
PHYSICAL REVIEW A VOLUME 21, NU,\1BER 5 MAY 1980 

Bulk viscosity via non equilibrium and equilibrium molecular dynamics 

-
 William G. Hoover, Anthony J. C. Ladd, and Richard B. Hickman 
Department of Applied Science, University of California at Davis-Livermore. Livermore. California 94550 

and Lawrence Livermore Laboratory, Livermore. California 94550 

Brad Lee Holian 
Los Alamos Scientific Laboratory, Los Alamos. New Mexico 87545 

(Received 27 September 1979) 

Two new nonequilibrium methods for determining the bulk viscosity via molecular dynamics are 
described. These methods are applied to a soft-sphere dense fluid. Viscosities obtained from the equilibrium 
Green-Kubo-correlation-function method agree with the nonequilibrium results. The viscosities found are 
considerably smaller than those predicted by the Enskog theory of dense fluids. 

L INTRODUCTION 
the effects of heat conduction and shear viscosity 

Two distinct coefficients of viscosity are needed have been taken into account, 
to describe the flow of simple isotropic fluids. From the microscopic viewpoint the structure 
Of these coefficients, the shear viscosity 17 is the of a fluid can be described by the pair-distribution 
more familiar. It describes the resistance of the function. This function changes during isentropic 
fluid to changes of shape. The bulk viscosity 17v compression and that change reqUires a charac­
describes the irreversible resistance, over and teristic relaxation time. During nonequilibrium 
above the reversible resistance given by the isen­ compressions which are rapid on the scale of 
tropic bulk modulus, to changes of volume. The that relaxation time the effective modulus of the 
effects of bulk viscosity can be ignored for dilute fluid is increased. The first structural theories 
monatomic gases and for incompressible fluids. of bulk viscosity were based on this idea.3 The 
Accordingly, 17 is often omitted in hydrodynamic more fundamental work of M. S. Green and Kubo v 
problems. In dense fluids undergoing strong com­ led to an exact connection between the bulk vis­
pression, the bulk viscosity plays an important cosity and the averaged decay of pressure fluctua­
role in determining shOCk-wave structure,' tions: 

The phenomenological stress tensor (minus the 
Tlv = (VIkT)Ia~ (OP(D) OP(t»dt , (2)

pressure tensor) for a "Newtonian" flUid is 
where V is the volume, k is Boltzmann's con­

(1) 
stant, T is the temperature, and t is time. This 

The equilibrium stress, as well as the viscosities expression for the bulk viscosity has been applied 
T/ and Tiv = A+ !Ti, is calculated as a function of the both to the Lennard-Jones fluid at its triple point 
local density and energy in a frame moving with and to the hard-sphere fluid.4.5 These results 
the fluid. T is the unit tensor and ii is the local are mixed. The triple-point viscosity lies well 
stream velocity. On phYSical grounds, the stress below the Enskog prediction while the hard-sphere 
tensor rJ is known to be symmetric-divergent results agree well with the theory over a wide 
angular accelerations would result otherwise-so range of density. 
that the symmetric combination of vii with its The capacity and speed of modern computers 
transpose viit is required. make it quite feasible to Simulate nonequilibrium 

Experimentally, the bulk viscosity is more problems involving a few thousand particles. 
difficult to measure than the shear viscosity. So These simulations often reveal details inacces­
far a laboratory technique providing homogeneous sible to ordinary laboratory experiments. Re­
isotropic compreSSion has not been developed. cently, strong shockwaves in dense fluids have 
Even with such a hypothetical experiment, a been successfully simulated in computer experi­
steady-state measurement, possible in the case ments.6 In order to understand the microscopic 
of shear, is impOSSible. At best the bulk viscosity structure found in these simulations l both the 
can be measured by a cyclic compreSSion and equilibrium equation of state and the transport 
expansion. Bulk viscosity is usually inferred coefficients must be known for all the thermo­
from sound-attenuation experiments.2 It is as­ dynamic states found within the shockwave. 
sumed to provide the residual attenuation once Of the transport coefficients, the bulk vis­
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cosity is the least understood. To reduce this 
uncertainty we have developed two computer 
methods for measuring that coefficient. These 
methods simulate a cyclic process in which a 
small periodic system is periodically compressed 
and expanded. In Sec. II we describe both non­
equilibrium methods for simulating this flow. We 
then apply both methods to the inverse 12th power 
soft-sphere potential, for which the equation of 
state and other transport coefficients are well 
known}·7 In the final section, we compare the 
calculated viscosities with the predictions of the 
Enskog theory.s We also include a comparison 
with the Green-Kubo fluctuation calculation in 
order to show that the substantial disagreement 
between our results and the Enskog theory, and 
its elaborations9 is not an artifact of our compu­
tational model. 

