Dense Fluid Shear Viscosity and Thermal Conductivity—The Excess
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We have developed a nonequilibrium molecular dynamic
methed to directly simulate dense fluid transport (Ashurst
and Hoover, 1973). The trajectories of N interacting atoms
in a fixed volume V are numerically computed. External
forces, which are restricted to special boundary regions,
do work and extract heat in order to maintain the hydro-
dynamic boundary conditions which produce a steady
shear-momentum or heat flux, The transport coefficient is
determined from the time average of the flux and corre-
sponding gradient in the volume V.

_ Experimental observation of dense fluid shear viscosity
and thermal conductivity data reveals that the excess co-
efficient, that part above the temperature-dependent dilute
gas value, is almost temperature independent (Diller et al,,
1970; Hanley et al, 1972). In order to calculate repre-
sentative dense fluid transport eoefficients, we have se-

lected the Lennard-Jones potential (twelfth-power repul-.

sion with sixth-power attraction} as a simple, yet realistic,
atomic potential, Most atomic interactions occur with en-

~ergy of order KT; thus, for high temperatures, the Lennard-

Jomes potential is effectively a single inverse power poten-
tial. The single inverse nth power potentials have special
scaling features since the potential and its derivatives de-
pend only upon the combination of energy and particle
size e Thus, if the density and temperature are com-
bined into one variable x [ = (density) (temperature} =3/7],
then all systeras with identical scaled initial conditions and
the same x value will have identical dynamic evolution
{Hoover et al,, 1971). The reduced excess transport coefli-
cients times {(e/kT)1/2+2/n gre functions of x only, not
density and temperature separately, throughout the fluid
phase.

Since, at high temperature, the repulsive core potential
dominates momentum transport, the high-temperature
Lennard-Jones shear viscosity must approach the scaling
behavior of the inverse-12th-power viscosity. Nonequilib-
rium molecular dynamic caleculations for the Lennard-jones
shear viscosity have shown this to be true and we have
found that the scaling is successful even at the triple point
(No*/V = 0.85, kT/e = 0.70). The Lennard-jones shear
viscosity has been caleulated (with 108 and 216 atoms)
along two isotherms corresponding to room {emperature
for hiydrogen and helium (kT/e = 8.5 and 28) for densi-
ties up to freezing (No®/V = 1.5}, see Iigure 1. The
caleulated reduced excess shear viscosity an for x > ~0.5
is well describad by the simple expression

Amot{me) "V (/KT8 = 7.0 &t (1)

which clearly roveals twe features: (1) weak temperature
dependence, and {2} a negative temperature derivative at
constant density, (dins)/{dnT) = - 1/4. Notice that
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the temperature derivative is negative if the power of x is
greater than 8/3. While both of these features have been

‘experimentally observed in simple-fluid-shear-viscosity data

(for example, argon, helium, hydrogen, oxygen and carbon
dioxide; see Diller et al, 1970 and Hanley et al, 1972)
their cause has not been previously traced to the domi-
nance of the repulsive ccre potential. For all x, a slightly
better fit is given by the empirical relation

Ana?(me) 12 (e/kT)?R = 0.024 [exp (6x) — 1] (2)

(dashed line in Figure 1). Notice that the temperature de-
rivative is positive for low density-high temperature com-
binations and only becomes negative for x greater than
0.41.

The single-inverse-12th-power (soft sphere) shear vis-
cosity has also been calculated and a fit similar to Equation
{2) produces coefficients of 0.0152 and 7.02, where the
product of the coefficients was required to eqgual the soft-
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Fig. 1. Cualculated Lennurd-Jones excess shear viscosity olong the

tzotherms kT/e = 8.5 ond 28; expressed in terms of the sinnle-

repulsive-12th-power zcaling voriables. Also shown, but not used in

getermining the curve fits, ore colculated Lennard-Jones shear vis-

cositizs along the (L-}) freezing line and the saturoted vapor pres-

sure ling (uf ocrgon). The standard error is about 109 of the total
’ coctlicient.
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sphere Linskog first density correction to the dilule-gas
shicar visensity (0.1065—sce Equation {26) of Ilaule

