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A strong steady dense-fluid shock wave is simulated with 4800-atom nonequilibrium molecular dynamics. The
resulting density, stress, energy, and temperature profiles are compared with corresponding macroscopic profiles we
derive from Navier-Stokes continuum mechanics. The differences found are relatively small.

I. INTRODUCTION

Microscopic fluid transport theory seeks to
describe the flows of mass, momentum, and
energy due to gradients in chemical potential,
stress, and temperature. For small gradients,
the flows arg "linear", proportional to the
gradients. The task of the theory is to identify
the coefficients (diffusion coefficient, shear and
bulk viscosity, and thermal conductivity) and to
describe the limits of the simple linear theory.
Macroscopic fluid transport theory begins by as-
suming, rather than deriving, a "constitutive
model" relating flows to gradients. The macro-
scopic theory is devoted to solving the differential
conservation equations for specific boundary con-
ditions. The macroscopic theory should apply best
where gradients are small, as in geophysical
problems, and should be applied more cautiously
when gradients are appreciable on the scale of
atoms or microscopic grains.

In this work we consider the large-gradient
microscale extreme, a very strong shock wave in
a dense atomic fluid. Is it reasonable, or even
possible, to treat a strong shock wave, with large
gradients, using the small-gradient "Navier-
Stokes" theory of macroscopic continuum mechan-
ics? This question has been discussed at length
in the literature. Qur own view —supported by the
results reported here —is that the comparison of
fundamental results, from experiments or simula-
tions, with the predictions of well-defined theories
has intrinsic interest.

Shock waves are inherently irreversible, and
are usually generated by explosions, or collisions
of macroscopic bodies, and, with clever diagnos-
tics, can yield equation-of-state information in
regimes of pressure and temperature which are
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FIG. 1. Comparison of atomistic and Navier-Stokes
shock-wave density, pressure, and temperature profiles
taken from Ref. 6. The full curves were obtained using
nonequilibrium molecular dynamics. The circles are
taken from the corresponding continuum calculation.

normally inaccessible. ' The range of pressures
obtained in shock-wave compressions is gradually
increasing toward the many thousand megabars
required for laser-fusion power plants. Liquid
argon has been compressed to nearly one megabar, '
water to more than two megabars, ' and heavy
metals to about 100 megabars.
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At pressures and temperatures sufficiently great
to ionize the shocked sample, long-range Coulomb
interactions dominate the microscopic dynamics.
Here we focus on the compression of a classical
fluid to avoid the complication of ionization. Be-
cause previous work (see Fig. I) indicated that
compressions corresponding to shock-wave pres-
sures of 30 kilobars in argon' could be success-
fully described by the continuum Navier-Stokes
equations, ' we chose to study the strongest pos-
sible shock wave for which argon is still not ion-
ized, corresponding to a final temperature of
12000 K and pressure of nearly 400 kilobars.

The work reported on here is described as
follows: Sec. II—Description of shock-wave geo-
metry from the continuum viewpoint; Sec. III—
Constitutive characterization of the Lennard-Jones
fluid; Sec. IV—Solution of the macroscopic con-
tinuum equations within the shock wave; Sec. V—
Solution of the microscopic equations of motion
within the shock wave; Sec. VI—Comparison of
the profiles and nonequilibrium fluxes from IV
and V.

II. SHOCK WAVE GEOMETRY

The existence of shock waves and some details
of their structure have been established experi-
mentally. It is possible to understand the exis-
tence' of a steady shock-wave profile in a fluid
in terms of two competing processes: The wave
tends to steepen due to the higher sound velocity
in the shocked material, and the wave tends to
spread out due to the extra viscous stress caused
by a velocity gradient. Detailed structure calcula-
tions indicate that in fluids the shock width result-
ing from these opposing effects is of order the
atomic mean free path. ' Numerical calculations,
using constitutive relations established empirical-
ly, corroborate the experimental evidence for
shock waves. In the underlying constitutive models,
it is necessary that the material have a character-
istic microscopic length or frequency (such as the
interatomic spacing or the collision rate); a con-
stitutive relation expressing stress solely as a
function of strain, without rate dependence, cannot
produce a steady shock wave. In the event that a
steady profile does exist —or even if the profile is
nonsteady but grows less rapidly than linearly in
the time —then conservation of mass, momentum,
and energy can be used to correlate the thermo-
dynamic states on either side of the shock wave.

