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Edge-dislocation displacements in an elastic strip 
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A Fourier-transform method is used to obtain the displacement field for an edge dislocation. The met~~ 
reproduces known results and produces new solutions that can be compared with those from atomistic 
models of edge dislocations. 
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I. INTRODUCTION 

Because plastic flow occurs through the motion of dis­
locations, a detailed knowledge of dislocation structure and 
propagation is desirable.! Recent work in molecular 
dynamics, i.e., solving the equations ofmotion for crystals 
containing a few thousand particles, makes it possible to ob­
serve dislocations in motion.2 In comparing these numerical 
calculations with the predictions of macroscopic elasticity 
theory, it is necessary to use identical boundary conditions. 
Thus, both the molecular dynamics and the elasticity theory 
may be considered in the finite-width strip geometry shown 
in Fig. 1. Boundary conditions are significant in the disloca­
tion problems, because the displacment field diverges at 
large R in the absence of boundary constraints. I 

In this paper, we outline a method for solving the equi­
librium-elasticity equations that can be applied to edge dislo­
cations located in a strip having parallel boundaries_ The 

~oundaries can be either fixed or stress-free. To illustrate the 
:lethod, we consider an edge dislocation with Burgers vector 
parallel to the strip edge and centered in the strip, but these 
restrictions are not essential. A detailed comparison of 
dynamical solutions with the results ofmolecular dynamics 
is in progress. J 

II. METHOD 

We make use of two fundamental equations from iso­
tropic elasticity theory, 

1JVZU +()c+1J)V(V,U)=O, (1) 

(2) 

.~IG. I. Geometry for studying the structure of edge dislocations using 
.i1olecular dynamics and elasticity theory. The particles along the up~er and 
lower edges of the strip are clamped so that the stress well ahead (nght) of 
the dislocation is pure shear and that far behind (left) the dislocation is zero. 
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where 

u= Uf+ 11+ Wk, 
and U, V, and Ware the x, y, and z displacement-vector 
components, respectively, and.lt and 1J are the Lame con­
stants. Equation (1) says that the net force on a volume ele­
ment of material is zero and Eq. (2) is a direct mathematical 
consequence ofEq. (1). A separable solution ofEq. (2) that 
satisfies Eq. (1) is 

U=(b/21f') fO (A +By) exp( -ky) sinkx dk, 

00 

V=(b!21f') 1 [A sgn(y)+rB/k+By sgn(y)] 

X exp( -klYl) coskx dk. 

W=O, 

(v is Poisson's ratio), and b is Burgers vec­
tor. The Fourier coefficients A and B appear in both equa­
tions, so if U[V] is known, then V[U) is completely deter­
mined. Consider an edge dislocation in the infinite xy plane 
(see Fig. 2) with the pictured boundar)' conditions, 

U~<~+~=±~,U~>~~=Q 

The solution to this problem can be obtained by using the 
Airy-function method, I 

U= b ~ sgn(y) ),
21f' 

The Fourier transform of this solution is 

U= :1T [100 

( - ~ sgn(y)+ 2(1~V) ) 

X exp(-kiYl) sinkxdk+ sgn(y) ~], 


FIG. 2. Displacement boundary conditions for U. The edge dislocation is 
located at the origin ofour coordinate axes. 
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FIG. 3. Boundary conditions for an edge dislocation located in the centerof 
a clamped strip. The stress is pure shear to the far right of the dislocation 
and is zero to the far left of it. 

v-~ r'" (_~+ r + y sgn(y) ) 
21T Jo k 2(I-v)k 2(1-v) 

X exp( - klv~ coskx dk. 

We may now obtain the solution to the problem shown 
in Fig. 3. The boundary conditions are U (x < 0, +0) = +4b, 
U(x 0,0) (x,+A )=+4b, and V (x,+A )=0, where 
+A is the strip half-width. Figure 3 shows the interaction of 
an imposed shear displacement b with an edge dislocation 
that has moved through the strip along the x axis and 
stopped at (x,y)=(O,O); the arrows display the boundary 
conditions for U. We construct the displacement field 
throughout the strip by using an "image" method. The im­
ages lie at (0,±2nA), where n is an integer. They are not 
dislocations, but are instead functional forms that satisfy 
Eqs. (1) and (2). 

b 
sinkx dk 

X [(_.l sgn(y) + y ) exp( ;-k[y~
k 2(1-v) 

+ f (a n +1' nY) exp[k (y-2nA)] 
1 

+n= (a"+b,,y)exP[-k(Y+2nA)]] 

b sgn(y)+i?L,
4 4A 

b '-00 

v=-J coskxdk 
21T 0 

X [(2/l-=-~k + 2(1~V) sgn(y) ) exp( -kJy~ 

+ n~! (-a" r~ n ny)eXp[k (y-2nA)] 

+ nt! (a n + r~ n + b nY ) exp [ - k (y + 2nA)] l 
The coefficients are most conveniently represented as power 
series in "Ak", 

,,+2 
an = I a(m,n)A (Ak 

m=l 

5450 J. Appl. Phys., Vol. 49, No. 11, November 1978 

n+2 

b n = I b (m,n)(Ak 
m=! 