II. CYCLIC-COMPRESSION METHODS 

The homogeneous periodic compression and 
expansion of an infinite system can be imitated 
in a small periodic system by changing the size 
of the small system as time passes: 

L/Lo =1 + ~ sinwt • (3) 

The strain is homogeneous throughout the system, 
corresponding to the long-wavelength limit. As 
the strain amplitude ~ and frequency w describing 
the linearized strain rate (we use ( and a in this 
paper to indicate the strength and range of the in­
teraction potential and we also use these same 
symbols, sometimes with dots to indicate time 
derivatives, to represent strain and stress) 

i= ~wcoswt (4) 

approach zero, we expect that the average pres­
sure within the system will deviate from the 
equilibrium pressure by -3~ wT/v coswt. The factor 
3 arises from the additive contributions of the x, 
y, and z strain rates to ~. ii. 

If the deformation (3) takes place through the 
mechanism of external work, then hydrodynamics 
implies that the "lost" work, or irreversible 
heating, will be equal to the integrated irrever­
sible part of E=-3PVE, corresponding to an en­
ergy increase per cycle (the cycle time is 21T/w) 
of (21T/(Ll)gew2T/vV/2. Thus the bulk viscosity 
could be obtained either by analyzing the pressure 
tensor components proportional to coswt or al­
ternatively by measuring the system's energy 
gain due to irreversible heating in the cyclic 
process (3). 

To simulate the cyclic process we modify Ham­
ilton's equations of motion. First we add an extra 
term to q to describe the homogeneous straining 
of the coordinates: 

(5) 

Here, and in the following equations, we use the 
roman q, p, and F to indicate sets of coordinates 
q, momenta p, and forces F. 
- Hamilton'sequations for pmust also be modified. 
In quasistatic compression;- the added term in (5) 
does external work against the potential energy <P. 
In addition to this potential-energy work, quasi­
static compreSSion must also do work against the 
kinetic pressure, E' E/3 mY. If this kinetic-en­
ergy work is expended in rescaling the momentum 
distribution, the result is an effective force vary­
ing with the strain rate: 

(6) 

If the time derivative of the internal energy E (p, q) 
= <P +P • p/ (2 m), where <P is the potential energy, ­
is then calculated from (5) and (6) the result, 

E=-~·!+.E·E/m -3Pvi, (7) 

obtained by using the instantaneous microscopic 
representation of the mean pressure, 

(8) 

agrees with macroscopic hydrodynamics. An 
alternative derivation of (5) and (6) can be based 
on the application of Hamilton's equations of mo­
tion, 

i,=sH/aE; E=-8H/S!L (9) 

to the Hamiltonian <P+(p.p/2m)+qp:Vu. This 
same Hamiltonian can be used to derive (2) from 
perturbation theory or linear-response theorY. 

A particular method for solving Eqs. (5) and (6) 
is given in the next section. An alternative method 
can be derived by combining these equations to 
eliminate p and p. The coupled set of Newtonian 
second-order equations 

~= (!:/m) +(!l, (10) 
results when a term of order (2 is dropped. We 
have used the first-order equations (5) and (6) 
in most of our calculations but have also used 
(10) to verify that the results of the two methods 
agree within the statistical uncertainties of the 
calculated viSCOSities. Note that if the particle 
kinetic energies are defined relative to the local 
velocity E~, then once again the linearized change 
of the thermodynamic internal energy E with time 
is given by (7). 

III. RESULTS 

Because we use periodic boundaries, we hope 
that the number dependence of our results is 
small. In addition to this number dependence, 
our results must also depend on the strain ampli­
tude ~ and frequency w. Exploratory calculations 
indicated that strains of order a few percent, and 
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frequencies of order the Einstein frequency, are 
necessary in order to obtain statistically useful 
results. The first-order equations were solved 
in two steps: 

(1) Solve.9 (E/m) and E==! between t awi t 
+dt. 