The shock-wave geometry is shown from three
different points of view in Fig. 2. At the top of the
figure a piston with velocity -u~ generates a shock
wave running at velocity -u, into stationary Quid.
In the process of accelerating the fluid from rest
to the piston velocity, the pressure rises from
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FIG. 2. Steady fluid shock waves viewed in three dif-
ferent coordinate frames. In the topmost frame the
piston at the right moves to the left, compressing and
heating the cold fluid. In the middle frame the piston is
fixed and cold fluid moves to the right. The frame at
the bottom of the figure fixed on the shock wave leads to
the simple conservation equations solved in the text.

P, to P„ the temperature from To to Ty and the
internal energy per unit mass from Eo to py If
we choose instead the coordinate system at the
center of Fig. 2, fixed in the shocked material,
then the piston is also motionless and the cold un-
shocked fluid moves to the right at velocity N~,
then stagnates to velocity zero, creating a
shock wave running to the left at velocity u~ -u, .
A third coordinate system, more useful than the
first two, is shown at the bottom of Fig. 2. The
fluid streams toward the piston, at velocity u„
and the piston moves to the right at just the velocity
zc, -u~, required to maintain the shock-wave center
at the origin. If the shock wave has a steady pro-
file, then, in this last coordinate frame only, the
flows of mass, momentum, and energy must have
constant values throughout the steady profile:

pu, P„+pu', [P. + (P„/p) + ~u ]pu+ q,
are all constant for u, -u~ ~u ~ u, . P„„and q
=-vdT/dx are the fluxes, in the shock (x) direc-
tion, of x momentum and energy in a comoving
frame of velocity u fixed in the fluid. p is the mass
density and E is the internal energy (excluding the
kinetic energy of mass motion associated with the
stream velocity u) per unit mass. If the con-
served momentum and energy fluxes are evaluated
far from the shock wave, where P„„is equal to the
equilibrium (inviscid and isotropic), pressure P
and the heat flux q vanishes, then the conserva-
tion relations provide three relations among the
material properties of the unshocked and shocked
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material:

PPu0 =P~Q~,

2= 2
0 P0 0 1 Pl 1 9

1 2 / & 2Eo +Po/po + ~zo = Ey +Py/p y + ~2

When the two velocities, u0-=u„and uy =u up,
are eliminated from (1) the resulting "Hugoniot"
relation between the internal energy change and
the driving pressures results:

El Eo = ~o(PO +Pl}(10
—11} (2)

where V, and V, are the volumes per unit mass.
The Hugoniot relation (2) can be solved (for the
final pressure and energy, P, and E,) when pres-
sure and energy are known functions of density
and temperature, by varying the temperature at
the final volume V, and comparing the two sides
of the equation. See Appendix A.

In fluids, shock-wave calculations are relatively
straightforward because the initial and final pres-
sures are both isotropic and both internal energies
are given by the equilibrium thermodynamic equa-
tion of state. In solids' one expects to find a resi-
dual shear stress in the shocked material. This
shear stress, together with its effect on the in-
ternal energy, must be included in solving the
solid-phase analog of (2).

HI. LENNARD-JONES CONSTITUTIVE RELATION

In any comparison of an approximate theory
(such as the Navier-Stokes equations} with funda-
mental results (solutions of Newton's equations of
motion) it is essential that the underlying material
be well characterized. Computer experiments, ' "
as opposed to laboratory experiments, can avoid
material uncertainties by specifying interatomic
forces which are used in both the approximate
and the fundamental calculations. A useful rep-
resentation of fluid properties can be based on the
Lennard- Jones potential