For this centered configuration with either fixed or stress­
free boundaries, a,,= -an andf311 Only four integrals 
are required to evaluate the Fourier integrals: 

100 (11k )exp( -ky) sinkx dk= tan-1 (x/y), 

f" (11k) exp( -ky) coskx dk= -4 In(x2+y2), 

since 

The problem is solved by considering the boundary condi­
tions and solving the resulting recursion formulas: 

a(1,l)= -1, 

a(2, 1)=2(3 _4vtl, 

a(3, 1)= - [(3 -4v)(1-V)J-l, 

b (1,n)=O, 

b (2,1)=[2(3-4v)(1-v)J-I, 

b (3,1)= -[(3-4v)(1-V)]-1, 

b (m,n+ 1)= -2(3-4v)-1[a(m-l,n) 

+b (m 1,n)]-b (m,n) (m>2), 

a(m,n+ l)=a(m,n)+b (m,n)+b (m,n+ 1). 

---<----­
------<­

----~---

FIG. 4. The convergence ofthe top-boundary displacements, as 38 addi­
tional "images" (19 pairs), are added to the infinite-plane solution, which is 
shown at the top oBhe figure. 
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FIG. 5. Displacements obtained in a fixed-boundary strip after summing 38 
images. The displacements are shown at the sites of a triangular lattice in 
order to visualize the effect of a finite lattice on the field. The tails of the 
arrows represent the atoms in an unstrained lattice; the heads represent 
present atomic sites. 

To solve the stress-free strip (T yy(x+A) 
(T (x,+A )=Q one obtains the stresses from the generalxy _ 

displacements given above. The constant shear bl4A in U is 
set equal to zero. These stresses along with the boundary 
conditions yield the following recursion formulas: 

a(l,I)= 1, 

a(2, -2, 

a(3,1)=(i-vt" 

b(l,n)=O, 

b (2,1)= -1[2(1-1')]-\ 

b(3, (l-vtl, 

b(m,n+1)=2[a(m l,n)+b(m-l,n)] 

+b(m,n)(3-4v) (m:>2), 

a(m,n+ l)=b (m,n+ l)+a(m,n)+b (m,n)+2(1 v) 

x[b (m+ l,n)-b (m + l,n +1)]. 

III. RESULTS 
Figure 4 shows the r!gid boundary displacement field at 

y=A as a function of the n.lmber of images n included in the 
solution. The error falls off as lin. In Figs. 4-6, Poisson's 
ratio is 0.25. This same value is appropriate to the molecular­
dynamics calculations.4 The Burgers vector equals unity. 
(For this centered configuration, it is possible to analytically 
sum all the arctans, In's, and kO terms. This decreases the 
error but does not change the lin dependence.) Figure 5 
shows the displacement field throughout the rigid boundary 
strip after taking 38 images. To sum V, because the logarith­
mic terms appear to cause V to diverge, we let V image(+2nA ) 
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FIG. 6. Displacements obtained in a stress-free boundary strip after sum­
ming 40 images. (Same comments apply as in Fig. 5.). 

represent the image contributions to the y displacement 
field: 

V= V core+~[ Vimage( 2A )+Vimage(-2A)] 

+~[ Vimage(2A )+Vimage( -2A) 

+ Vimage( 4A )+Vimage( -4A)] +''', 

where Vcore is the infinite-plane solution. This procedure 
demonstrates the convergence of V. The U terms add 
directly: 

U= U core + U image(2 A ) +U image( - 2A ) 

+ U image( 4A )+U image( -4A )+ .... 

Figure 6 shows the displacement field throughout the stress­
free strip after summing 40 images. Using Kroupa's calcula­
tionS ofthe bend angle ofthe strip, we find that the errorin the 
displacement field falls off less rapidly than in the fixed­
boundary case. Nabarro and Kostlan6 have used an Airy­
function approach to solve this same stress-free problem. 
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