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\Ve have developed a nonequilibrium molecular dynamic 
method to directl), simulate dense fluid transport (Ashurst 
and Hoover, 1975). The trajectories of N interacting atoms 
in a £i.,ed volume V are numerically computed. External 
forces, which are restricted to special boundary regions, 
do work and extract heat in order to maintain the hydro­
dynamic boundary conditions which produce a steady 
shear-momentum or heat flux. The transport coefficient is 
deternlined from the time average of the flux and corre­
sponding gradient in the volume V . 
. Experimental observation of dense fluid shear viscosity 

and thermal conductivity data reveals that the excess co­
efficient, that part above the temperature-dependent dilute 
gas value, is almost temperature independent (Diller et aI., 
1970; Hanley et al., 1972). In order to calculate repre­
sentative dense fluid transport coefficients, we have se­
lected the Lennard-Jones potential (twelfth-power repul­
sion with sixth-power attraction) as a simple, yet realistic, 
atomic potential. Mos.t atomic interactions occur with en­

.ergy of order kT; thus, for high temperatures, the Lennard- ' 
Jones potential is effectively a single inverse power poten­
tiaL The single inverse nth power potentials have special 
scaling features since the potential and its derivatives de­
pend only upon the combination of energy and particle 
size feTn. Thus, if the density and temperature are com­
bined into one variable x [== (density) (temperature) -Un], 
then all svstems with identical scaled initial conditions and 
the same' x value will have identical dynamic evolution 
(Hoover et aI., 1971). The reduced excess transport coeffi­
cients times (dkT) 1/2+2/11 are functions of x only, not 
density and temperature separately, throughout the £uid 
phase. 

Since, at high teD,lperature, the repulsive core potential 
dominates momentum transport, the high-temperature 
Lennard-Jones shear viscosity must approach the scaling 
behavior of the inverse-12th-power viscosity. I\'onequilib­
rium molecular dynamic calculations for the Lennard-Jones 
shear viscosity have shown this to be true and we have 
found that the scaling is sllccessful even at the triple point 
(Nc?/V :::: 0.8.5, kTh = 0,70). The LenHard-Jolles shear 
viscosity has been calculated (with 108 and 216 atoms) 
along two isotherms co~respondillg to room temperature 
forhvdrogen and helium (kT/ f :::: 3.5 and 28) for densi­
, " ~ [ , ( ,,' , /" 1 - \ I" 1 ThtieS up to reezmg \1, rr , = ,0 i, see ·lgllre. 8 

cnlcubted redl;cPci excess shear viscosity A'l) for x > ....0.5 
is well descrikJ by the simple expression 

~"iry-2(md -1!2(flk:r)~/3 :::: 7.0 x{ (1) 

which c1cnrh' n:veals tW0 fentHL's: (l) weak tcmpemtme 
dependence' :J;,d (2) a lWI!atke kroper:tture dC'ri\'ative at 
constant densely, (dln.'::'7j} / (diIlT j - I/J. l\otiec that 
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the temperature derivative is negative if the power of x is 
greater than 8/3. 'Vhile both of these features have been 

. experimentally observed in simple-fluid-shear-viscosity data 
(for example, argon, helium, hydrogen, m:ygen and carbon 
dioxide; see Diller el aI., 1970 and Hanley et aL, 1972) 
their cause has not been previously traced to the domi­
nance of the repulsive core potentiaL For all x, a slightly 
better fit is given by the empirical relation 

lJ.'l)cr2(me)-1/2(dkT)2/3:::: 0.024 [e:>.:p (6x) - 1J (2) 

(dashed line in Figure 1). Notice that the temperature de­
rivative is positive for low density-high temperature com­
binations and only becomes negative for x greater than 
0.11, 

The single-inverse-12th-power (soft sphere) shear vis­
cosity has also been calculated and a fit similar to Equation 
(2) produces coefficients of 0.0152 and 7.02, where the 
product of the coefficients was required to equal the soft­
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Fig. 1. Calculated Lennard-Jones excess shear viscosity olong the 
'iSIJ!i.crm, kTie 8.5 nnd 28; expressed in terms of the sin'.1I,,­
rqwls;',c-12th-power ~calin9 variables, Also shown, but not used in 
cicrermir.in£l lhc curve fils. ore calculated Lennard-Jones shear vis· 
cosjt.·~, aiong the (L-)l frcc:z:ing line and the saturoted vapor pres­
sure lin~ (ul e'90n). The slandorO error is about 10% of the tctol 