thermodynamic pressure and energy are deter-
mined by evaluating phase-space averages of the
virial and Hamiltonian. In fixed-energy equilibrium
molecular dynamics simulations, the time aver-
ages of the virial and the temperature (from kine-
tic energy} provide equivalent thermodynamic in-
formation. Transport coefficients can be deter-
mined by applying the results of Green-Kubo fluc-
tuation theory to equilibrium molecular dynamics
simulations. Alternative methods, using non-
equilibrium molecular dynamics, have been de-
veloped in order to measure transport coefficients
more directly. Heat reservoirs maintained at two
different temperatures produce a dynamical heat
current, from which the thermal conductivity can
be inferred. Momentum reservoirs maintained
at two different velocities generate a shear
stress, from which the shear viscosity follows.
Both viscosities, bulk and shear, can be deter-
mined by a recent modification of nonequilibrium
molecular dynamics. " In these calculations a
Hamiltonian coupling the strain rate tensor Vu
with Doll's tensor ZqP provides dissipative equa-
tions of motion. Numerical solutions incorporat-
ing the dissipation give estimates for both viscos-
ity coefficients.

Figure 3 illustrates the similarity between the
numerically generated phase diagram for the
Lennard- Jones potential and the actual one for
argon. We have also indicated in that figure the
density-temperature states traversed by the two
Klimenko-Dremin' shock waves and the stronger
one described in the next three sections. Better
agreement with argon data can be obtained by
using a more complicated pair potential, "but for
simplicity we use the potential (3). An even sim-
pler form of interaction, the inverse-12th-power
"soft-sphere'* repulsive potential has been studied

I

—1.0

P =4e[(o/r}" —(o/r)'], 5.0— Lennard-Jon
—0.8

where e is the depth of the potential and o is the
("collision" ) separation at which the potential
vanishes. Choosing e/k=119. 8 K and o =3.405 A
brings the potential (3) into rough correspondence
with argon in its normal liquid r'ange.

A host of equilibrium" and nonequilibrium"
simulations (both Monte Carlo and molecular dy-
namics) have been carried out for the Lennard-
Jones potential so that the pressure, energy, vis-
cosity, bulk viscosity, "and thermal conductivity
can be regarded as relatively well-known func-
tions of the density and temperature; I.e. , P(p, T),
E(p, T), rl(p, T), rl„(p, T), and z(p, T) are known.

In fixed-temperature Monte Carlo simulations,

2.5—

1.5—
I-

1.0—

—0.6

04 I

0.5—

0—
Gas and solid

I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.8
No3/V

—0.2

—0

FIG. 3. Phase diagrams for the Lennard-Jones poten-
tial and for argon. The density-temperature trajectories
for the two shock waves treated in Ref. 6 and the strong-
er shock treated here are shown as arrows. The initial
states are the open circles and the final states the arrow
heads.
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from Appendix A. To calculate the shock-wave
profile the conservation equations within the shock
must be solved:

pQ =40.9,
P (q—„+v4q) —+pu' =1980 =P„+pu', (4)

pul E~+ *' +——x—=47900.
p 2) dx

The calculation proceeds in two steps. " See Ap-
pendix C. The first of these equations is used to
express u and du/dx in terms of p and dp/dx,
giving two coupled equations for dp/dx and dT/dx.
These are combined, giving a single differential
equation for dp!dT, which can be solved num-

erically, "beginning at the hot (shocked) thermo-
dynamic state. The result of this integration is
the density-temperature relation shown in Fig. 3,
and in more detail in Fig. 5. Once density and
temperature are related, then the momentum and
the energy equations in (4) can be used tofind these
variables as functions of coordinate through the
shock wave. To solve the equations it is essential,
of course, that the equilibrium pressure, energy,
and transport coefficients be known functions of
density and temperature.

The continuum profiles found are sketched in
Fig. 6. The relative change in each of the thermo-
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dynamic quantities can be represented fairly well
as —,' tanh(2x/X), where X characterizes the shock
width for the variable in question. The widths
obtained, from density, pressure, and tempera-
ture, respectively, are 1.0, 1.1, and 0.83, where
in each case the change in the variable is divided
by the maximum x derivative to find the corres-
ponding "width. " Just as in the zero-density solu-
tions of the Boltzmann equation, our high-density
results show that the temperature rises ahead of
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FIG. 5. Density-temperature states traversed in the
shock wave according to continuum mechanics are shown
as a full curve. The ~ indicates the state at the shock-
wave center according to 4800-particle nonequilibrium
molecular dynamics.

