
sign of the x impulse depending upon the si.g":: cf 
the z velocity component. Except at Imt; 
we feel that this boundary condition wou!d es:ablish 
not a simple shear flow, but instead a 
sinusoidal velocity profile. An additiona: c::n­
plication is that, while energy is dissipated 
throughout the system, no heat is re~O\"ed, 

and the system would heat up. Heating was en­
countered by GOSling, McDonald, and in 
calculations using a somewhat different method, 
an applied sinusoidal external force which pro­
duced a sinusoidal velocity profile whose a...rnpli­
tude is inversely proportional to the shear viscosity 
coefficient. 

With undirectional heat flow, periodicity in the 
flux direction is impossible. The thermal expan­
sion required to maintain a uniform hydrostatic 
pressure implies a monotonic density variation in 
the flux direction. Thus we concluded that for 
systems free of external forces, nonperiodic 
boundaries would be needed to establish simple 
shear and heat flows. 

The simplest nonperiodic boundary condition 
would force atoms reaching either z cube face to 
rebound with the z -face wall velocity component 
(the other two velocity components could be se­
1ected to maintain the overall energy or tempera­
ture). Such reflecting boundaries were very pro­
mising when first investigated for the soft-sphere 
system at low density. However, when the density 
was increased, this method produced a large den­
sHy increase in the region near the wall (and a 
resulting decrease in the center), since the atoms 
repelled each other strongly but did not interact 
with the wall until they attempted to cross it. To 
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:':",:::'ea5e the excess boundary density, moving 
-::;-~:5 ·,':ith various repulsive potentials were tried, 
~.. - really very satisfactory was obtained. 
=: :::sequently, the plane wall was replaced with 

:a:,ice layer translating at the desired velocity. 
-::e f:"xed solid-like arrangement of the wall atoms 
~a:r: imposed an unacceptable density gradient 
'':~:;::l the system. Therefore, fluid -like walls 
7·-s::'e selected (even though more computation was 
::':::{:l ired). 

The fluid-wall system is shown in Fig. 1. A unit 
c';be of fluid is driven by two fluid-wall regions 
a, :he z cube faces. Periodic x and y boundaries 
:ue used. The two fluid-wall regions are intended 
:: ;::rovide realistic extensions of the bulk fluid 
';:;ith properties and gradients smoothly continUing 
:':,::0 these regions. The smooth continuity into 
:luid-wall regions cannot be perfect, however, as 
:.'1e fluid particles never mix with the bulk fluid. 

The fluid-wall particles are confined in the z di­
:::-ection between the z cube face and a second plane 
chosen so that the fluid-wall density matches the 
bulk density. A typical plane is shown in Fig. 1. 
Ii any particle center attempts to cross any of 
[1:1e four bounding z planes, it is elastically re­
flected from that plane. This reflection is easily 
accomplished by checking each particle's new 
position and, if it has passed a z boundary. re­
nrning the particle to its previous position with 
a reversed velocity component. Thus a reflected 
particle behaves as if it had undergone an elastic 
collision at a distance half the current spatial 
increment from its previous position. Conse­
quently, the bounding walls are somewhat fuzzy, 
',I;m, a width of order the average increment size. 

External forces are applied only within the fluid­

1+l/NL ,---,<_--f--+-----, 

! --Nw N1>2 
~~~~~~~~~-~ 

I 
I 

ctr 
1_ N~N3/2 
1 qy L 

z I 
I 

;- Nw,,,:: 
1 

if ! 

x or Y PLANE 

::G. 1. L"nit cube with N particles; N w particles in 
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___\. T':e z planes shown elastically reflect particle 
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___ " _ .• J::1S. .-\. few particles are shown for the case 
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wall regions to maintain the desired gradient in 
the z direction. The rate of work done by these 
external forces is the product of force times ve­
locity. Thus, if the external force is equal for 
each fluid-wall particle, no work will result if the 
fluid-wall particles have zero mean velocity. To 
maintain a net shear flow, with nonzero (dux/dz) , 
the external x-direction force must do work each 
time step, since the x-direction mean velocity will 
generally be nonzero. Elastic boundary collisions 
in the z direction induce impulsive changes in the 
mean z velocity component. In order to reduce the 
amount of external work done (and hence the amount 
of cooling required to maintain constant energy), 
it is desirable to rezero the average z -direction 
momentum whenever an elastic wall collision 
occurs. For each fluid wall, the total momentum 
loss due to elastic wall collisions is divided by 
the number of fluid-wall particles and added to all 
the particles of that fluid wall. 

Only the potential bonds between the fluid-wall 
particles and the bulk particles (Le., those bonds 
crossing the z cube faces) need to be balanced by 
external forces. For Couette flow, the x compo­
nent of these external forces is equivalent to the 
wall shear stress times the area of the xy plane. 
The time-dependent external force (for each fluid­
wall) is 

This external force, which acts on fluid-wall par­
ticles only, maintains a constant average fluid­
wall velocity (zero for heat floW) while the distribu­
tion of fluid-wall particle positions and velocities 
is unconstrained. The distribution of particle ve­
10cities about the mean velocity defines the 
fluid-wall kinetic temperature, 

To maintain a constant wall temperature Tw each 
velocity component is scaled (by, at most, a few 
percent) each time step by 

[v,(t) - (v)J ,w=[T /T(t)]ll2[Vi (t) - (v)]"u.n w

This velocity scaling corresponds to external 
heat transfer from the fluid wall; the product of 
external force and group average fluid-wall dis­
placement is the external work. For steady-state 
Couette flow, the work done is equal to the heat 
removed from the fluid-wall regions. The actual 
heat transfer is the change in kinetic energy of 
the fluid-wall particles. This is determined by 
computing the velocity at time t, prior to velocity 
scaling, and subtracting its square from the square 
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of the actual new scaled velocity at time t. 
A similar calculation can be used to determine 

thermal conductivity. To maintain a steady-state 
heat flow the rate at which heat is added to the hot 
fluid-wall to maintain its temperature is the energy 
flux through the system times the xy area and 
must be equal to the rate at which heat is removed 
from the cold fluid-wall to maintain its lower tem­
perature. The time-average energy flux and tem­
perature gradient between the walls (z cube faces) 
determine the thermal conductivity coefficient. 

For the shear flow, the velocity profile is deter­
mined by dividing the distance between the fluid­
wall regions into a number of zones (e.g., ten) 
and averaging fluid momentum, energy, and num­
ber density in each zone. Initially, the N particles 
are uniformly distributed (face-centered cubic 
structure). Zero bulk velocity is achieved by al­
ternating the direction of the x, y, and z thermal 
velocity vt [:::{l?T/m)ll2] components of particle­
pairs. The average flow velocity component (x 
direction) is initially made to vary linearly in the 
z direction. Since the outer zones have a nonzero 
mean velocity in the x direction, a local-zone 
temperature is given by subtracting the mean ve­
locity squared from the local-zone kinetic energy. 
The flow temperature can now be defined as the 
average of the zone temperatures <T)z. The steady­
state local temperature distribution in shear flow 
may also be used to estimate the thermal-con­
ductivity coefficient. The energy dissipated by 
the shearing action leaves the system via heat 
conduction to the fluid-wall particles. For equal 
wall temperatures, a parabolic temperature dis 
tribution must develop with the quadratic coeffi­
cient depending upon the shear viscosity 1), square 
of the shear rate u;.z (ux (vx », and the thermal 
conductivity A, 

where z is the distance from the plane of sym­
metry. The thermal-conductivity value may be 
determined by fitting a quadratic to the zone tem­
peratures and using the calculated shear viscosity. 
Because of the quadratic shear-rate dependence, 
the higher shear rates produce less scatter in this 
thermal conductivity estimate. Reference 15 pre­
sents a FORTRAN computer program of the non­
equilibrium molecular-dynamic method. 

For actual calculatiorts an intermolecular poten­
tial must be specified. A soft-sphere system 
[potential <!>ss(r) :::E(s/r)12] was initially investi­
gated for several reasons. 

First, the popular Lennard-,Tones 6-12 potential 

which combines the inverse 12th-power repulsion 
with an inverse 6th-power attraction, has been 
successfully used to describe gas and solid equilib­
rium properties and dilute-gas transport proper 
ties. Thus, after initial development of the com­
puter technique using the inverse 12th potential, 
simple addition of the 6th-power attraction will 
yield a Lennard-Jones system. (The equivalent 
reduced number densities are N:y3/V and Ss3N'2F.) 

Second, each inverse nth -power potential has 
special scaling properties. ' S,17 The dynamic evolu­
tion for different systems with identical scaled 
initial conditions [time and length scales from 
(kT/m)lh and (V/N)1/3] and with the same dimen­
sionless value of (Ns 3/V)(E/kT)3/n will be identical. 
Also, the reduced viscosity 1)s2(mE)-li2 and the 
thermal conductivity As2(m/E)1i2/k, when divided 
by (kT/E)li2+2I n, are functions of (Ns 3/1')(E/kT)3I n 

only, not density and temperature separately, 
throughout the fluid phase (there is no gas -liquid 
phase transition for these pure repulsive systems). 
At high temperatures repulsive forces dominate 
and the Lennard-Jones system must approach the 
scaling behavior of the inverse 12th -power poten­
tiaL For moderate temperatures the attractive­
power effect might be amenable to analytical treat­
ment by utilizing the nonequilibrium distribution 
function for this scalable potential as the basis 
for a transport perturbation theory. Equilibrium 
perturbation theory has already proved success­
ful,18 but a successful nonequilibrium perturbation 
theory has not yet been developed. 

III. SOFT -SPHERE SHEAR VISCOSITY 

A. Nonequilibrium molecular dynamic results 

Both the shear viscosity and the thermal-con­
ductivity coeffiCients have been calculated for 
dense soft-sphere [<!> = E(s /r)l2] fluids using the 
nonequilibrium molecula.'" -dynamic technique. 
Shear viscosity has been determined by simulating 
e ouette flOW.19 The momentum flux Pxz between the 
walls (z direction} corresponds to minus the shear 
stress 1'xz:::1'zx=1)(ux •• +u...x )' For this flow, the 
hydrodynamiC velocity components uy and u.. are 
zero, while U has a simple dependence upon thex 

z coordinate. For small wall velocity, a linear 
velocity profile is generated in a Newtonian fluid. 
The velocity profile also has a very small (of 
order u~.z) cubic term due to the temperature de 
pendence of the shear viscosity coefficient.20 The 
viscosity coefficient may be determined from the 
measured velocity gradient across the channel 
and the wall shear force per unit area from 

Pxz::: -'I)Ux.z (note uz•x =0). 
