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CORRESPONDENCE
A uniformly moving edge dislocation in an elastic strip
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ABSTRACT

A TPourier-transiorm technigque is presenied for obtaining the displacement field
of an edge dislocation that is moving in a finite-width strip having clamped
boundaries. Enown results are reproduced by this technique, and new soluiions
are obtained, which can be compared with those from atomistic models.

§ 1. IrtrODTCTION

Because plastic flow occurs through the motion of dislocations, a detailed
knowledge of dislocation structure and propagation is desirable (Nabarro
1867). Recent work in molecular dynamics, solving equations of motion for
crystals containing a few thousand particles, makes it possible to treat individual
atomic displacements for dislocations in motion {Moss, Hoover, Hoover and
Ashurst 1977). In comparing these numerical calculations with the present
predictions of continuum elasticity theory, it is necessary to use identical
boundary conditions. Boundary conditions are significant in disloeation
problems, because the displacement field diverges at large £ in the absence of
boundary constraints {Nabarro 1967, p. 57).

In this paper, we use a Fourier-transform technigune to obtain the displace-
ment field of an edge dislocation that is moving uniformly in a finite-width
strip. The dislocation is centred between the strip boundaries, which are
clamped. This technique ean also be used to treat dislocations positioned
asymmetrically between the strip boundaries and/or with other boundary
conditions, e.g., traction-free. '

¢ 2. MsTHOD

In the absence of body forces, the fundamental equation of motion in linear
elasticity theory is :

AVIR+ (A7) V(Y <Ry = pR =0,
where )
R=Ui+Fj+WE (1)

and U, ¥V and W are the z, y, z displacement-vector components, respectively,
and A and » are the Lamé constantz. Equation (1) says that the net force on a
volume element of material iz zero. Love (1920) showed that a superposition
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002 Correspondence

of waves moviag with a common velocity ¢ would satisfy eqn. {(1). We write

U= | [d{k)exp (—vyk|yl) sin ka’ + B(k)d exp (— $kly|) sin k2’1 dk,  (2)
i ,

V= ] [sgn (s) AE)y exp (~ vE|y]) cos ks’ +sgn () BGk)
’ x exp (—ok|y|) cos k'] dk, (3)
W0,
where d=(1-¢¥e V2 v=(1~c¥e V2, o' =n—ch, and |cl<cqp; e n/p)i"‘“‘

and cp, = (A+ 2n/p)*2 are the velocities of {:mnsverse and loagitudinal Wave% ina
medinm of density p. If b=DBurgers vector and

+be? «? sgn (2
. BR)= Tf:rr;?ﬁ?; J)’

—bey® sgn (y)

Ak =
(%) ke

o= 1—c2/2¢.2 and one adds to U the function b/4 sgn (y), the exact solubion
(Eshelby 1949) for a moving edge dislocation in the infinite z—y plane is obtained.
In the limit of zerc velocity, the solution reduces to the well-known static
result,

beg? 4
U= CI; [-tan“li—-z-az - ——‘I-;- sgn {y)
e vy
b xy
| —tan—t 4
-—»QW{ tan™t — 4 - 5= v)x~+y3):]+ sgn (), (4)
begt )
Vg yIn(" +'f‘y)—«gln 4 )
b 2y —1 y? ’ _
2402 S a—— S .
[4(1_“1/) (x®+y )+2{1—”)(x2+?"2)] (5)
W=0,
where U{x <0, =0)= +b/2, U{a> 0, 0)=0, and »=Poisson’s ratio.

The unporf:ant pbyﬁlca,l feature of eqns. (2) and (3) is that an edge dislocation
is compozed of a unigue admixture of wave-equation solutions. Furthermore,
any convergent admixture of these solutions will satisfy eqn. (1). This
property of the Fourler-transform solution allows one to consider various
boundary value problems in a finite or semi-finite region of space. Consider
the relaxation of an imposed shear displacement b by the passing of an edge
dislocation centred in a finite-width strip. The boundary conditions are
U’ <0, +0)= +5b/2, Uz’ >0,0)=0, U(x’, + 4)= +5/2, V(x/, £+ 4)=0, where
A =the strip hali-width. We counstruct the displacement field by using an
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L Correspondence 003
“image * method (Moss and Hoover 1978) and write

wUc?  ® sin kx'
= § dk
bey b

(Y

[ —sgn (y') exp (—yk|y'|) +sgn (y ) exp (— dkjy’ ]f
[+ ] fv ol

+ 2, A, exp [yk(y' —2n)1+ Y B, exp [$kly —2n))
me=] n=1

+ 3 Coosploybly'+201+ 3 Doxp 1= bhty'+ 201 |

) by et
; [z sgn (y )+‘Z"'} hog? (6)
a Ve % cos kx' o
T [k |~y exp (~ykly )+ exp (= gkly])
bCT B qs