FIG. 6. Density, stress, energy, and temperature
profiles from continuum mechanics, using the constitu-
tive model described in the appendices. The circles
indicate values from the molecular dynamics simulation.
The agreexnent for density and P is assured by mass
and momentum conservation.



22 SHOCK-WAVE STRUCTURE VIA NONEQUILIBRIUM MOLECULAR. . . 2803

the density while the equilibrium pressure rises
behind. Profiles of the gradients of the thermody-
namic variables show that the temperature gradient
is relatively asymmetric, rising more steeply
than it falls. . In Table I we list the Navier-Stokes
properties at the shock "center" arbitrarily chos-
en as the point where the laboratory frame speed
is -m~ (so that u is u, —m~ in the comoving
frame). In Sec. V we obtain corresponding pro-
files from solutions of the atomic equations of
motion.

V. MICROSCOPIC SOLUTION

Hot Cold Hot

f (x) = —,'tanh(2x/x), f '(0) =x-'.
The apparent width is then given by

1 4 1
A '(d, &) = — fdx- — f dxl d

d

FIG. 7. Boundary conditions used to generate a shock
wave with nonequilibrium molecular dynamics.

The simplest way to simulate a shock wave with
molecular dynamics is to shrink the periodic
system size unaxially, as indicated in Fig. 7. The
left and right boundaries of the system move with
x velocities of m so that the right boundary plays
the role of the piston in the topmost part of Fig.
2. The result is a pair of shock waves moving
symmetrically toward the central plane away from
the two boundaries. The velocities of the shock
waves agree with the estimate from Bee's equa-
tion of state, 48.5.

Dependence of the shock structure on system
size was checked by considering systems with
equivalent cross sections of 25.4 e' and 45. 1 a'.
Profiles of velocity, density, stress, energy,
and temperature were accumulated by summing the
corresponding particle properties for all particles
into bins moving at velocity u, (laboratory frame).
These profiles are shown in Fig. 8. Both the longi-
tudinal and transverse temperatures, as well as
the corresponding kurtoses ((5V') —3(5Q)2), are
included in Fig. 9 to characterize. the nonequilib-
rium velocity distribution. A more careful divi-
sion of pair-force contributions to stress and
energy might lead to smoother profiles. A com-
parison of profiles for different time intervals
established that the statistical uncertainties are
of the same order as the post-shock ripples seen
in Fig. 8.

The effect of the bin size d on the apparent
width A of the profilep can be estimated by a sim-
ple hyperbolic-tangent approximation" with a true
width of X estimated for the function
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, ln cosh(2d/X) .

(P) P q Peq E ' T T~ Tyy K

MD 303 225 138 67 100 50 7.3 1.9 46
NS 297 216 267 727 64 5.3 1.3 28

TABLE I. Comparison of fluid properties at the shock
center from molecular dynamics (MD) and from Navier-
Stokes (NS) continuum mechanics. All the data corres-
pond to a density of 1.098 with P = 459. The mass,
momentum, and energy fluxes are given in Eq. (4) of
the text.
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FIG. 8. Density, stress, energy, and temperature
profiles from nonequilibrium molecular dynamics.
Corresponding Navier-Stokes results from Fig. 6 are
shown as dashed lines. The molecular dynamics data
were generated using a bin width of 0.65 cr.
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FIG. 9. Velocity kurtoses (6V )-3(BV ), longitudinal, and transverse temperature profiles from 4800-particle non-
equilibrium molecular dynamics.

For bin sizes smaller than the apparent width A
the true shock width is, to second order, A. =A
—(2d'/3A)+ ~ ~ . From the measured velocity pro-
file, A, d, and X are, respectively, 1.58, 0.65,
and 1.40.

The computed profiles are in good agreement
with the conservation relations for mass and mo-
mentum,

pu = 40.9, P„,+pu' = 1980.

The energy flux, 47900, was not measured direct-
ly but is required in order to estimate the heat
flux from energy conservation.