(2) Change q, p, and L at time t+dt, doing 
external work. ­

The first step was carried out by finding approxi­
mate coordinates and forces at time t + (dt/2) , 
using these to obtain q and p at time t +dt, and 
finally rescaling the momenta at time t +dt in 
such a way as to conserve exactly the energy in 
that time interval. We took this precaution in 
order to ensure that external work caused all en­
ergy change in the cyclic compression process. 
At the end of a cycle of time length 21T/ w we 
accumulated the energy change for the cycle and 
rescaled the momenta so that the next cycle would 
begin with the proper energy for the desired 
thermodynamic state. 

The second-order differential equations pro­
vide an alternative method for Simulating the 
cyclic compression. If these differential equa­
tions are replaced by equivalent centered differ­
ence equations, we have 

t..9,(t+ (dt/2)== t..9,(t- (dt/2) 

+ (dt)2(!/m + ~.9,). (11) 

In solving this set of equations it is necessary to 
recompute the old displacement, t.q(t - (dt/2), 
for any particle traversing a periodic boundary, 
in order to account for the velOCity component 
difference,E:L across the periodic box. With 
either scheme, a time step of order 0.001a(m/E)1/2 
(E/kT)7/12 was sufficiently small so that the vis­
cosity obtained by accumulating -3PVE: dt was 
statistically indistinguishable from that obtained 
directly from the energy change per cycle. 

Either scheme appears to be capable of deter­
mining bulk viscosities with an uncertainty of a 
few percent. The efficiency of the calculations is 
not great. About 100 000 time steps were re­
quired for each of our 32-particle calculations. 
The results are illustrated in Fig. 1. The para­
meters used are listed in Table I along with the 
predictions of the Enskog theory. That theory 
gives for the bulk viscosity 

77" (Enskog) = 1.002bpy77o· (12) 

For soft spheres interacting with the potential 
¢(r) = E{a/r)12 we have 

and 

77o=0.171(mE)1/2(kT/E)2/3/a 2. 

(We have used here the soft-sphere equation of 
state suggested by Cape and Woodcock. lO

) ''Im_ 
provements" of the Enskog theory predict much the 
same result as Eq. (12). 

IV. DISCUSSION 

The failure of the Enskog theory to predict cor­
rectly the soft- sphere bulk viscosities was un­
expected. This failure led us first to solve both 
the first- and second-order differential equations 
as a check of our calculation. When these methods 
agreed, we decided to work out some Green-Kubo 
viscosities as a further check. These calculations, 
carried out for 32 and 108 particles at (1l[a3/,l2V) 
(E/kT)1/4 == 0 .5, produced results not very different 
from the nonequilibrium calculations. The Green­
Kubo correlation function is subject to an ad­
ditional check in that the pressure fluctuation is 
simply related to the temperature fluctuation: 

ts(V/N)2({jp2) =k 2 ({jT2). (14) 

A further relation between the temperature fluc­
tuation and the specific heat has been derived by 
Lebowitz et al.ll The version of this last relation 
quoted in a recent book is in error by a factor 
of ~p The Green-Kubo bulk viscosity is relatively 
sensitive to the sample trajectories used to de­
termine the correlation function (see Fig. 2). 
We base our Green-Kubo estimate on a section 
selected to reproduce properly the zero-time 
value of the correlation function. 

The Green-Kubo calculation is also consistent 
with the frequency dependence of our calculated 
viSCOSities. If the correlation function were an 
exponential -exp(-t/T) then the frequency-depen­
dent bulk viscosity, calculated from (2) but with 
coswt included in the integrand, would have the 
form 

(15) 

This same frequency dependence (15) follows also 
from the generalized linear constitutive relation 

(16) 

which implies a frequency-dependent bulk mod­
ulus: 

(17) 

Both the nonequilibrium data in Table I and the 
Green- Kubo- eq uilibrium- correlation function 
shown in Fig. 2 suggest a stress-relaxation time- bp 2.7222x, x=(Ncf3/-/2V)(E/kT)1/4, 

(13) T of about 0.04a(m/E:)1/2(E/kT)7/12. This time is 
y =2.722x+3.791x2+2.495x3 -1.13lx5

, very short compared to the Einstein period at 

http:Woodcock.lO


21 BULK VISCOSITY VIA NONEQUILIBRIUM AND EQUILIBRIUM ... 1759 

TABLE I. Bulk viscosities for the soft-sphere potential from nonequilibrium molecular 
dynamics. The reduced viscosity is tabulated in units of (mtl 1/ 2(kT/E)2/3/u 2. The unit of time 
in terms of which the reduced frequency and time step are expressed is (€/kT)1/t2u (m/E)t/2. 