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 A soft-sphere system16 has been investigated at 
reduced densities between iPf and PI> where PI is 
the reduced freezing density [Ns 3/Y2V =0.813 
x (kT/EP/4]. The initial development of the non­
equilibrium molecular-dynamic method used 32 
soft spheres at a reduced denSity corresponding 
to i the freezing density. After the fluid-wall 
method was decided upon, two other system sizes 
were investigated (cubes of 108 and 256 particles) 
to determine an optimum size in terms of compu­
tational time and calculational uncertainty. The 
same reduced unit velocity gradient U • L(m/kT)l12x z 

was used for each system and each system 
was followed for 8000 time steps with t:.t 
=0.002L(rn/kT)1/2. At equilibrium such systems 
maintain the total (energy)/NkT constant in the 
first four digits. For particles with potential pa­
rameters appropriate for argon (s =3.5 A, E/k 

120 0 K) and at room temperature, the calculated 
nondimensional time period corresponds to a real 
time period of only 10- 11 sec. The computer time 
on the SLL CDC 6600 is about 14 orders of mag­
nitude greater, 10 min, 1 h, and 4 h, for N=32, 
108, and 256. 

The velocity profiles resulting from the three 
calculations are shown in Fig. 2. The 108-particle 
profile is much smoother than the 32-particle re­
sults. Increasing the system size to 256 particles- does not noticeably further improve the velocity 
profile. Therefore a procedure of using several 
runs with N =108 was selected as a good compro­
mise between a very -large -system calculation or 
a smaller system observed for a very long time. 

iii 
-' 

_i 
-' 

~ N 32 108 256e 1.00 ...::J 
..J ...
"­
:;: 0,75 ... • ... • •§ 

+. +.~ii5 0.50 ... 
:;: ...a • ...::;: 0,25 •... •u 
~ 0,00 
"' • 
to 
is 

,0,50 ·0,25 0.00 0.25 0,50 
·0.50 ·0.25 0,00 0.25 0.50 

·0,50 ·0,25 0,00 0,25 0,50 

AVERAGE FLOW VELOCITY. VxjSf. 

FIG. 2. Velocity profiles of soft-sphere Couette flow 
for three system sizes (N =32, 108, and 256) at Ii freez­
ing density. The reduced density [Ns3/(VV2)1(E/kT)1/4 is 
0,576 with a reduced velocity gradient ofux.zL(m/kT)!/z 

1 and calculated with a reduced time step of 0,002 
XL (m/kT)!/2 for SOOO time steps, 

In order to determine possible number dependence, 
some N =32 calculations have been made. Com­
parison with the 108 results (Table I) reveals dif­
ferences that are within the calculational uncer­
tainties. 

Using 108 soft spheres in a cube, the shear vis­
cosity has been calculated for reduced densities 
[p(E/kT)1I4J of 0.4, 0.6, 0.7, and 0.8. The results 
are presented in Table I and in Fig. 3 as a func­
tion of shear rate. For the lowest density con-

TABLE 1. Soft-sphere shear viscosity from nonequil ­
ibrium molecular dynamics. Dependence on system size, 
shear rate, and density for the isotherm E "'k T: N = 32 
and lOS soft spheres in a cube withNw S and IS soft 
spheres in each flUid wall (+ indicates a two-layer fluid 
wall withNw 36). TheN =216 system is composed of 
two lOS-particle cubes. A "run" includes 8000 time 
steps of 0.002L (m/kTo)1I2, whereL is the cube edge 
length and To is the desired temperature, Beginning runs 
that reflected starting conditions were rejected, The 
shear rate w =u" ,z and temperature T are averages over 
the 10 zones of bulk fluid, The shear viscosity TI is cal­
culated from the average wall shear stress and the aver­
aged shear rate. Standard error is computed from the 
individual run values of the viscosity. 

N 
Runs 
used 

Ns 3 

/2v 
(m) 1/2

ws -
,E 

kT 

E 

32 
lOS 

1-4 
2-4 
1-3 

0.1 0,19 
0.16 
0,05 

0.98 
0.95 
0.99 

0.45± 0.03 
0,50± 0.01 
0.33±0.1 

32 1-4 
1-4 
1-6 
1-4 

0.6 0,29 
0.22 
0.15 
O.OS 

0,97 
0.99 
1.00 
1.01 

1.37±0.08 
1.26±0.08 
1.30± 0.17 
1.1S± 0.22 

32 0.6 Estimate for zero 
shear rate 1.3±0.1 

lOS 2-4 
1-4 
2-4 
1-4 

0.6 0.21 
0.16 
0.10 
0.05 

0.96 
0,97 
0.9S 
0.99 

1.25± 0.04 
1.30± 0.02 
1.38±0.04 
1.44±0.1 

108 0.6 Estimate for zero 
shear rate 1.5± 0.1 

32 
108 

2-7 
1-4 
1-4 

0.7 
0.7 

0.16 
0.11 
0.05 

1.01 
0,98 
0,99 

2,34± 0,17 
2.27±0.6 
2,54±0,2 

0.7 Estimate for zero 
shear rate 2.S±0.2 

108 2-5 
2-5 
2-5 
2-5~ 

O.S 0.17 
0.12 
0.05 
0.05 

0.99 
0.99 
1.00 
1.00 

4.14±0.12 
4.05±0.13 
4.96±0.6 

5.7± 0.5 

lOS O.S Estimate for zero 
shear rate 5A± 0.5 

216 2-5 0.8 0.12 0.96 4.7±O,1 
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sidered (0.4), the large-shear-rate result has the 
lower uncertainty and thus appears to provide the 
best estimate. For a reduced density of 0.6, shear 
rates of ux ... L(m/kT),12 =t t t, and 1 with N 
=1OS produced a slight shear viscosity dependence 
upon shear rate; see Fig. 3. Comparison of 32­
particle and lOS -particle results indicates no 
difference than the calculational uncer 
tainties. A linear extrapolation of the lOS-particle 
results with shear rate yields a zero shear -rate 
viscosity of (1.5 0.1)(kT/E)2I3(mE)lh/s2. Shear 
rate dependence is larger for 0.7 reduced density, 
and linearly extrapolating the two calculated shear­
rate values (N lOS) yields (2.S ±0.2}(kT/E 
x (mE)ll2/s2 (the 32-particle result at larger shear 
rate does not disagree with this extrapolation). 

Near the density, the shear-rate de­
pendence becomes much larger. The shear vis­
cosity at a reduced density of O.S was calculated 
at three shear ux •• L(m/kT)112 =i, Land t 
Fitting these results to the Ree-Eyring relation,21 
7)/7)0 =(sinh- 1

Tux •• )/TUx ... , yields a zero-shear-rate 
viscosity of 7)0 5.0(kT/E )2/3(mE )112/S2, with a re­
laxation time of T 9.2 s(rn/E)112(E/kT)71l2 (with a 
fit error of S%). This relaxation time corresponds 
to 20 times the period of an Einstein oscillator 
in a face-centered crystal at the same density. 

SOFT SPHERE SHEAR VISCOSITY 
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0~--~--~--~--~~~7-~~--~. 
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SHEAR RATE, w s(m/E)' 12 (E/kTf/12 

FIG. 3. Soft-sphere shear viscosity dependence upon 
shear rate and system size for the E = kT isotherm at 
reduced densities N(s/L)3/fl of 0.4, 0.6, 0.7, and 0.8. 
Four-run viscosity averages are shown (vertical line 
denotes one standard error); a single run is 8000 time 
steps of 0.002 L(m/kT)1/2. See Table 1. 

The two-layer (Nw 36) result at the lowest shear 
rate appears to have a larger viscosity value. 
Considering the standard errors, an average of 
the two means might be the best estimate. A fit 
of all four values with the sinh- 1 function yields 
5.5S, with a relaxation time of 13. Thus the zero­
shear-rate viscosity is estimated to be 7)s2/(mE)11z 
x (kT/E)2/3 5.4 ±0.5. For the middle shear-rate 
value, the result for a system twice as wide (two 
lOS cubes together, N=216) agrees with this esti ­
mate. 

These zero-shear-rate shear-viscosity esti ­
mates are presented in Fig. 4 in terms of the 12th­
power scaling variables, 

7)S2(rnE t l12 (E/kT)213 

versus 

The excess shear viscosity A7) == 7) -7)0' where the 
dilute -gas limit is 

7)os2(rnEr'/2(E/kT)2/3 =0.171, 

can be approximated (-10% error) by 

A7)s2(rnEr J/2 (E/kT)zl3 =12.1x4 

(see Fig. 4). An equally good fit is obtained with 
the exponential function ebx4 -1, which is similar 
to Andrade's expression for liquid shear viscosity 
AebiT • A better fit (-1 % error) is given by the 
empirical relation 

AJ)s2(mEtll2(E/kT)213 =O.022(eB•83X -1). 

For density near zero, this fit indicates a first 
density correction of 0.15x, 10% larger than the 
Enskog value. Fitting with the density correction 

=0.022 [e1<p (6.83X) -I] ;/;". 
t: X4~ A 
'" 	 3 ANDRADE THEORY ~<~8 

61)=8.35 xel3~?'" 2;; 

cr; ' ~ ~-ENSKOG'"w 
DILUTE GAS /"" ~ THEORY;;i 	 I 
LIMIT, 'rio _ /"'""0 ..8 P FREEZING ~ 
0.171 - . 

SOFT - SPHERE SHEAR VISCOSITY 

ESTIMATED ZERO SHEAR-RATE , 
VISCOSITY FROM N=I08 RESULTSi 

EXCESS VISCOSITY )'
,2

61) 

O~====~~~~~~~~~~ 
.0 .2 .4 .6 .8 1.0 

N 3.1 \!J4 
DENSITY !TEMPERATURE, X=.t2 ~ \fr} 

FIG. 4. Estimated zero-shear-rate infinite-system 
soft-sphere shear viscosity versus (reduced density)/ 
(temperature)1 / 4• This curve provides the complete 
fluid-phase shear-viscosity variation. 
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constrained to the Enskog value (0.13x) yields 
coefficients of 0.0191 and 7.02 and changes the 
curve very little. 

B. Approximate models 

The best-known approximate model for dense­
fluid transport is Enskog's treatment of hard 
spheres which estimates the instantaneous trans­
port of momentum and energy when two spheres 
collide. l The transport coefficients depend upon 
the collision frequency, which for hard spheres 
is related to the equation of state y =PV/NkT - 1. 
The Enskog model for hard-sphere transport can 
be applied to the soft-sphere system by deter­
mining y from the thermal pressure, 

V T(OP) 1,y 
aT v 

and the effective hard-sphere second virial coeffi­
cient (b) from 

b -B +T dB- , 

where B(T) [= 3.62959x] is the soft-sphere second 
virial coefficient. l 

•
ls The soft-sphere thermal 

pressure was determined from Hansen's fit of 
Monte Carlo equation-of-state results. 16 

•
22 

The shear viscosity and thermal con­
ductivity compared to their dilute-gas values are 

and 

AE/AO :bp(y-l + 1.2 +0. 755y). 