The shapes of the profiles are described well by
the Mott-Smith form (5). The flow properties at
the shock center appear in Table I. A comparison

of the continuum and atomistic profiles is given in
Sec. VI.

VI. COMPARISON OF MACROSCOPIC
AND MICROSCOPIC SHOCK WAVES

We limit our comparison to the plane described
in Table I, at which the particle velocity has
reached half the final value u~: u =u, —(u~/2) =37.3.
The conservation relations show that p is 1.098
and P„„is 459 at this plane. The atomistic profile
of P„„—P„ is difficult to interpolate for a maxi-
mum. We use instead as primary data the values
of the mean pressure 303 and internal energy 138.
These establish that Pyy ls 225 and that the heat
flux is -3200. The shock width, estimated in Sec.
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V from the measured velocity profiles, (though
the temperature width is probably slightly smaller,
we cannot estimate a significant difference) is
1.40, giving velocity and temperature gradients
of 16 and 71, respectively.

From these data the atomistic Newtonian viscos-
ity coefficients and heat conductivity are estimated,
using a temperature of 67 corresponding to an
equilibrium pressure of 273,

g =7.3, q„=1.9, v=46.

The transport coefficients estimated from Appen-
dix B are all somewhat smaller (5.3, 1.3, and 28)
and the discrepancies lie outside the uncertainty
in the shock width. A slightly smaller width,
given larger gradients would lead to good agree-
ment for all three coefficients. See. Fig. 8.

The Navier-Stokes equations omit two kinds of
information available from the atomistic simula-
tions: The difference between the longitudinal
and transverse temperatures and the non-Maxwel-
lian character of the velocity distribution. Both

of these features appear in the molecular dynamics
simulations, as illustrated in Fig. 9, and neither

.is yet understood from a theoretical standpoint.
There is no reason why a linear theory describ-
ing the decay of differences between longitudinal
and transverse temperatures could not be develop-
ed. Qn the other hand, the kurtoses functions
shown in Fig. 9 which describe the non-Maxwellian
shape of the longitudinal and transverse velocity
distribution certainly lie outside the usual realm
of continuum mechanics, where local therrnody-
namic equilibrium is assumed. The Mott-Smith
bimodal velocity distribution" provides a simple
recipe for the kurtosis of a shock wave, but that
recipe does not agree with the results shown in
Fig. 9. Moreover, the mean temperature T
= —,'(T„,+ T»+T„) as a function of position in the
molecular dynamics shock wave does not have
a peak through the profile, as is predicted by the
Mott-Smith model. Therefore, even though the
Navier-Stokes assumption of an isotropic Max-
wellian (equilibrium) velocity distribution is in-
complete for a shock wave in a fluid, we conclude
that this picture is more satisfactory than the
Mott-Smith recipe (the bimodal velocity distribu-
tion).

The main conclusion that can be drawn from
this work, taking into account the relatively good
agreement already found for lower compressions,
is that nonequilibrium molecular dynamics shock-
wave experiments can be described reasonably
well by Navier-Stokes hydrodynamics. The
Navier-Stokes shock waves are evidently a little
too narrow. Moreover, in the continuum descrip-
tion of the heat flux, no account is taken of the

kinetic energy analog of the shear stress, namely,
the "shear temperature, " or anisotropy of the
velocity distribution through the shock front.

Another interpretation of these results is the
supposition that the fluctuations about equilibrium
in an atomistic fluid generate, on the local level,
gradients and strain rates almost as large as
those seen in shock waves. Fluctuations about
local thermodynamic equilibrium decay on short
time scales by collisions and on longer time scales
by hydrodynamic Navier-Stokes modes, where
the transport coefficients are obtained from ap-
propriate Green-Kubo autocorrelation functions.
The Navier-Stokes transport coefficients have
also been obtained from nonequilibrium steady-
state experiments, and because these coefficients
describe shock waves quite well, further weight
is lent to the supposition that the states achieved
by a fluid element in a nonequilibrium shock-
wave experiment are not very far from equilib-
rium. This means that shock-wave simulations
in the fluid phase can be used to obtain reasonable
estimates for the transport coefficients, without
the need for special reservoirs and requiring only
relatively simple nonequilibrium boundary condi-
tions.