ctal, 1972). For x Jess than 0.5, the Euskog theory pro-
vidis a good .soft-sp]wr{: shear viscosity estimate; however,
for higher densities, the molecular dynamic results are 2 to
3 times the Euskog values. There is a small discrepancy in
the soft-sphiere cocfficient values and the Lennard-jones
vilues [Equation (2)] since at infinite temperature they
must be equivalent, Procrustean fitting (guided by the
inverse-square-root temperature expansion of the second
and third Lennard-Jones virial coefticients, which determine
the Enskog first density correction) of all the nonequilib-
rium molecular dvnamic results yields the empirical rela-
tion

Ano?(me) ~V2{/kT)2? = 0.0152 [1 — 0.5(e/kT) 12
4 2.0(e/kT)] X {exp [7.02x(1 — 0.2 (/kT)2)] — 1}
(3)

with a fit error of 5 to 10% of the excess or dilute shear
viscosity (whichever is Jarger}. The experimental hydrogen
and deuterium shear viscosity data (pressure up to 2000
atm.) of Michels et al. (1953) are reproduced within 2%
by Equation (3) [classical Lennard-Jones parameters from
Hirschfelder et al. (1864)], This equation also reproduces
{within 5% ) the experimental argon shear viscosity data
of Michels et al. {1963). Thus soft-sphere scaling of the
computer results yields a relatively simple function which
should be wseful for describing simple-fluid shear viscosity
throughout the fluid phase, ,

Experimental excess thermal conductivity data resemble
excess shear viscosity data (strong density with weak tem-
perature dependence) except the isochoric temperature de-
rivative is positive, the opposite of shear viscosity [see
Diller et al, 1970; Hanley et al, 1972]. The Lennard-
Jones thermal conductivity coefficient has been calculated
by nonequilibrium molecular dynamic simulation of heat
flow {Ashurst, 1974). For reduced temperatures greater

than one the results can be represented by curve A in’

- Figure 2. Similar fitting of experimental argon thermal
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Fig. 2. Calculated Lennord-Jones excess thermal conductivity ex-
pressed in terms of the single-repulsive-12th-power sceling voriebles,
Curve A is o nonlincor fit of ¢il Lennord-Jones results for which
kT > ¢, while curve B is for the condition AT < 3 ¢ {corresponding
orgon fit yields 0.52 ond 3.1). Also shown ore the colculoted infinite-

temperature (thot is, soft-sphere) thermal conductivitics. The vertical

lines denote one stendard error.
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C(mdm‘tivity data (Michels et al,, 1963) yioHs the same
sceond cocflicient and only ~changes the first cocflicient
from .36 to 0.333. The second codfiicient determines the
x value at which the isochoric temperature derivative
changes sign, Thus the caleulated Lennard-Jones and the
cxpcrim(;mq] argon excess thermal conductivity both have
a positive isochoric temperature derivative for densitics
less than twice eritical {(for kT ~ Ze¢).

Therelore, this new way of scaling excess coethicients
yields relatively simple functions for describing transport
behavior throughout the fluid phase and should also be
Ssefu] for empirical correlations of experimental transport

ata.

ACKNOWLEDGMENTS

Work was performed under the auspices of the U.S. Atomic
Lnergy Commission. Thanks are due to Tom Jefferson as pro-
crcator of the nonlinear fitting routine TJMARIL and to Custis
Specht and Don Osbourn for doing the figures. Special thanks
are due to Francis Ree for useful criticism and suggestions.

N

NOTATION

= Boltzmann constant

mass of atom

= power of repulsive potential (n = 12 for this
work)

number of atoms

temperature

volume

reduced number density/({reduced temperature)*/*
[= (No®/V) (e/kT)1/4 for this work]

Greek Letters

A = excess coeflicient, that part above temperature-
dependent dilute gas limit

== energy parameter of pair potential

= shear viscosity

= thermal conductivity

= length parameter of pair potential
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