The first approximation to the dilute-gas thermal 
conductivity is 

Aos 2k-l (rn/E )1/2 (E/kT)2 /3 = 0.642. 

The three terms in the Enskog expressions have 
been called the "kinetic," "cross," and "potential." 
The "kinetic" term and half the "cross" term rep­
resent (kinetic) transport by streaming motion and 
the "potential" term and half the "cross" term 
represent transport by (potential) collision trans­

fer. Table II presents both the Enskog shear vis­
cosity and thermal-conductivity coefficients for 
the soft-sphere system. As the density is in­
creased to freezing, the magnitude of the stream­
ing motion remains almost constant, in contrast 
to the large change in the collisional transfer (the 
former has 20 and 70% increases for 1] and A, 

while the latter increases from 0 to -12 times the 
dilute-gas value). This is similar to the density 
behavior of equilibrium properties, where the 
kinetic contribution is independent of density. 

The Enskog-model viscosity at a reduced density 
of 0.6 is 

Y)s2(rnE}-112(E:/kT)2/3 1.05, 

while the molecular-dynamic value is 1.5, a ratio 
of exact to estimate of 1.4 ±0.1. Alder, 
Gass, and WainwrightS found a 1.10 ±0.04 ratio for 
hard-spheres at ~ the freezing density. The freez­
ing-density soft-sphere shear viscosity is approxi­
mately 2t to 3 times the value (Alder et al. 
found 2.16 ±0.09 for hard spheres at freezing). 
Thus the soft-sphere deviations from Enskog theo­
ry are similar to (but a bit larger than) those 
found for hard by Alder et al. The hard­
sphere molecular-dynamic results were obtained 
by time correlation of equilibrium-system fluc­
tuations. 

A second approximate estimate for shear vis­
cosity can be obtained from the simple, but sur­
prisingly quantitative, paradigm of Andrade. An­
drade suggested that the viscosity of a simple 
liquid near its freezing pOint can be estimated by 
considering a particle to oscillate at the solid-like 
frequency, transferring transverse momentum to 
its neighbors at each turning point. Assuming that 
t of the particles travel in the shear momentum 
flux direction yields the simple relation23 

1) :4mIJ/3s. 

USing the experimentally determined solid vibra­
tional frequencies and Lindemann's melting rule, 
Andrade found quite agreement with available 
experimental data (in 1934) for mercury, lead, 
tin, copper, and bismuth. Andrade's relation for 

TABLE II. Enskog estimate for soft-sphere shear viscosity l1E and thermal conductivity AE 
based on the thermal pressure y. 

~ )1/4 PV mAE

Av :1' Nk1' y k1] 

0.0 1.0 0 0.17 0.64 3.75 
0.4 4.56 1.84 0.51 2.19 4.29 4.29 
0.6 9.46 3.49 1.05 4.32 4.13 2.88 
0.7 13.46 4.49 1.45 5.89 4.06 2.10 
0.8 18.76 5.49 1.92 7.73 4.02 1.43 

http:results.16
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the melting-point viscosity (poise) becomes 

where A is the atomic weight, Tm is the melting 
temperature (OK), and VA is the solid-phase vol­
ume of a gram-atom (cm3 ) at temperature Tm. 
For soft spheres the melting temperature is re­
lated to the density by 

kTm/€ = (Pm/0.844 )\ 

and thus the Andrade expression for the melting­
point soft-sphere shear viscosity becomes 

1)s2(mEtli2(E/kT)2i3 =8.35x;,h, 

which does agree with the high-density soft-sphere 
molecular-dynamic results (and is about twice the 
Enskog estimate at the freezing density). 

C. Relationship to other transport coefficients 

Two dimensionless ratios that involve the shear 
viscosity with the other transport coefficients are 
the Prandtl ratio (m>../k1) and the Stokes-Einstein 
ratio (D1)(J/kT). Several simple liquids have a 
Prandtl ratio within 10% of 2.5. However, if k 
is replaced by specific heat (as in the usual form 
of the Prandtl number), then the ratios for argon 
(monatomic), nitrogen (diatomic), and carbon 
tetrachloride (polyatomic) differ much more.24 

The Enskog soft-sphere Prandtl ratio increases 
from the dilute gas value of 3.75 to a maximum of 
4.33 at y 1.126 ~~ ~0.3) and then slowly decreases 
to 4.02 at the freezing density (x =0.813); see 
Table n. Using the Enskog soft-sphere thermal 
conductivity [the molecular dynamic results for 
hard and soft-sphere thermal conductivity indicate 
small deviations from the Enskog estimates (see 
Refs. 8 and 15)] with the nonequilibrium molecular­
dynamic shear viscosity yields a Prandtl ratio 
that decreases with increasing density (for x> 0.4); 
see last column of Table II. The exact hard-sphere 
Prandtl rati08 also decreases more than the Enskog 
value and at the freezing density is 1.89, and thus, 
like the soft-sphere results, is much closer to 
simple-liquid experimental values than is the 
Enskog estimate. Horrocks and McLaughlin24 have 
suggested a thermal-conductivity paradigm similar 
in philosophy to Andrade's, which for the soft­
sphere systems becomes 

S2 (m)ti2( E )2/3 1555x8i3 
E kT '" 

Therefore these two approximations produce a 
constant Prandtl ratio of 1.86, in agreement with 
the molecular-dynamic hard-sphere freezing val­
ues; but independent of density and temperature. 

The experimental simple-fluid Prandtl ratios indi­
cate a positive temperature derivath-e, which the 
soft-sphere Prandtl ratio also exhibits. This is 
easily seen by considering the excess thermal con­
ductivity and viscosity, which can be approximated 
by a single power of x (for liquid densities and 
temperatures the excess coefficients are essen­
tially equal to the total coefficients). Thus a 
Prandtl ratio with a positive temperature deriva­
tive is produced if the power for .lTJ is greater than 
that for ~>... This is in fact the case, since the 
soft-sphere excess shear viscosity can be approxi­
mated by X4 and the Enskog soft-sphere excess 
thermal conductivity by x2.5. 

The Stokes-Einstein formula relates the diffu­
sion coefficient D of a macroscopic spherical body 
of diameter (J in a fluid with viscosity 1) to the 
fluid-sphere hydrodynamic condition 

DrW/kT =l/c1i, 

where c 3 if the viscous fluid sticks to the sphere 
surface, and c = 2 for a s lip boundary. 25 It is 
interesting that molecular self-diffusion can be 
closely approximated by this hydrodynamic for­
mula. Experimentally, D, 1/, and a for liqUid 
argon and sodium are in reasonable agreement 
with the Stokes-Einstein relation. Zwanzig and 
Bixon26 have generalized the Stokes-Einstein rela­
tion to a sphere undergoing small oscillations at 
arbitrary frequency with arbitrary slip. Fourier 
inversion of the frequency-dependent relation 
yields qualitative agreement with molecular-dy­
namic velocity autocorrelation for the Lennard­
Jones potential (simulation of liquid argon at 76°K). 
The hard-sphere results of Alder et al.8 are within 
10% of the slip condition for densities down to 
of freezing. Of course, this relation will not be 
true for dilute gases since 1) becomes independent 
of density while self-diffusion becomes inversely 
proportional to density. 

Equilibrium molecular dynamics was applied to 
several soft-sphere systems (N = 256), and the 
self-diffusion coefficient was determined from the 
slope of the mean-square displacement by least­
squares fitting of 

which approaches 6Dt for large t; see Table m. 
The 256 -particle results are in reasonable agree­
ment with the 500-particle soft-sphere results of 
Ross and Schofield. 27 Both sets are a little higher 
than the smaller-system results (N=32 and 108) of 
Hiwatari et al. 28 The Enskog estimates for Dare 
two or three times too large when the thermal 
pressure is used. Estimates using y =PV/NkT-1 
are closer to the molecular -dynamic results; see 
Table III. The ratio D /D E resembles the behavior 

http:Schofield.27
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of the hard-sphere system, but the soft-sphere 
ratio has smaller deviations from unity. The 
Enskog Stokes-Einstein value (see Table III) re­
mains below the stick-wall condition (0.106), while 
the soft-sphere results are stick-like at low den­
sity, but the value increases with density and be­
comes slip-like at the freezing density (same as 
hard spheres). For reduced densities greater than 
0.6, the soft-sphere molecular-dynamic results 
can be approximated by 

D (_m)1/2(_E)5/12 = -C:< 

S E kT Doe, 

where Do""4.9 and c""6.3 and x ""-p(E/kTy/\ The 
experimental high-pressure (100-1000 atm) CO2 

results of Timmerhaus and Drickamer29 ,also have 
the exponential form (with Do -15, C - 7.9) and do 
not follow the Enskog modeL Hiwatari et al. show 
that the soft-sphere and Lennard-Jones results 
agree better than do the Lennard-Jones and hard­
sphere results. The experimental data for krypton 
can be described using the Lennard-Jones poten­
tial, and thus the soft -sphere scaling variables 
should be useful for correlating experimental data. 

D. Shear flow pair distribution 

This development of nonequilibrium molecular 
dynamics has provided exciting new results: the 
first proper evaluation of nonequilibrium pair 
distribution functions. For simple dense fluids 
the equilibrium pair distribution function g(r) has 
been well characterized5 and utilized to calculate 
equilibrium fluid properties. The equilibrium pair 
distribution function is clearly spherically sym­
metric (no preferred direction), while30

•
31 the ve 

locity gradient distorts the distribution, as a first 
approximation, into an ellipsoid with principle 
axes COinciding with those of the rate of strain 
tensor (two preferred directions-those of maxi­
mum and minimum shear-momentum flux). Sum­

ming the xz component of the microscopic-pres­
sure tensor over the volume V yields the shear­
momentum flux between the two walls bounding the 
Couette flow, 

N N 

pxzV=mLxjz,+ L F(rj)
i~l !;oIl r tl 

pairs 

The above expression is clearly symmetric in x 
and z. The first term corresponds to the dilute­
gas kinetic streaming motion and is of little im­
portance for dense-fluid transport. The second 
term is the potential contribution, which is zero 
for dilute gases. The term xz/r2 can also be ex­
pressed as a spherical harmonic 

(2IT/15)1I2(y~ _ y;l). 