In closing, we note that earlier investigators
have studied strong shock waves in the ideal-gas
low-density high-temperature limit by solving an
approximate Boltzmann equation. " Just as in the
case of dense-Quid shock waves, they find that
the position x=u, t in the steady profile, where the
particle velocity reaches half of its final value,
is very close to the point of maximum particle-
velocity gradient. Also, just as in the dense-
fluid case, they find that the Navier-Stokes ap-
proximation is quite good for ideal-gas shock
waves, with more noticeable discrepancies at
higher shock-wave strengths. Unlike the dense-
fluid case however, the ideal-gas shock wave
deviates significantly from the Navier-Stokes
solution only in the upstream (cold) part of the pro-
file, where x is less than u, t and the ratio of
shear stress to mean stress is not negligible.

Just why the agreement is as good as it is over
such a wide range of fluid conditions has not been
explained. ' Theoretical efforts to go beyond the
Navier-Stokes level have not been completed yet.
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APPENDIX A

The Helmholtz free energy, minus the ideal-gas
contribution, for a Lennard-Jones 6-12 fluid has
been fit to an analytical form by Hansen and Ree."

A'/NkT =+3.629x+3.632x +3.4975x +2.865x~+0.2176x'o

—( e/ kT)'~ (5.369x+6.580x +6.175x —4.269x +1.864x )

+(&/kT)(-3. 492x+9.349x' —11.835x +7.954x —2.239x'),

where x = (No'/V)(e/kT) "'= ( po'/m)(e/kT)"'. The
equation of state is obtained by differentiation;
the pressure P is given by

8 A' NkTPV/NkT =Pm/pkT =1+p
Bp

and the internal energy per unit mass E by

8(A'/NkT)
8(1/NkT)

When a shock wave passes through the fluid, the
initial and final states are related by Eqs. (1) and
(2) of the text, the Hugoniot relations. Suppose,
for example, that we wish to compute the final
density p, and the velocities of the piston u~ and the
shock wave u„given the initial and final tempera-
tures, Tp and T„and the initial density p, . The
above equation of state yields the initial pressure,
P, =P(p„T,), and internal energy, E, =E(p„T,}.
By searching for the zero of the function

&(p) =E(p T }-Eo —'[P( p T-}+P.](1/p. —1/p},
the final density p = py + pp can be found, for which
P, = P(p„T,) aud E, =E(p„T,). The momentum
conservation equation then yields

u), =[(P —P )(1/p, —1/p, )]'"
and the mass conservation equation gives

u, =u, /(1 —p, /p, ) .

APPENDIX B

The transport coefficients for the Lennard-Jones
potential have been discussed by Ashurst, "who
gives an analytic representation of the collision
integral necessary for the low-density thermal
conductivity and shear viscosity. This same inte-
gral is tabulated in Hirschfelder, Curtiss, and
Bird. ' The excess shear viscosity has the form

aq(me) '"(e/kT)'"(x'

= 0.0152[1—0 5(e/kT)'" +2(el. kT)](e " —1),
where b =7.02 [1 —0.2(e/kT)'"].

The form for the thermal conductivity given in
Ashurst's report cannot be used at low tempera-
tures, near. the triple point, so we have used the
simpler representation"

ax(m/e)"'(e/kT}"'o'/k =0.36[exp(3.76x) —1].
This relatively crude approximation is justified
by (1}the relatively greater uncertainty in the
Leonard-Jones thermal conductivity and (2} the
relative insensitivity of shock-wave structure to
the conductivity.

The bulk viscosity for the Lennard-Jones poten-
tial is known less well. Data for the high-tempera-
ture limit and triple point show that the bulk
viscosity, unlike the shear viscosity, varies by
an order of magnitude even when expressed in
terms of soft-sphere scaling variables. Because
our interest here has primarily been high tem-
peratures (the reduced temperature at the shock
center is 67) we have used an empirical form
chosen to fit the soft-sphere data and the results
given in Table II:
q„o'(e/kT}'"(me) '" =0.31x'"exp[0.13(e/kT)' ].