N (Nu 3/.f2V)(E/kT)t/4 W ~ 2rr/tit cycles 7}v 7)" (Enskog) 

32 0.30 2 0.03 4000 400 0.04±0.01 0.17 
5 0.02 4000 200 0.07±0.01 

10 0.02 4000 400 0.06±0.01 
32 0.40 5 0.02 4000 400 0.10±0.01 0.34 

10 0.02 4000 400 0.10±0.01 
32 0.50 5 0.02 4000 400 0.17 ± 0.01 0.60 

10 0.02 4000 400 {l.15 ± 0.01 
10 0.02 4000 480 0.15±0.01 a 

32 0.60 5 0.03 1000 200 0.18 ±0.03 b 0.97 
10 0.01 1000 400 0.21 ±0.01 b 

10 0.03 3000 500 0.18±0.01 
10 0.03 6000 400 0.17±0.01 

32 0.70 5 0.02 4000 400 0.24±0.03 1.45 
10 0.02 4000 800 0.22 ±0.02 

108 0.60 5 0.02 2000 200 0.20±0.Ol 0.97 
108 0.70 10 0.02 5000 500 0.22±0.01 1.45 

a Calculated USing the Newtonian second-order equations of motion. The other calculations 
use the first-order Hamilton equations. 

b The time step used in these calculations is probably large enough to cause systematic er­
rors in the results. 
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FIG. 1. Soft-sphere bulk viscosities. 32-particle re­
sults are indicated by filled circles (the arrows show the 
increase in viscosity as the reduced frequency decreases 
from 10 to 5). 108-particle results are indicated by open 
symbols. The square is the result of a Green-Kubo auto­
correlation function calculation. The horizontal arrow 
indicates the low-density shear-viscosity coefficient for 
soft spheres. 
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FIG. 2. Pressure correlation function for 108 soft 
spheres at a reduced densityof (NuS / v'2V) (€/kT)1/4 =0.50. 
The two curves shown correspond to different sections, 
each 5000 time steps long from a solution of Newton's 
equilibrium equations of motion. If the correlation func­
tion is chosen to coincide with the known intercept (indi­
cated by an arrow) then the bulk viscosity integral is 
0.15 in reduced units, agreeing with our nonequilibrium 
calculations. If the integrand is multiplied by cos(wt) 
the frequency shift observed between reduced frequencies 
of 5 and 10 is reproduced. 
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the same density, 1/v =1.37a(rn/E)1!2(E/kT)7!12,
E 

This consistency of the nonequilibrium and equi­
librium calculations of the bulk viscosity is grati­
fying in view of the considerable discrepancy with 
the Enskog-theory predictions. 

Why does the Enskog theory overestimate the 
soft- sphere dense-fluid bulk viscosity? A semi­
quantitative explanation can be based on thermo­
dynamic estimates of pressure-tensor fluctua­
tionS,13 In the dense hard-sphere fluid, upon 
which the Enskog theory is based, the variances 
of and (Pxx+P~y+P••)/3 are approximately 
equal, leading, through the Green-Kubo relations," 
to nearly equal values ofry and I)V" A correspond­
ing near equality does not hold for soft-sphere 
systems. In these systems the shear fluctuations 
not only exceed the bulk fluctuations but also de­
cay more slowly, Both effects increase ry relative 
to I)v' The trend ofry/I). with denSity predicted 
from fluctuation theory is consistent with our 
results from molecular dynamics, and also pre­
dicts much larger values of the viscosity ratio 
for the softer inverse-power potentials. 

In view of the demonstrated shortcomings of 
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the Enskog theory for the bulk viscosity, direct 
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interpretation of results from computer experi­
ments involving rapid compression. We are in 
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have simulated the shock compression of liquid 
argon from the triple point to a temperature of 
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provides valuable data for the testing of nonequi­
librium theories of dense fluids. 
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