Thus, if the nonequilibrium pair distribution func­
tion is expanded in spherical harmonics, only the 
xz /r 2 term will contribute to the shear viscosity 
coefficient. Following Pryde,SO we express the 
shear-flow nonequilibrium pair distribution func­
tion as 

g(r) =g(r)[l + (XZ /r 2 )v(r)u,,), 

where v(r) allows for a radial variation in the 
distortion induced by the velocity gradient and has 
units of time. To determine v(r) in a nonequilib­
rium system, we need only average xz/r2. Figure 
5 presents g(r) and the product g(r)v(r) for the 
soft-sphere system at about i the freezing density. 
The potential part of the viscosity coefficient can 
be expressed 

2lT (N)2 J~ drjJ
YJ<I>= 15·V 0 dr g(r)v(r)r 3 dr. 

The significant range of v(r) is approximately two 
molecular diameters in the dense-fluid states we 
have studied. 

Until now, little has been known about v(r). 
Green31 replaced v(r) by a constant value, which 

TABLE III. Soft-sphere self-diffusion and stokes-Einstein ratio from Enskog model and 

114 DrysD~(:) 1!2(-kETtI2 
kT 

Estimatea Soft-sphereb Enskog Soft-sphere 

nonequilibrium molecular dynamics. 

0.4 0.192 0.222 1.16 0.098 0.11 
0.6 0.081 0.096 1.18 0.085 0.14 
0.7 0.055 0.055 1.0 0.080 0.15 
0.8 0.038 0.03 e 0.8 0.073 0.16 

aDE/DO l/Y, where Y"'[ (PV iNkT) -lJ/(bp). Note: The thermal pressure is not used, and 
Do(m/E )1I2(E/kT)5/12= 0.251/x. 

b From soft-sphere molecular dynamics with N = 256. 
C From Ross a.nd Schofield, Ref. 27. 
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reproduces the exponential temperature-dependent 
shear viscosity experimentally found by Andrade,23 
Frenkel,32 and others.23 Chapman33 utilizes the 
concept of an integral formulation for shear vis­
cosity to correlate the viscosity data of 22 liquid 
metals. It is possible to obtain an approximate 
functional form for v(r) from equilibrium proper­
ties based on Stokes's assumption that the viscous 
stress T)ux ,z is equivalent to the elastic stress Gy 
if the strain y is replaced by strain rate times a 
phenomenological relaxation time T M so that T M 

='I]/G. If the fluid could be sheared without viscous 
flow, then the angle-averaged shear modulus for 
this supposed elastic medium would be (in the 
absence of thermal fluctuations )34 

GV 27T N (ro ( )( 2 " 4 ') 2 d
NkT = 15 kTV )0 g r r ep + rep r r, 

and integration by parts yields 

GV _ ~~ (ro dep dg(r) r 3 dr 

NkT - 15 kTV)o dr dlnr . 


By comparison with the previous equation for T) <p, 

we find 

1\" 
I \ / ..... , 

\ I 
\ \ I 

o 

\ 
\ , 'v 

\ I 
I, 
II 

-1 

1/ 

-2 L-________~_________L________~____~ 

3o 

~ (kETy/12 

FIG. 5. Soft-sphere pair distribution for shear flow at 
~ freezing density g(r) [1 + (xz/r 2)u x • z v(r)l. The spheri­
cally symmetric equilibrium term girl is proportional 
to the probability of finding two particles a distance r 

apart (solid line). The total potential contribution to 
shear viscosity is given by the vir) term with xz/r2 sym­
metry (dashed line). Calculated with N = 108, [N (5/L)3/ 
h] (E/kT)l /4 ~ 0.576, and u x . zL (m/kT)1/2 ~ 1. 

dlng(r)
( ) v r "" T m dlnr . 

Maxwell's relaxation time is T m "" 10- 13 sec for 
normal simple liquids. Therefore the nonequilib­
rium distribution function should be approximated 
by the change in the equilibrium distribution func­
tion caused by the applied strain. Figure 6 indi­
cates this is a very good first approximation to the 
nonequilibrium distribution function. The elastic 
shear modulus G can be determined from the equi­
librium hydrostatic pressure and internal energy. 
Zwanzig and Mountain have approximated G and 
T m from argon experimental data. 35 If the relaxa­
tion time could be determined from equilibrium 
properties or from a nonequilibrium reference 
system, then the shear viscosity would be known. 

IV. LENNARD-JONES SHEAR VISCOSITY RESULTS 

We first investigated the Lennard-Jones system 
along the saturated-vapor-pressure line and the 
freezing line. The excellent agreement with ex­
perimental argon data was very encouraging. 
About this time (January, 1973) Levesque, Verlet, 

1.2 

.8 

.4 

.0 

-.4 

-.8 

-1.2 

-1.6 

-2.0 L-__---L________---.J__________.l.-________...J 

2.51.0 1.5 2.0 

FIG, 6. Comparison of measured nonequilibrium part 
of the soft-sphere shear-flow pair distribution [gly)v(r)/ 
L (m/kT)1/2] with that obtained from the equilibrium dis­
tribution [- T m rdg(r)/dr] by applying a rate-of-shear 
displacement for a duration equal to l\Iaxwell's relaxation 
time TmNl/3/L(m/kT)1/2~0.0991. Conditions of Fig, 5, 
except a four-run average is shown. Integrating the non­
equilibrium curve yields a potential shear \'iscosity of 
1)5 2/ (mE)1/2 ~ 1.18, while the apprOXimate curYe (dashed) 
yields 1.23. 

( 
~---
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and Kurkijarvi sent us a report of work prior to 
publication describing their equilibrium molecular­
dynamic calculation. 36 With some disappointment, 
we noted that our nonequilibrium molecular-dy­
namic viscosity near the triple pOint was some 
25% below their equilibrium value for the Lennard­
Jones shear viscosity. Comparison of the argon 
thermal conductivity with the results of the two 
molecular-dynamic methods revealed a similar 
disparity. The equilibrium molecular -dynamic 
thermal-conductivity coefficient is about twice 
the nonequilibrium molecular-dynamic and experi­
mental argon values. 

While the non equilibrium results were closer to 
the experimental argon value, it must be remem­
bered that the Lennard-Jones pair potential is only 
an approximation to argon. 37 The proper compari­
son is between the two different statistical methods 
of determining the Lennard-Jones shear viscosity 
coefficient. This discrepancy between the equilib­
rium and nonequilibrium results for the Lennard­
Jones system could be due to number, boundary, 
or gradient dependence of the computer results, 
or to errors in the Green-Kubo formulation. 

Preliminary runs were made to investigate the 
dependence of the nonequilibrium results upon 
velocity gradient and system size. For compari­
son with argon, a physically realistic extrapola-

AND W. G. HOOVER 11 

tion to macroscopic size should be used. The 
desired Newtonian shear viscosity coefficient 
is defined to be independent of the velocity gra­
dient, but will depend upon whether the flow is 
laminar or turbulent. For Couette flow a laminar 
flow is expected19 for Reynolds numbers Rn 
(mpuL/'1) below some critical value (-1500). The 
Reynolds number for our simulated Couette flow 
is of order one, and therefore our flow may safely 
be considered laminar. Any extrapolation to in­
creased system size should maintain this laminar 
flow. If the velOCity gradient were fixed, the Rey­
nolds number would increase with system size as 
Rn ~ L2, while, if the relative wall velocity differ­
ence is fixed, then Rn ~L. In either case, a tran­
sition to turbulent flow would occur as L increases 
in size (although at a size much beyond current 
computation capabilities). Therefore, before 
number dependence can be determined, extrap­
olation to zero velocity gradient must be done, 
Rn - O. Repeating this procedure for each system 
size allows a proper extrapolation to the macro­
scopic laminar hydrodynamic limit. Another dif­
ficulty arises in the small-gradient calculations. 
The average shear stress becomes much smaller 
than natural pressure fluctuations. In this case 
the boundary effects might lead to discrepancies 
with hydrodynamics. 

TABLE IV. Nonequilibrium molecular-dynamic results for Lennard-Jones shear viscosity 
near the triple point (N ()'3 IV =0.8442, k T 0/E = 0.722). Shear-viscosity dependence upon shear 
rate (w =u x ,z) and system width (in L units). See Table I caption (for N = 324, 15 zones were 
used). Apparent shear viscosity 1)a was adjusted to the temperature To by 61)/1)= 0.656T/T. 
Thermal conductivity estimated from the zone-temperature distribution [coefficient of zZ is 
-7)kw 2/(2Am)] . The experimental argon value is 6.5± 0.26, Ref. 39, and the nonequilibrium 
molecular-dynamic simulation of heat-flow result is 6.6± 0.4, Ref. 15. 

27)a a kT fJ ()' 2ttz ()'2(mtA--Wfl ­ (m()lT2 E k ERuns E 

N = 108 (L cube) 

4-9 0.0371 3.72±0.22 0.724 3.73 4.7 

4-9 0.0737 3.54±0.11 0.715 3.52 8.0 
1-4+ 0.0852 3.41±0.O9 0.713 3.38 3.6 

4-9 0.113 3.28±0.01 0.711 3.24 8.1 
1-6 0.156 3.07±0.04 0.699 3.01 8.8 

1-6 0.248 2.85±0.06 0.672 2.72 6.5 

N =216 (2L wide) 

2-5 0.0399 3.38±0.17 0.721 3.37 4.7 

2-5 0.0825 3.25±0.15 0.689 3.15 14.0 
3-6+ 0.0885 3.21iO.09 0.699 3.14 5.3 

1-4 0.112 3.08±0.05 0.681 2.96 6.3 

N 324 (3L wide) 

2-6 0.0200 3.23±0.17 0.717 3.22 ? 

3-7 0.0416 3 .16± 0.06 0.707 3.12 9.5 

3-6 0.0872 3.04± 0.05 0.670 2.90 6.3 

http:argon.37
http:calculation.36
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A. 	 Lennard-Jones triple-point shear viscosity-comparison 
with Green-Kubo method 

An extensive set of nonequilibrium shear-vis­
cosity calculations has been made in the triple­
point region for comparison with the equilibrium 
molecular-dynamic calculation by Levesque, Ver­
let, and Kurkijarvi (LVK).36 In the equilibrium 
work 864 particles were used with reduced density 
Na3jV of 0.8442 and reduced temperature kT/E of 
0.722, approximately the triple-point values for 
both the Lennard-Jones system37 and argon (using 
a=:30405 Aand E/k=:119.8°K, the reduced condi­
tions become 1.418 g/cm3 and 86.5°K). The real­
time duration of the calculations was (for argon) 
10-9 sec. The shear viscosity calculated from the 
Green-Kubo relation was 

1)<f'/(mE)li2 =4.02 ±0.29. 