APPENDIX C

'gime t can be eliminated from the (X, t) depen-
dence of the hydrodynamic field variables ( p, u,
P„, E), if the shock wave is steady, by transform-
ing the laboratory coordinate X to a comoving
frame coordinate

x =X+u,t,
where u, is the shock-wave velocity. The fluxes
of mass, momentum, and energy are then [see
Eq. (1}of the text]

p(x}u(x}=p,u, ,

P„(x)+p(x}u'(x) =P, +p,u', ,

(&(*)~ " 'l *(*))P(*l ( )'q(*)
p(x)

Ep + + ~2@ ppup ~

P
pp
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TABLE II. Lennard-Jones bulk viscosities. These data were obtained as described inRef.
13, solving modified Newtonian (second-order) equations of motion and using a one-dimen-
sional strain amplitude of 0.02. The soft-sphere inverse-12th-power bulk viscosities from
Ref. 13 correspond to reduced gast column) viscosities of 0.08 at x =0.4 and 0.13 at x =0.6,
suggesting that attractive forces increase the bulk viscosity at high temperature. All of these
calculations were carried out with 54 particles. The density, temperature, reduced density
x, frequency of oscillation, number of cycles, and reduced bulk viscosity are all listed.

Na /V kT/E (d cr(m/e) ~ cycles q 02(m~) '~' [g ~2/(mg)1/2)(g+ T)2/3

0.8
1.2
1.2
1.6
2.0
2.0
1.2
1.8
1.8

16
81
81

256
625
625

16
81
81

0.4
0.4
0.4
0.4
0.4
0.4
0.6
0.6
0.6

50
25

100
250
200
400

50
100
100

200
100
200
200
400
200
200
200
600

0.69+ 0.05
1.9 +0.3
2.2 + 0.2
3.9 +0.3
7.6 +0.7
6.7 +0.6
1.24+ 0.1
3.4 +0.4
2.7 +0.2

0.11
0.10
0.12
0.10
0.10
0.09
0.20
0.18
0.14

These two calculations were carried out using two independent methods. The longer run,
from a cRA&, used an ordinary differential equation solver to solve Hamiltonian (first-
order) equations of motion. The shorter run, from a CDC 7600, and the other results given
here used the Newtonian equations of motion discussed in Ref. 13, and required a somewhat
smaller time step.

The Navier-Stokes constitutive relation is

P„„(x)=P(x) -r), (x) „du(x)

where P is the isotropic equilibrium pressure
and g&= g&+& g; Fourier's law for heat conduction
1s

q(x) =-«(x) d T(x)
dx

By the mass flux equation, velocity can be ex-
pressed in terms of the density

pouo du(x) pouo d p(x)
p(x)

' dx p'(x) dx

Velocity can then be eliminated from the momen-
tum and energy equations and the gradients of
density and temperature evaluated:

d p(x) pouo p'(x) [p p( )]
p'(x)

dx qz (x) p', uo po

dT(x) Pouo E() E p &2 P —P —1
dx x(x) ' ' p(x) p.

' ' p(x) p'(x)

Hence,

d p dp(x)/dx x(x) p'(x)/p, ',u' [P opo(x)] tp'(x)/p po(x)

dT dT(x)/dx q~(x) E(x) —Eo + Po[1/P(x) —1/Po] + m2o[2Po/P(x) —Po/P'(x) —1]

In order to integrate this equation, we must assume
that the temperature can be expressed as a unique
function of density,

T(x) =T[p(x)],
so that the functions f=P, E, q~, and x can be
written as

f(x) =f[p(x), T(x)]=f(P)
whereupon dp/dT can be integrated self-consistently.
The numerator and denominator of the right side
of the equation for dpldT both vanish at the initial
and final states of the shock wave by the Hugoniot
relations [Eqs. (1) and (2) of the text]. However,
by expanding in a Taylor series in density about
the initial (i =0) or final (i =1) state, we obtain

a finite result,

dp x'(P„T,) p, [c'r(P„T&)u; —1]
dT ( qq(pg, Tg) p(p(, T()cr(p(, T, )T( '

where P is the thermal expansion coefficient

c~ is the isothermal sound speed

and
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