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Nonequilibrium molecular dynamics is applied to the generation and steady propagation of edge dislocations. 
"Normal" propagation at about one-third the longiwdinal sound speed, transo!1ic propagation at nine-tenths that 
speed, climb, and multiplication are all observed. 

The old idea [1] that plastic flow occurs through elasticity calculations. Further, the frequency distribu­
dislocation motion became accepted when Gilman tion [9], free energy [10] and surface-mode distribu­
and Johnston observed this motion directly [2 J. tion [11] are all known analytically for this lattice. 
Static calculations, both in the triangular (two­ Our own calculations are usefully thought of in 
dimensional) and close-packed (three-dimensional) three distinct phases: generation, relaxation, and 
lattices have established the least-energy dislocation­ propagation. A dislocation core is generated by choos­
core structure [3,4]. More recently, "''ith the help of ing particle coordinates as predicted by macroscopic 
fast computers, efforts have been made to simulate elasticity theory [12]. This initial choice is then 
the motion of dislocations numerically. In an interest­ relaxed, by adding viscous dissipatioIl to the solution 
ing series of papers, Weiner [5] has studied the gener­ of the equations of motion. During the relaxation 
ation and propaga tion of dislocations in a square process extended Hooke's law forces are used, with an 
lattice of particles interacting with noncentral forces. attraction extending to 1 ADd, where d is the stress­
These noncentral forces are used primarily to lessen free interparticle spacing. The static core configura­
the computational work. Similar forces have also tions were examined to the well-known 
been used by Celli and his coworkers in analyzing, mic dependence of energy on nurnber of particles [41_ 
analytically, the propagation of a screw dislocation in Next, a crystal was generated which would make it 
a simple cubic lattice [6J. possible to observe steady motion of the dislocation. 

We have developed a method of following the This was done by adding many columns of fresh par­
steady progress of dislocations through crystals in ticles to the region adjacent to the dislocation core. 
which central forces are used. Such forces have been Finally the entire structure was relaxed. During the 
successful in describing the equilibrium and non­ relaxation a shear strain was Simultaneously induced. 
equilibrium properties of simple insulators, such as At each time step, and after solving the equations of 
argon, and are conceptually the simplest model for motion for the particles, an algorithm of the form: 

the equilibrium and nonequilibrium proper­
rn = [n rfla t + (1M n) rn J1M ,

ties of real materials [7]. 
The central forces and the close-packed structure was applied to the upper and lower boundary rows of 

insure mechanical stability and have recently been particles. The strained coordinates desired for these 
used to study fracture [8]. The close-packed triangular after AI time steps, rnat, were chosen to cor" 
lattice structure is, for long waves, elastically isotropic. respond to a uniform shear. Thus the top of the crys­
This feature of the lattice makes it particularly ap­ tal was shifted to the right, relative to the bottom. 
propriate for comparisons with (isotropic) continuum During the relaxation process the energy of 

the system reaches its minimum value subject to the 
fixed-boundary constraint. * This work was supported by the U.S. Energy Research and 

Development Administration under contract W·7405-Eng-48. The edge dislocation is then propagated by chang· 
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Fig. 1. A 2580-particle crystal cont:lining an edge dislocation moving at velocity the longitudinal sound speed. The forces 
rise to a maximum at 1.15d and then vanish at 1.30d. The initial strain is 23. The final strain is 21..fi X 23. 

ing the extended Hookc8.n forces to piecewise linear 
forces which rise to an attr:J.ctiv~ maximum and then 
fall continuously to zero. The maximum-force dis· 
tance was varied from 1.1d to 1.2d. The attractive 
forces then f:lLl continuously to zero, vanishing at a 
distance ranging from] .ld to lAd. A typical 2580­
particle crystJ!line with a single edge dislocation is 
shown in fig. J. The disloc3tion propagates from right 
to left at approximately ooe·third the longitudinal 
sound speed. Fixc'd-stress, as opposed to UA"U.-U.l~ 
ment, boundary ,:onditions can also be used in such 
calculations, but boundary deformation by Rayleigh 
waves lends t<; llollsteady propagation, making the 
plastic flow l!HHe difficult to analyze. 

Several kinds of results hove been obtained. At low 
levels of shear stress, and with a range of forces which 
is not too siwrt, ")wrma]" propagation of the disloca­
tion occurs. The dislocation moves across the crystal­
lite steJdily with a l1uctuation in speed between lattice 
sites of order 1or,~(,. The average velocity can typically 
be determined within about 1~-;. in tbis case. These 
low-velocity "norma]" results can be roughly de­
scribed by the relation 

vic = 0.47 exp [-0.028G/ aI 
where c is the transverse sound velocity and G is the 
shear modulus. The average ~tress the disloca­
tion motion, a, is computed by the shear 
stress ahead of the dislocation with that behind it. 
The stresses differ due to tbe stress relaxation induced 
by the dislocation motion. This relaxation amounts to 
a reuuctiOll in shear strain of \vhere is the 
Burger's vector of the disloc:ltion and lz is tbe 
of the crystallite. 

At higher stresses, or \vith 
interesting nonlinear effects are seen. Dislocation 
climb, in which the "extra of grows 

Fig. 2. Motion in the region of the dislocation core. The par­
ticles' displacements are plotted according to (1) molecular 
dynamics, (2) elasticity theory for the infinite plane, (3) elas­
ticity theory for a t1niteMiidth strip [dislocation velocity = 
0.345d (KIm) 112]. Trajectories for 21 successive particles lying 
just above the dislocation slip plane are shown. The motion 
proceeds along these trajectories from right to left. 

by abstracting particles from the lattice results in a set 
of nearly-evenly-spaced vacancies appearing in the 
crystallite. Typically the dislocation "climbs" at 
about one-tenth the propagation velocity. New pairs 
of dislocations are sometimes generated at high stress, 
and occasionally dislocations deform to form penta­
gonal or hexagonal voids in the crystal, bringing the 
motion to a halt. Under certain circumstances un­
usually high veloci ties have been observed. For 
example, with a shear stress of 0.0682 (in units of the 
nearest-neighbor Hookean force cons~ant K) and a 
maximum force at 1.14d, transonic propagation at 
89% of the longitudinal sound speed was observed. 
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This tlatly contradicts the predictions of linear elastic 
continuum theory that dislocations cannot be accele­
rated beyond the transverse sound speed. Both Weiner's 
model calculations and Mitchell's experiments [13] 
have yidded propaga tion velocities in or near the 
transonic regime. 

In order to compare these results with the predic­
tions of elastic theory we show the displacement of 
typical particles in the core according to the predic­
tions of molecular dynamics and elasticity theory. It 
should be noted that the elastic-theory pre dictions are 
qualitatively correct. In detail the figure shows that 
the actual dynamical trajectories have a considerably 
greater amplitude than the theoretical prediction. 
Also the front to back symmetry of the elastic pre­
dictions is absent in the dynamical trajectories. Two 
different elasticity-theory solutions are shown. One 
is the c1asskal solution, as given in Hirth and Lothe's 
text [121, giving the displacements in a static disloca­
tion embedded in an infinitely extended continuum. 
The other ciashc solution gives the fully-dynamic 
motion of an edge dislocation in a finite-width strip. 
This solution was arrived at simultaneously and inde­
pendently two groups of workers [14] and makes 
it possible, for the first time, to compare elastic 
theory and molecular dynamics for the same material 
and boundary conditions. The new solution, coupled 
\\1th the steady-state propagation technique described 
here, opens the way to the formulation and solution 

of dynamical now problems wblch can be compared 
directly with atomistic calculations. 
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