For comparison with argon the calculated value 
is 3.64 mP, 	while Boon's experimental argon value 
is 2.71 mP (±2%).3S The calculated equilibrium 
thermal-conductivity coefficient is A(J2(m/E)' h/k 

14.8, which is about twice the experimental ar­
gon value 6.5 ±0.26. 39 Nonequilibrium molecular­
dynamic simulation of heat-flow results (6.6 
±004 15 

) agree with the argon value. 
Using 108 atoms in a cube, the nonequilibrium 

results for shear viscosity at the triple-point 
region indicated dependence upon shear rate-
Le., non-Newtonian behavior.'s The apparent 
viscosities for five different shear rates (averaged 
over a time period corresponding to 10-9 sec for 
argon) are given in Table IV and shown in Fig. 7. 
The local average flow temperatures (kinetic energy 
with respect to the mean velocity) Were determined 
in the zones used to define the velocity profile. 
For the higher shear rates, the average tempera­
ture was approximately 5% below the desired tem­
perature. Therefore the calculated shear viscosity 
was adjusted to the desired temperature. The 
experimental argon shear-viscosity pressure and 
temperature dependence from Hellemans et al.40 

and the estimate (8 lnP/a InT)v =: 3004 were used to 
estimate temperature dependence at constant den­
sity, with the result 

( ~1)) p =: -0.65 6T for the triple -point region. 

Hence, a 5 % temperature increase corresponds 
to a 3% decrease of the shear viscosity. 

For fixed N the dependence of apparent viscosity 
1) (= -P"z/ux) on strain rate can be described by 
the Eyring model of non-Newtonian viscous flow, 

1) 1)o(sinh- 1Tw)jTW, 

where 1)0 is the zero shear rate or Newtonian vis­

cosity, T is a relaxation time, and w is the shear 
rate ux •z' While Eyring's model cannot directly 
predict 110 and T from molecular properties, it has 
been shown that this model can adequately portray 
the experimental data for many high-viscosity 
fluids. The Ree-Eyring model contains two addi­
tional parameters (two additive siI1h- 1 viscosities) 
and successfully describes grease over six de­
cades of shear force and nine decades of shear 

21rate. The non-Newtonian flow found here in a 
monatomic fluid at high shear rates corresponds 
to that found in laboratory experiments at low 
shear rates on more complicated mOlecules. 

Fitting the adjusted viscosities at the three low­
est shear rates with the sinh- 1 function produces 
a 108-particle zero-gradient viscosity of '1)0 

=3.82(mE)112/cr2 and a relaxation time of T 

1004a(m/E)lh. Including the two higher shear­
rate values reduces "1)0 and T to 3.71 and 8.30, in­
dicated by the dashed line in Fig. 7. This relaxa­
tion time corresponds to approximately 13 times 
the period of an Einstein oscillator in a face­
centered Lennard-Jones crystal at this same den­
sity, l/vE =0.80cr(m/E)1/2. The extrapolated 108­
particle viscosity appears to be consistent with the 
Green-Kubo result of LVK, but with both methods 
predicting substantially larger ,'alues than the ex­
perimental argon data. 

,"'-­
{ 

4.0 

DE~SITY 
N(o-;L)sO.S442 

~ \~~~ SYSTEM~ WIDTH 

3.2 -..!~. 3 .~ x,\ , ' 
a:: « "" ~~a '\~ lL (~~':c'" 3L.\ • x~ __u'" 

(N=~32~ \ 2 L " J. 
2.8 (N=216)" r 

-- __ tu- '" 
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FIG. 7. Lennard-Jones shear Viscosity dependence 
upon shear rate and system width at the triple-point 
region. Circles are the calculated mean values ,.verti ­
cal line denotes one standard error) and the x's are the 
estimated shear viscosity for kT/c=,O.722 (see Table 
lVi. 
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The remaining extrapolation to macroscopic 
system size (while maintaining laminar flow con­
ditions) was investigated by comparing the 108­
particle viscosity with results from systems two 
and three 108 cubes wide. These larger-system 
results are also shown in Fig. 7 and Table IV. 
They are clearly lower than the 108-particle val­
ues. Fitting the 216 -particle results with the 
sinh- 1 function a zero-gradient viscosity 
of 1)0 = 3047(mE)l and a relaxation time of 
T 1004a(m/E)112. Thus doubling the system width 
decreases the zero-gradient viscosity value, while 
the relaxation time does not change. Assuming, 
in addition to gradient dependence, an inverse 
width dependence, so that 1) is a function of both 
wand K, leads to a hydrodynamic shear viscosity 
1)0,0 of 3.12(mE)1i2/a2. The uncertainty in this 
estimate is at least 5%. 

To provide some confidence in this arbitrary 
extrapolation, a system three cubes wide (N = 324) 
was studied at three shear rates. The mean values 
and temperature -adjusted values are also shown 
in Fig. 7, and again they are clearly lower than 
those found with smaller systems. The 324-par­
ticle results, fitted with the sinh- 1 function, pro­
duce a zero-gradient viscosity of 1)0 =3.21 (mE)llz/a2 
with a relaxation time of 10.0a(m/€)1/2. 

The mathematical similarity between stresses in 
viscous fluids and stresses in elastic solids41 can 
be used to support the inverse width dependence of 
the Viscosity coefficient. Finite periodic harmonic 
crystals with fixed center of mass exhibit an elas­
tic restoring force on a particle displaced a dis­
tance x from its equilibrium location. This force 
(-xx) is proportional to an elastic modulus, and 
the equilibrium mean-squared displacement is 
proportional to the reciprocal of the modulus, 

F = -Xx, (x 2 
) 3kT/X. 

Numerical results given in Table V for harmonic 
crystals show that (x 2

) increases with system 
width, 

(X2)N/(X2)"" =1 - c/N 1/3, 

where the constant c varies both with crystal struc­
ture and shape (Table V). Thus the elastic modulus 
(analogous to shear viscosity in a fluid) decreases 
with 1/N1i3 as the limit is ap­
proached. For harmonic forces the viscosity de­
pendence upon width would be 

1)N/1)"" 1 + 

where c is a constant of order 1, which is con­
sistent with a curve fit of the nonequilibrium mo­
leCUlar-dynamic zero-gradient viscosity esti­
mates. This same functional form is also in rea­
sonable agreement with experimental hydrody­

namics. The wall correction for viscosity experi­
ments in which a sphere of diameter a is dropped 
in a tube of diameter D containing viscous liquid 
is 1 + (~2)a/D, where the coeffic ient depends some­
what upon the cross-section shape.42 

The three parameters of interest (1]0,0' T, and 
c-the coefficient of 13) may also be deter­
mined by fitting all the temperature-adjusted shear 
viscosity with one function, 

1]".,< =1)0,0(1 +cK)(sinh-1Tw)/Tw, 

where 1]0).K is the calculated shear-rate-dependent 
finite-width viscosity, 1]0,0 is the zero shear-rate 
infinite -width viscosity, C is the coefficient for 
width dependence, and T is the relaxation time 
for shear rate-dependence. Fitting the adjusted 
calculated shear viscosities of Table IV with the 
residuals weighted equally or by various functions 
of the width and/or calculated standard error 
produced a range of values for C (1.1-1.38) and 
T (604-10.2), but little variation in the viscosity 
estimate, 

1]0.0 =2.89(±O.06}(m€}1 

Figure 8 presents the equal-weight fit along with 
the Similarly adjusted Green-Kubo value (c = 1.38), 
and l is assumed to be half the cube edge, the 
largest possible separation of particles pairs in a 
periodic system; Le., l is equal to the nonequilib­
rium 108-system width. ConSidering the uncer­
tainties, it appears at present that the two molec­
ular-dynamic methods (both adjusted to infinite 
width) agree with each other and with the experi-

TABLE V. Mean-squared displacement relative to the 
Einstein approximation. 3k T /4XE, where XE is the near­
est-neighbor harmonic force constant, for N -particle 
harmonic crystals with nearest-neighbor interactions. 
These crystals are periodic with fixed center of mass. 
The large-crystal ratios are of the form n (fcc) 1.6794 
_1.56/Nl/3 and n (hcp) 1.6685 1. 16/N1iS. 

N(fcc) R(fcc) N(hcp) n(hcp) 

4 0.833333 2 1.500000 
32 1.2204:m 16 1.344141 

108 1.361392 54 1.402399 
256 1.437691 128 1.451938 
500 1.484843 250 1.488476 
864 1.516722 432 1.515363 

1372 1.539673 686 1.535618 
2048 1.556973 1024 1.551298 
2916 1.570474 1458 1.563745 
4000 1.581300 2000 1.573844 
5324 1.590173 2662 1.582191 
6912 1.597578 3456 1.589201 
8788 1.603849 4394 1.595167 

10976 1.609623 
1.6794 1.6685 

http:1.1-1.38
http:shape.42
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FIG. 8. Calculated Lennard-Jones shear viscosity at 
the triple-point region. The line is a nonlinear fit with 
a function having inverse hyperbolic sine shear-rate de­
pendence and inverse width dependence. Also shown is 
the infinite-width-adjusted equilibrium (Green-Kubo) 
result of Levesque, Verlet, and Kurkijarvi and the ex­
perimental argon shear viscosity (with an estimated 2% 
uncertainty) . 

mental argon shear viscosity (also shown in Fig. 8 
with the quoted 2% experimental error). Our final 
estimate for Newtonian shear flow near the Len-

nard-Jones triple-point region derived from the 
nonequilibrium molecular dynamics is 7jv2/(mE)lh 
=2.9(±O.1). Therefore the apparent discrepancy 
between the two molecular-dynamic methods and 
the experimental argon data appears to be due to 
finite flow-field effects. This phenomenon is ap­
parently confined to the triple -point region. Cal­
culations with 108 and 324 systems at a reduced 
density of 0.76 on the svp line, and at 0.94 on the 
freezing line, indicate no significant width depen­
dence. 

B. 	 Lennard-lones shear viscosity along the saturated-vapor­
pressure line 

Hansen and Verlet37 have found good agreement 
with experimental argon phase-diagram data using 
the Lennard-Jones pair-potential 

cpdr) =4E[(alr)12 - (alr)S], 

with a 3.405 Aand Elk 119.8°K. The melting­
freezing agreement "confirms the excellence of 
the Lennard-Jones potential as an effective two­
body potential for argon at high density." The 
agreement is not as good along the saturated­
vapor-pressure line (especially near the critical 
temperature, 1.26 Elk for argon versus 1.36 Elk 
for Lennard-Jones). We calculated the Lennard­
Jones shear viscosity along the experimental 
saturated-vapor-pressure line of argon; see Table 
VI. For argon, the real time durations are about 
10- 10 sec, while CDC 6600 computational time 
was approximately 104 sec. 