+ N Ay exp by ~2m)+ X~ B, exp [$k(y ~ 2n)]

+ 2—:1 On’y eXp [—M/k(y,"_ 2n)] + »gl Dn €xp [—-cf)k(y’—l—?n)]}, (7)

where "= (x—~ct)j4 and y" =yj 4.
The coefficients are most easily represented as power series in exp [&{y — ¢)]

and (1 —yd)t:
2 alm, n)
A, = PR 8
" mgl (1—V¢)“§ : ( )
= b(m,n)
B, = e SR ]
"= R T ¢ @

where &£=exp [k{y— ¢}
The problem is solved by considering the boundary conditions and solving
the resulting recursion formulae :

2

a(l, =1+y$, a(2,1)=—-24% b(1,1)=~2y, b2, 1)% (L+$). (10)
b{m, n+1)= —2ya(m, n)—b(m -2, n)(1 +y9). (11)

a(m, n+1)=[a(m, n) +b(m—2, n)][1 —~ yp]—b(m, n+1). (12)
bim—2,n)=0, for m<2. : {13)

For this centred configuration with rigid boundaries ¢, = — 4, and D, = — B,
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Substituting eqns. (8) and (9) into (6) and (7), respectively, and integrating

T2 ’ ’ = 2n
=Uc* a e @ 2n

= —tanl-—4oltant—+ V¥ W_la(m’ )

ber® vy by =1 me1] (A —y@)"
« tan-1 ’ 2z'y"y ; N B(m, n)d
[(Zrn—y )y +{d~¥m~-1)] (I—pdy»

L Xyl (- PN m—1)] £t
R
% tan™! - ; ]
[(Zn =3 )b+ (b —3)(m—2n)]

+ E}; sgn (3,*’)—1-@:? i

7 Vet v ', 9 ra o 1o a2
—g;-c‘“znz'éhl (x .—«,@;~)-5gh1(x-+gé~y 9
T = -
+

et A
n=1 m=1

YRS [ﬂ% @2+ [(2n =~y )y +($~y)(m— 1)}

ya(m, n) 279, Mop 2y — 33 e 1) 12
ST g 2y (=)= 1))

}}('m, n) ) ', Ty ' ’ . 7 9. Z
+Wm(x FEr =1+ (d—y)(m—2n)]%)

_?i%?é)‘f n f@’“+*J’>¢~*’v-(‘sﬁ——y)cm-2n>32)].

T e e S,

Displacements in a rigid-boundary strip after summing 40 images. The velocity is
0-56 cx. The displacements are shown at the sites of a triangular lattice in
order to visualize the effect of a finite lattice on the field. The tails of the

arrows represent the atoms in an unstrained lattice; the heads represent
present atomie sites.
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, § 3. Resvrrs -

All the caleulations have been made with Poisson’s ration =023, cp=
(3/8)¥%, b=1, and Cp=(9/8)V2. These same values are appropriate to the
molecular-dynamics calculations (Hoover, Ashurst and Olness 1974) and do
not affect the generality of the solution. Pigure 1 shows the displacement
field throughout the strip after taking 40 images. The solution has been

Atomic view of continuum displacements in a rigid-boundary strip. Circles have
been drawn around the heads of the arrows in fig. 1.
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K-DASPTLAMCEMENT

i
Motion of the point {z, #)==(0, —1/11} as the dislocation passes above it. The
motion of the point is from right to left, and the y-displacement is plotted
against the x-displacement. The motion increases with velocity, c=0, 0-35,

and 0-82 ¢r. The plot in the upper right is an expanded view of the top of
the c=0-82 ¢p curve.
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006 Corresvondence

checked on the boundaries and is accurate to within 1%, for |¢'| <2. The
velocity 1s 058 op and {=0 (the dislocation is located at (z, ¥)=(0, 0)). An
atomic representation of the disloeation is shown in fiz. 2, where circles have
been arawn around the heads of the arrows in fig. 1. Figure 8 shows the
motion of the point (x/d, y/4)=(0, —1/11) as the dislocation passes above it.
The motion of the point is from right to left. Alternatively and equivalently,
one could plot the displacements of the points (2, —1/11) at a fixed time.
Veloeities of 0, 0056, and 0-82 e¢p are shown. The motion increases with
velocity.  An expanded view of the top of the ¢ =082 ¢ curve is shown in the
upper right of fig. 3. This same behaviour appears in Eshelby’s infinite plane
solution. A detailed comparison of this solution with the results of the
molecular dynamics cajculations is in progress (W. C. Moss 1978, unpublished).
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