clldficicnt, 
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5phcrc Emkog first density correction to the dilute-gas 
~llr:dr vi'>['f))ll)' IO,}(JG(i---,ce Equation (20) of ILudey 
et aL, 1972), For x lco' Illan O,.'J, the Emkog theory pro­
\'i<1" a good sof(-<,plwre ohcar vit>cosily c)timale; however, 
for higher demitie" th,; mok:cular dynamic results are 2 to 
3 lI11H:> the Ells}:og qhlC.s, There is a small disCf(;pancy in 
the sofl-sphlTe codficient values and the Lcnnard-Jones 
valUl's [Equation (2)} since at infinite temperature tbey 
mus~ be equivalent. Procrustean filting (guided ~y the 
invcrsc-square-root tempcrat ure expansion of the second 
and third Lennard-Jones virial cocflicients, which determine 
the Ellsko g first density correction) of all the lIoncquilib­
rium molecular dyna.mic results yields the empirical rela­
tion 

A'T)c?(mE) -1/2( dkT) 2/3 =0.0152 [1 - 0,5 (e/kT)1!2 

+ 2.0(e/kT)] X {exp [7.02x(1- 0.2 (dkT)l/2)] -I} 

(3) 

with a fit error of 5 to 10% of the excess or dilute shear 
viscosity (whichever is larger). The experimental hydrogen 
and deuterium shear viscosity data (pressure up to 2000 
atm,) of Michels et al. (1953) are reproduced within 2% 
by Equation (3) [classical Lennard-Jones parameters from 
Hirschfelder et al. (1964)], This equation also reproduces 
(within 5 %) the experimental argon shear viscosity data 
of ~1ichels et al. (1963). Thus soft-sphere scaling of the 
computer results yields a relatively simple function \'/hich 
should be useful for describing Simple-fluid shear viscosity 
throughout the fluid phase. 

Experimental excess thermal conductivity data resemble 
excess shear viscosity data (strong denSity with weak tem­
perature dependence) except the isochoric temperatme de­
rivative is positive, the opposite of shear viscosity [see 
Diller et a!., 1970; Hanley et aI., 1972J. The Lennard­
Jones thermal conductivity coefficient has been calculated 
by nonequilibrium molecular dynamic simulation of heat 
flow (Ashurst, 1974). For reduced temperatures greater 
than one the results can be represented by curve A in 
Figure 2. Similar fitting of e);perimental argon thermal 
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Fig. 2. Calculated lennard-Jones excess thermo I conductivity ex­
presscd in tcrms of the ~ingle-rcp!llsive-12th-pow"r scaling variables, 
Curve A is a nanlineor ht 01 011 Lennard cJones results for which 
kT > c, while curve B is for the condition k T < 3 T (corresponding 
argon fit yields 0.52 and 3.1). Also shown ore the calculc;t~d infinite­
temperature (thot is, soft-sphere) thermal conducti,ities. Th.~ vertical 

lines denote one standard error. 
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cOllductivity (\;Jta (~1jcilCh e( aI., HJG:3) yj(~ld~ the salllt' 
second ('()dfidt'll! and olllychallg('~ the first eocffid('l,l 
from (L3G to n..,)T'). The seconu codijeicllt dc!ermines thl' 
x value at wldeh thre isodwrie tt'lllpcrature Ul';'ivatlve 
chang('s sign. Thus the calculated Lellnard-Jones and the, 
expnilllcllt~d argon exccss thermal cOllductivity both han~ 
a positi\'c isodlUrie temperature derivative for ucnsili('s 
less than twice critical (for kl' - 2d. 

Therefore, this new way of scalillg exeess coefficients 
yields relatively simple functions for describing transporl 
behavior throughout the fluid phase and should also be 
useful for empirical correlations of e>"}Jerimental transport 
data. 
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NOTATION 

k == Boltzmann constant 
m == mass of atom 
n = power of repulSive potential (n = 12 for tllis 

work) 
N number of atoms 
T temperature 
V volume 
x reduced number density/(reduced temperaturc)3/fl 

(NC?/V) (e/kT) 1/4 for this work] 

Greek Letters 

D. excess coefficient, that part above temperature. 
dependent dilute gas limit 

E energy parameter of pair potential 
'1 shear viscosity 
A == thermal conductivity 
IT. = length parameter of pair potential 
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