TABLE VI. Nonequilibrium molecular-dynamic lOB-particle results for Lennard-Jones 
shear viscosity along thc argon saturated-vapor-pressure line (temperature and density in 
first two columns). Four-run average, see Table I caption (W = 324); 1)0 is the estimated 
zero-shear-rate viscosity, T is the Eyring-Ree relaxation time, and 1)E is the Enskog estimate. 

1)u2 1) OU" 
? 	

lJEU 2 

kTo/E Nu3/V 	 kT/E (my!2
U x .z a -;; 	 (md 1rZ ~(~r2(mE)1t2 	 (mE) itz 

1.228 0.4774 1.192 0.116 0.554±0.06 
1.220 0.07B7 0.593± 0.06 

0.641 9.43 0.532 
0,998 0.692 0.982 0.135 l.lB± 0,08 

0.972 0.086 1.30± 0.06 
1.39 7.86 1.19 

0.B723 0.760B 0.840 0.123 l.B4± O.OB 
0.87 est. 1.66 
0.B60 0.OB3 LB2± 0.03 
0.B7 est. 1.75 
0.846 0.04 1.95± 0.11* 
0.87 est. 1.89 

1.92 9.2 1.70 
0.7007 0.B531 0.684 0.112 3.51± 0.13 

0.7 est. 3.46 
0.700 0.075 3.95± 0.09 

3.29 10.4 2.B7 .r-
I 
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It appears to be generally true that the lower­
shear-rate results are somewhat (approximately 
10%) larger. For the density of 0.85, the relaxa­
tion time and width correction determined from 
the extensive triple-point calculations was used. 
A one-constant fit of the two 108 results is 7)0.0 

=3.29(mEy12/a2, which does agree with the experi­
mental argon data. The inverse width correction 
is apparently only applicable to the very dense 
triple-point region. For a reduced density of 
0.76 on the saturated-vapor line, the results of a 
108-particle system and a 324-particle system 
indicate no significant width dependence. At the 
remaining two lower-density conditions, the cal­
culated apparent shear viscosities for the two 
shear rates have error bars that overlap. Thus a 
two-constant fit is not really valid. However, the 
estimated zero-shear-rate viscosity values do not 
noticeably differ from the calculated low-shear­
rate results. 

Thermal pressures determined from the Len­
nard-Jones equation of state determined by Leves 
que and Verlet43 have been used to make Enskog 
shear-viscosity estimates (shown in Table vI). 
For these densities and temperatures, the Enskog 
estimates lie approximately 20% below the molec­
ular-dynamic results. For densities greater than 
critical and temperatures below critical, the Ens­
kog estimates have similar disagreements with 
experimental data.44 

There is extensive experimental argon shear­
viscosity data for comparison along the saturated­
vapor-pressure line. 38 .40,45 ,46 Accuracy within a 
few percent is claimed for each set of experimental 
results. Yet the various methods of measuring 
the viscosity produce values differing by 10-50%. 
The recent experimental work by Haynes46 using a 
torsional viscometer like De Bock et al,45 indicates 
good agreement along the vapor-pressure line 
with the results of Hellemanns et al.40 (they used 
an oscillating disk viscometer). Away from the 
vapor-pressure line the pressure dependence of 
Haynes and De Bock et al. agree for the slope, but 
the latter work produced higher viscosity values. 
The results of Hellemanns et al. indicated a much 
smaller pressure dependence, but their results 
away from the saturated liquid line are suspect 
since they used helium gas to pressurize the liquid 
argon and hence had a helium-argon mixture. The 
largest experimental differences occur for pres­
sure-temperature values away from the vapor­
pressure line and near the critical temperature. 
Some of the experimental differences may be due 
to uncertainty in the experimental pressure-tem­
perature conditions. 

Figure 9 compares the nonequilibrium molec­
ular-dynamic estimates with the experimental 

argon shear-viscosity data. ConSidering the dis­
agreement among the experiments, it seems likely 
that the experimental and the calculated molecular­
dynamic results have comparable uncertainties. 
The overall agreement indicates successful simu­
lation of nonequilibrium shear flow with few-par­
ticle systems. 

C. Lennard-Jones shear viscosity along the freezing line 

The shear viscosity along the Lennard-Jones 
fluid freezing line has been calculated at tempera­
tures up to four times the critical temperature. 
The results along with Enskog model shear-vis­
cosity estimates are given in Table VII (thermal 
pressure from Hansen's high-temperature equa­
tion of state22 

). These estimates are only 50% of 
the molecular-dynamic results, a discrepancy 
similar to that found by Alder, Gass, and Wain­
wright" for hard spheres near their freezing den­
sity. The viscosity dependence on shear rate is 
shown in Fig. 10 together with a zero-shear-rate 
estimate (fitting the two-constant sinh- 1 function 
through the two calculated values). For a reduced 
density of 0.936, a 324-particle system agrees 
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FIG. 9. Experimental argon shear-viscosity coefficient 
along saturated-vapor-pressure line. Boon et al. used 
a capillary viscometer with accuracy better than 3%; 
De Bock et al. used a torsionally vibrating piezoelectric 
quartz crystal; HeHemens et al. used an oscillating disk 
viscometer with accuracy better than 2%. The line is 
the estimated zero-shear-rate infinite-system-size Len­
nard-Jones shear viscosity from nonequilibrium molecu­
lar-dynamic calculations done with 108 atoms at two 
shear rates (see Table VI). 
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TABLE VII. Nonequilibrium molecular-dynamic lOB-atom results for Lennard-Jones shear 
viscosity along the freezing line for temperatures (k TIE) up to 5. Four-run average, see 
Table I caption (*N =324); 1)0 is the estimated zero-shear-rate viscosity, T is the Eyring-
Ree relaxation and is the estimate. 

T)U 2 T)ou2 1]E(J2
T(Er(mt2kTo/E Nu3/V kTIE U x ,t a-;­ (mE)1!2 (mE)1I2 ~\;:;; (»2,,)112 

1.15 0.936 1.114 0.215 
1.132 0.104 
1.130 0.053 

2.0 1.04 1.955 0.305 
1.976 0.145 

2.74 1.113 2.668 0.364 
2.740 0.171 

5.0 1.279 4.857 0,521 
4.954 0.250 

4.19± 0.09 
4.63± 0.23 
4.79± O.lB* 

4.83 5.02 2.14 
5.65± 0.06 
6.36± 0.27 

6.68 3.96 2.26 
6.79± 0.20 
7.76±0.64 

8.21 3.61 2.95 
10.51± 0.21 
10.95± 0.91 

11.1 1.16 4.63 

with the lOB-particle results and thus indicates 
no width dependence. Therefore it is concluded that 
the width phenomenon only occurs for conditions 
very near the triple-point region. 

It is interesting to note that the large-gradient 
viscosities have a linear dependence upon tempera­
ture, while the estimated zero-shear-rate vis­
cosity values do not. The potential contribution to 
momentum transport is related to the elastic shear 
modulus (see Sec. III). Along the soft-sphere 
freezing line, this reduced shear modulus is a 
constant, 

GV/NkT:= 7.2 (¢/NkT) ~ 30. 

Thus a rough estimate for the potential part of the 
shear viscosity is 

For the freezing-line conditions calculated, the 
temperature changes by a factor of 4.3 while the 
density only increases by 1.4. Therefore the linear 
temperature dependence at large shear rate ap­
pears reasonable. Of course, at high temperatures 
the repulsive core potential dominates momentum 
transport. Thus the high-temperature Lennard­
Jones system must approach the behavior of the 
inverse-12th-power system. The special scaling 
feature leads to a simple relation for the soft­
sphere shear viscosity along the freezing line, 

[(1) -1l )d'/(mE)' I2J (E /kT)2 /3:= 4.1 (±O .4).o

A reasonable curve fit (~4% error) of the freezing­
line Lennard-Jones reduced excess shear viscosity 
is 

& 

which does agree quite well with the soft-sphere 
result. A similar expression has been obtained 
by LVK. 36 Upon replacing the L-J molecules with 
hard spheres of diameter d (chosen to reproduce 
the equilibrium structure factor) and using the 
hard-sphere viscosity results of Alder et al. along 
with the low-temperature L-J freezing-temperature 
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FIG. 10. 
freezing line. Calculated with 108 atoms at two shear 
rates (see Table VII). The lowest x is the estimated 
infinite-width triple-point value (see Table VI). The 
dashed line indicates the large-shear-rate linear tem­
perature dependence, while the solid line is a nonlinear 
fit in terms of the inverse-12th-power scaling variables. 
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dependence, they obtain an approximation for the 
freezing-line shear viscosity 

7/cfl/(mE)l 12 "'" 5 (kT/E )0.63. 

They do not comment on the power dependence of 
temperature and its relation to the inverse-power 
scaling. Since the viscosity increases with tem­
perature along the freezing line (similar to dilute 
gases) but decreases with increasing temperature 
along the saturated-vapor-pressure line, there 
must be a transition region. Sengers4 discusses 
this general phenomenom of the change of slope 
of viscosity isotherms when plotted against pres 
sure or density-Le., (a7//aT)p changes sign. Ex­
perimentally these isotherms intersect at about 
twice the critical density, while calculations for 
the isotherms of kT /E B.5 and 2B indicate an 
intersection at three times the critical denSity 
(see following). ­

D. 	 Density and temperature dependence of the Lennard -Jones 

excess shear viscosity 


Although pressure is a more convenient experi­
mental variable, the isothermal density depen­
dence of the shear viscosity and thermal conduc­
tivity is simpler to describe. The dHute-gas (zero­
density limit) temperature dependence is well 
described by kinetic theory. Experiment suggests 
that the excess shear viscosity t.l. 7/ ~ "'(7/ - '17 0), where 
1)0 is the dilute-gas value] is almost temperature 
independent. While Andrade's simple paradigm 
for shear viscosity has no temperature depen­
dence, the Enskog hard-sphere theory produces a 
square-root temperature dependence. However, 
the experimental shear viscosity of argon, hydro­
gen, helium, oxygen, and carbon dioxide indicates 
a weak temperature dependence with a negative 
temperature derivative (at constant density). The 
excess thermal conductivity (with the exception of 
the critical region) has behavior similar to that of 
shear viscosity, except that the experimental data 
indicate a positive rather than a negative isochoric 
temperature derivative.44.47 

Diller4B was able to represent his experimental 
shear viscosity for para-hydrogen at cryogenic 
temperatures «100 0 K) and for densities up to 
~BOO amagats with an empirical equation of the 
form 

1) =7/ (T) +A(p)eB(PJiT, o

where 1)0(1') is the low-density viscosity, and A 
and B are complicated functions determined from 
his experimental data. These same density coeffi ­
cients also correlate (within 3%) with Michels 
et a1.49 experimental shear-viscosity data for 
normal hydrogen at room temperature (density up 

to BOO amagats). For thermal conductivity, both 
Rosenbaum et al. 50 and Bailey and Kellner39 found 
that their experimental argon data could be repro­
duced (to within 3%) by the empirical relation 

A Ao(T) +A - 1) 

(temperature range 90-350o K, pressures up to 
1000 atm). Thus the excess coefficients appear to 
be valuable density-scaling functions. Therefore, 
to investigate this phenomenon, the Lennard-Jones 
shear viscosity has been calculated for two iso­
therms corresponding to room temperature for 
hydrogen and helium (kT /E B.5 and 2B). 

The nonequilibrium molecular -dynamic calcula­
tions used lOB Lennard-Jones atoms in a unit cube 
(Table VIII). A few calculations were also made 
with 216 particles (two lOB-cubes wide), and these 
results indicate only a slight increase in shear 
viscosity compared to the lOB-particle results. 
The calculations are done at fixed density, but the 
momentum flux (pressure) and temperature are 
determined from finite-time averages and thus 
have some uncertainty. The compressibility fac­
tors from these runs agree well with Hansen's 
Lennard-Jones equation of state. 22 For densities 
near and below critical denSity (0.36 for Lennard­
Jones, for hydrogen about 520 amagats), the Ens­
kog estimate is in reasonable agreement with the 
molecular-dynamic results. For larger denSities, 
the deviation of Enskog estimates from the molec­
ular -dynamic results grows to about a factor of 
2 near the freezing density (-1.5). This disagree­
ment is similar to that found by Alder, Gass, and 
Wainwright in their equilibrium molecular-dynam­
ic studies of the hard-sphere system. The Enskog 
estimate indicates a positive value for at.l.7//aT, 
the opposite of experimental observation and the 
molecular-dynamic results. 

Figure 11 shows that the calculated reduced 
excess shear viscosity for both of these isotherms 
can be correlated with the soft-sphere scaling 
variables, 

(1 ) 

This fit clearly reveals two features: (1) weak 
temperature dependence and (ii) a negative tem­
perature derivative at constant density d lnt.l.7//d InT 
'" -~. Notice that the temperature derivative is 
negative for any power of x greater than 1. While 
both of these features have been experimentally 
observed in Simple-fluid shear -viscosity data 
(e.g., argon, helium, hydrogen, oxygen, and car­
bon dioxide; see Refs. 44 and 47), their cause has 
not been previously traced to the dominance of the 
core potential. For all x, a slightly better fit is 
given by the empirical relation 

,.. 
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(2) 

(dashed line in Fig. 11). Note that the temperature 
derivative is positive for low-density-high-tem­
perature combinations and only becomes negative 
for x greater than 0.41. 

The soft-sphere shear viscosity alone can be 
fitted (~3% error) by the empirical relation 

t...1)d'(mEt1/ 2 (E/kT)2/S =0.0152(e7
•o2x -1), (3) 

where the product of the coefficients was required 
to equal the soft-sphere Enskog first density cor­
rection to the dilute-gas shear viscosity [0.107­
see Eq. (26) of Ref. 44]. For x less than 0.5, the 
Enskog theory provides a good soft-sphere shear 
viscosity estimate; however, for higher densities, 
the molecular-dynamic results are 2 to 3 times 
the Enskog values. 

There is a small discrepancy in the coefficient 
values of Eqs. (2) and (3), which at infinite tem­
perature must be equivalent. Procrustean fitting 
[guided by the inverse square-root temperature 
expansion of the second and third Lennard-Jones 
virial coefficients (see p. 1119 of Ref. 1), since 
they determine the Enskog first density correc 
tion] of all the nonequilibrium molecular-dynamic 
results yields the empirical relation 

=0.0152[1 -0.5(E/kT)112 +2.0(E/kT)] 

X(exp{7.02x(1 - 0.2(E/kT)1/2]} -1), 

with a fit error of 5-10% of the excess or dilute 
shear viscosity (whichever is larger). Thus the 
utilization of the soft-sphere scaling variables 
yields a relatively simple function describing the 
excess Lennard-Jones shear viscosity throughout 
the fluid phase. The experimental argon shear­
viscosity data of Michels et al. 51 and Haynes46 

spans the density range from dilute gas to saturated 
liquid; however, compared to the molecular-dy­
namic conditions the reduced temperature varia­
tion is small (0.7-2.9). Fitting the data using the 
soft-sphere scaling variables yields 

t...1)d'(mEt 1i2 (E/kT)2/S =0.0324(e 5 •18X -1). 

Comparison with a fit of t...T) versus density p (with 
the same function) indicates reduction of the rela­
tive fit error by factors of 7 (for high p and T) 
to 3 (for high p and low T) and thus confirms the 
value of the inverse-power scaling variables. 
Therefore this new way of scaling excess shear 
viscosity should be useful for empirical correla-

TABLE VIII. ~onequilibrium molecular-dynamic lOS-atom results for Lennard-Jones shear 
viscosity as a function of density along the isotherms kT /E= 8.5 and 28, shear vis­
cosity is 0.61 and 1.32). Four-run average; see Table I caption (*N 216, 9.2 and 30). 
Zero-shear-rate estimate marked by **. Compressibility factor from velocity zone momen­
tum flux and L-J equation of state (Ref. 22). Thermal conductivity estimated from zone tem­
perature distribution. 

PV /NkT~my!2kT/E u r ,z () -:- rp2(m€)-1I2 Calculated EOS Estimated Enskog 

0.25 8.41 0.20 0.61±0.OS 1.35 1.34 2.1 1.6 3.04 

0,35 8.58 0.32 0.74±0.06 1.58 1.55 3.49(± ?) 3.57 
0.40 8.58 0.34 0.94±0.09 1.71 1.67 3.88 
0.50 8.48 0.36 1.00± 0.03 1.98 4.62 
0.55 8.63 0.37 1,2S±0.1l 2.25 2.18 2.6'7(± ?) 5.11 
0.60 8.51 0.50 L24±0.12 2.48 V;O 1l,1±3 5.60 
O.SO 8.56 0.56 2,16±0.0'7 3.74 3.63 8.0(± ?) 8.35 
1.00 9.12 0,15 3.29± 0.1'7 5.65 5.57 12.6 
1.20 8.72 0.68 6.45± 0.16 8.75 8.76 20.4±2 18.0 

9.09 0.16 7 .83± 0.30 8.58 8.62 
9.09 ...... 0** 8.26±0.30 

1.40 8.85 0.71 12.60± 0.31 13.03 13.68 31.8±4 24.8 
9.11 0.19 13.97 ± 1.1 12.87 13,2 
9.10 0.19 13.41± 0.63* 12.85 13.2 19.3± 5 25.2 

~O** 13.62±0.63 
0.25 28.67 0.35 1.19± 0.24 1.35 1.35 6.3 
0.55 27.97 0.75 1.71±0.08 2.06 2.04 8.91 
0.80 27.59 0.94 2 .85± 0.30 3.03 3.00 12.1±8 12.7 
1.2 28.30 1.25 5.77±O.36 5.65 5.66 17.5±10 23.2 
1.4 27.86 1.24 9.46± 0.30 7.77 7.85 36.8± 15 30.9 

29.70 0.35 9.95±0.40* 7.55 17.8±8 
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tions of experimental data over the complete fluid 
range. 

V. CONCLUSION 

The method of nonequilibrium molecular dynam­
ics has been developed to simulate dense -fluid 
transport of momentum and energy. This new 
method also allows determination of nonequilibrium 
distribution functions which should provide the 
basis for a perturbation theory of transport. Shear 
viscosity of soft spheres (r -12 potential) and Len­
nard-Jones particles (r- 12 _r- S potential) has been 
obtained from molecular-dynamic modeling of 
Couette flow. Soft-sphere deviations from Enskog 
theory are similar to those found for hard spheres 
by Alder, Gass, and Wainwright, using time cor­
relations of equilibrium molecular-dynamic sys­
tem fluctuations. For densities near freezing, 
the nonequilibrium calculations have a non-New­
tonian behavior; however, the Ree-Eyring inverse­
hyperbolic -sine shear-rate dependence gives an 
excellent portrayal of the calculated results and 
has been used to estimate the zero-shear-rate 
shear viscosity. For the Lennard-Jones shear 
viscosity near the triple-point region, there is 
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FIG. 11. Calculated I,ennard-Jones excess shear vis­

cosity along the isotherms kT /10 = 8.5 and 28 expressed 
in terms of the single repulsive 12th-power scaling vari­
ables. Also shown, but not used in determining the 
curve fits, are calculated Lennard-Jones shear viscosi­
ties along the (L-J) freezing line and the saturated-vapor­
pressure line (of argon). 

agreement between the equilibrium result of Leves­
que, Verlet, and Kurkijarvi and the nonequilibrium 
zero shear-rate using 108 atoms in a cube. How­
ever, systems two and three cubes wide yield 
lower results, which, when extrapolated with in­
verse width, are in close agreement with the 
experimental argon shear viscosity. This same 
size dependence is in qualitative agreement with 
hydrodynamic experiments on spheres moving in a 
viscous fluid and is also supported by the mathe­
matical analogy between elastic solids and viscous 
liqUids. The triple-point equilibrium viscosity 
results can also be brought into agreement with 
both the nonequilibrium and experimental viscosities 
if a similar inverse width correction applies to 
that method. The equilibrium result for the Len­
nard-Jones thermal conductivity is twice the ex­
perimental argon value and the nonequilibrium 
results (which appear to have weak dependence 
upon system size and temperature gradient). Com­
parison of the Lennard-Jones shear viscosity with 
experimental argon data along the saturated-vapor­
pressure line of argon confirms our successful 
simulation of macroscopic viscous flow with few­
particle nonequilibrium molecular-dynamic sys­
tems. 

The soft··sphere system, being a single inverse­
nth-power potential, has a special scaling fea­
ture; reduced viscosity and thermal conductivity 
times (E/kT)1 12+2 In are universal functions of the 
reduced density times (E/kTp/n throughout the 
fluid phase. Since momentum transport is pri­
marily accomplished by the repulsive potential 
core for high temperatures, the Lennard-Jones 
shear viscosity must behave like the soft-sphere 
system for high temperatures. In fact, the cal­
culated excess shear viscosity (that part above 
the zero-density temperature dependence) has 
been successfully correlated in terms of the 12th­
power scaling variables for temperatures as low 
as the critical value (along the freezing line). The 
molecular -dynamic results for thermal conduc­
tivity differ from shear viscosity in that the equi­
librium calculations for hard-spheres (done by 
Alder, Gass, and Wainwright) and the nonequilib­
rium calculations15 for soft spheres and Lennard­
Jones potential are in reasonable agreement with 
their respective Enskog estimates over the com­
plete fluid-density range (and even into the solid 
region for hard spheres). Calculated freezing­
line Lennard-Jones thermal conductivities have 
the soft-sphere temperature dependence (kT /(0)2/3 

and lie only 30% above the Enskog estimate. The 
calculated Lennard-Jones excess thermal-con­
ductivity coefficient agrees with the experimental 
argon denSity dependence. The utilization of the 
soft-sphere scaling variables yields relatively 
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simple functions for describing the excess shear these features have been experimentally observed 
viscosity and thermal-conductivity behavior in simple-fluid experimental data argon, 
throughout the fluid phase. The introduction of helium, hydrogen, oxygen, and carbon dioxide), 
these scaling variables also clearly reveals two their cause has not been previously traced to the 
features: (i) weak temperature dependence and dominance of the core potential. Thus the soft ­
(ii) the sign of the temperature derivative at con­ sphere scaling variables should be useful for cor­

stant density (negative for shear viscosity and relating experimental data. 

positive for thermal conductivity). While both of 


"Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

'i'Work done in partial fulfillment of the requirements 
for a Ph.D., University of California at Davis, De­
partment of Applied Science, at Livermore. 

1J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, 1'.,1.0­
lecl/lar Theory of Gases and Liquids (Wiley, New York, 
1964), Chaps. 7, 9, and 11. 

2J. A. Barker, M. V. Bobetic, and A. Pompe, Mol. Phys. 
20, 347 (1971). 

3Reference 1, p. 649. 
iJ. V. Sengers, Recent Adv. Eng. Sci.~, 153 (1966); 

J. V. Sengers, lnt. J. Heat Mass Transfer,§., 1103 

(1965). 


'H. N, V. Temperley, J. S. Rowlinson, and G. S. Rush­
brooke, Physics of Simple Liquids (Wiley, New York, 
1968), Chaps. 4 and 5. 

"B. 	J. Alder and T. E. Wainwright, J. Chem. Phys. 31, 
459 (1959); ~, 1439 (1960). 

1;\11. S. Green, J. Chem. Phys. 20, 1281 (1952); 22, 398 
(1954); R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957); 
R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. 

Jpn. 1203; E. Helfand, Phys. Rev. 1 (1960); 

R. Zwanzig, Ann. Rev. Phys. Chem. 67 (1965); 
D. Gass, J. Chem. Phys. 4560 (1969); S. G. Brush, 
Kinetic Theory (Pergamon, New York, 1972), Vol. 3, 
pp. 69-72. 

BB. J. Alder, D. M. Gass, and T. E. Wainwright, 
J. Chem. Phys. 53, 3813 (1970). 

9W. M. Visscher, Phys. Rev. A 7, 1439 (1973). 
lOA. Rahman, Phys. Rev. 136, A405 (1964). 
11L. Verlet, Phys. Rev. 159, 98 (1967): 165, 201 (1968): 

D. Levesque and L. Verlet, Phys. Rev. A.?, 2514 
(1970). 

12C. Bruin, Phys. Lett. 777 (1969). 
13A. N. Lagar'kov and V, M. Sergeev, Teplofiz. Vys. 

Temp. 8, 1309 (1970) [High Temp. 8, 1232 (1970)]. 
14E. M. GoSling, 1. R. McDonald and K. Singer, Mol. 

Phys. 26, 1475 (1973). 
15W. 	T. Ashurst, Ph.D. dissertation (University of Cali ­

fornia, 1974) (unpublished). Some preliminary results 
were given in Phys. Rev. Lett. 31, 206 (1973) by W. T. 
Ashurst and W. G. Hoover. For the long-time behavior 
of the velocity autocorrelation see D. Levesque and 
W. T. Ashurst, Phys. Rev. Lett. 33, 277 (1974). 

16W. G. Hoover, M, Ross, K. W. Johnson, D. Henderson, 
J. A. Barker, and B. C. Brown, J. Chem. Phys. 52, 

4931 (1970). 


!TW. 	G. Hoover, S. G. Gray, and K. W. Johnson, J. Chem. 
Phys. 55, 1128 (1971). H. Matsuda and Y. Hiwatari, in 
Cooperative Phenomena, edited by H. Haken and 
M. Wagner (Springer, Berlin, 1973), p. 250. 

!BL. Verlet and J. J. Weis, Phys. Rcy. A 5, i;39 11972). 
ISH. Schlichting, Boundary Layer Theo,'y,- ~c::: ed. 1:'1c­

Graw-Hill, New York, 1960), pp. 66, 306, and 491­
2oH. W. Licpmann and A. Roshko, Elements Gasdy­

namics (Wiley, New York, 1957). 
21We thank F. Ree for calling Eyring's work :0 our at ­

tention. See for instance, F. H. Ree, T. Ree, and 
H. Eyring, Ind. Eng. Chem. 50, 1036 (1955.,; H. Ey­
ring, D. Henderson, B. J. Stover, and E. :'1. Eyring, 
Statistical Mechanics and Dynamics (Wiley, Xe\\' York, 
1964), p.462. 

22J, P. Hansen, Phys. Rev. A 2, 221 (1970). 
23E. N. Da C. Andrade, Philos-: Mag. 17, 497 (1934); 17, 

698 (1934); Viscosity and Plasticity (Chemical, New 
York, 1951). 

24E. McLaughlin, Chem. Rev. 64, 389 11964,. 
25H. Lamb, lJydrodynamics (DoYer, Xew York, 1945). 
26R. Zwanzig and M. Bixon, Phys. Re\', A~, 2005 (1970); 

see also A. F. Collings, Am. Inst, Chem. Eng. J. 19, 
183 (1973); L. A. Woolf, J. Chern. Phys. 57, 3013 
(1972). 

21M. Ross and P. Schofield, J, Phvs. C 4. L305 (1971). 
2By. Hiwatari, H. Matsuda, T. O~va, X-:-ogita, and 

A. Uda, Prog. Theor. Phys. (to be published). 
29K. D. Timmerhaus and H, G. Drickamer, J. Chem. 

Phys.20, 981 (1952). 
30J. A. Pryde, The Liquid State (Hutchinson, London, 

1966), Chap. 9. 
31 H. S. Green, in Encyclopedia of Physics, edited by 

S. Fliigge (Springer, Berlin, 1960), Vol. 10. Green 
assumes lJ (r) to be a constant over the range of interest 
and hence removes it from the integral (p. 110), An­
other approach has tried to combine three-particle 
and higher correlations from equilibrium systems to 
approximate lJ (r), See 1. Prigogine, G. Nicolis and 
J. Misguich, J. Chem. Phys. 43, 4516 (1965), and 

references therein. The Rice theory has since been 

disproven by R. A. Fisher and R. O. Watts [Aust. 

J. Phys. 25, 21 (1972)] and A. F. Collings, R. O. Watts, 
and L. A:\¥oolf [Mol. Phys. 20, 1121 (1971)J. These 
approximations have provided results which differ from 
argon data by factors of 2. See J. A. Palyvos et al., 
J. Chem. Phys. 49, 4088 (1968). 

32J. 1. Frenkel, Kinetic Theory of Liquids (Dover, New 
York. 1955). 

33 T . w'. Chapman, Am. lnst. Chem. Eng. J. 12, 395 
(1966). This work presents an erroneous form for 
lJ (r), but utilizes the concept of an integral of an un­
known function to obtain a corresponding states scaling 
for liquid-metal viscosity. For a correlation of vis­
cosity and self-diffusion of 10 liquid metals see A. D. 
Pasternak, Phys. Chem. Liquids~, 41 (1972). 



678 	 11W. T. ASHURST AND W. G. HOOVER 

34W. G. Hoover, A. C. Holt, and D. R. Squire, Physica 
(Vtr.) 44, 437 (1969); D. R. Squire, A. C. Holt, and 
W. G. Hoover, Physica (utr.) 388 (1969). 

35R. Zwanzig and R. D. Mountain, J. Chern. Phys. 43, 
4464 (1965); R. D. Mountain and R. Zwanzig, J. Chern. 
Phys. 44, 2777 (1966). 

3°D. 	Levesque, L. Verlet, and J. Kurkijarvi, Phys.Rev. 
A 7, 1690 (1973). 

37J.Hansen and L. Verlet, Phys. Rev. 184, 151 (1969); 
J. A. Barker, R. A. Fisher, and R. O. Watts, Mol. 
Phys.21, 657 (1971). 

3BJ. P. Boon, J. C. Legross, and G. Thornaes, Physica 
(Ur.) 33, 547 (1967). 

3sH. 	Ziebland and J. T. A. Burton, Brit. J. Appl. Phys. 
2, 52 (1958); A. Vhlir, J. Chern. Phys. 20, 463 (1952); 
B. J. Bailey and K. Kellner, Physica (utr.) 39, 444 
(1968). 

40J. Hellernans, H. Zink, and O. van Paernel, Physica 
(utr.) 46, 395 (1970). 

41 - .W. G. Hoover, W. T. Ashurst, and R. J. Olness, 
J. Chern. Phys. 60, 4043 (1974). 

42J. R. Partington:-An Advanced Treatise on Ph,;'sical 

Chemistry, Volume 2, The Properties oj Liquids 
(Longmans, Green, London, 1955), pp. 86-87. 

43D. Levesque and L. Verlet, Phys. Rev. 182, 307 (1969); 
see also P. D. Neufeld, A. R. Janyen, and R. A. Aziz, 
J. Chern. Phys. 57.1100 (1972). Note that they did not 
force their ernpiri~al fit of g{2. 2) to have the known 
high-temperature limit (Le., soft-sphere 1.296/T*1/B). 

44H. J. M. Hanley, R. D. McCarty, and E. G. D. Cohen, 
Physica (Utr.) 60, 322 (1972). 

45A. De Bock, W-:-Grevendonk, and W. Herrernan, 
Physica (utr.) 37, 227 (1967). 

4BW. M. Haynes, Physica (Ur.) 67,440 (1973). 
47D. E. Diller, H. J. M. Hanley, and H. M. Roder, Cryo­

genics 10, 286 (1970). 
48D. E. Diller, J. Chern. Phys. 42,2089 (1965). 
4sA. Michels, A. C. J. Schipper:-and W. H. Rintoul, 

Physica (Utr.) 19, 1011 (1953). 
50B. M. Rosenbaum, S. ashen, and G. Thodos, J. Chern. 

Phys.44, 2831 (1966). 
51A. Michels, J. V. Sengers, and L. J. l\L Van De Klun­

deI't, Physica (UtI'.) 29, 149 (1963). 


	p1
	p2
	p3
	p4
	p5
	p6
	p7
	p8
	p9
	p10
	p11
	p12
	p13
	p14
	p15
	p16
	p17
	p18
	p19
	p20
	p21

