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The high-frequency surf"ce waves discovered by Allen, Alldredge, and de Wette, in nume:-ical studies of 
thrce-dime:1sional fcc crystals, have two-dimensional analogs. Analytic solutions of the equations of motion 
for two-dimensional close-packed lattices reveal a high-frequency surface-mode branch linking together the 
high-frequency and low-frequency bulk-mode bands. The dispersion relation for this branch is used to 
estimate the surface entropy. The estimate agrees well with Carman and Huckaby's recent cell-cluster 
calculation. Both the dispersion-relation and cell-cluster surface entropy estimates lie slightly below an 
accu~ate value we obtain here by extrapolating small-crystal entropies to the thermodynamic limit. 

Surface, or "Rayleigh, " waves were first applied to 
understanding the seismic structure of the earth. To­
day, much smaller scale technological applications to 
microwave transmission on semiconductor surfaces are 
being actively pursued. The theory of surface waves, 
first developed for macroscopic continua and later ex­
tended to layered media and to microscopiC crystals in­
cluding the effects of stress and defects, has led to only 
a few numerical calculations. 1 The fi~st relatively com­
plete study, for a three-dimensional close-packed crys­
tal, was carried out by Allen, Alldredge, and de WeUe 

··'qn years ago. 2 This work revealed several high-fre­
lency branches of surface waves localized near crys­

tal faces. The complexity of the results precluded much 
theoretical analy sis. 

The frequency changes induced by surfaces have an 
impact on thermodynamic properties. The enhanced 
specific heat of powders is conventionally explained in 
this way. For recent calculations of ionic-crystal sur­
face modes and thin-film specific heats, see Ref. 3. 
In three dimensions, analytic work is complicated by 
the intricate structure of the surface modes. 

The high-frequency modes found in three dimensions 
suggested that similar excitations probably exist in two­
dimensional crystals, where analytic work is practical. 
We took up this question by studying the dynamics of 
finite periodic strips of close-packed triangular lattice, 
with and without two parallel free boundaries in the di­
rection of the close-packed rows. These strip calcula­
tions, detailed in Table I, could be analyzed for modes 
localIzed near the surfaces and could also be used to 
estimate the surface entropy contribution 55 to the ex­
cess entropy 

(1) 

where:\' is the number of particles in the crystal, Ns is 
the number of particles on the surface, and the charac­

/"'"J:eristic per particle entropies 5 b and s" are large-crys­

) limiting \'alues. Huckabl calculated the limiting 


>Julk entropy s/k 0.27326 analytically, from Dean's5 
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dispersion relation for the triangular nearest-neighbor 
lattice. The numerical data in Table I give the esti ­
mate for the surface entropy s./I<;:-c O. 6607. The surface 
entropy was already known approximately from three 
different kinds of calculations. 6-8 It was estimated 
from numerical studies of crystals with free boundaries 
by evaluating the determinants of the corresponding 
force-constant matrices. This approach gave 0.66 for 
two different crystal shapes, equilateral triangles, and 
regular parallelograms. This result was consistent 
with the entropy associated with the surfaces of brittle 
cracks. 7 Recently, Huckaby, Carman, and Kincaid8,s 
have applied the cell-cluster theory to the surface and 
crack problems. Their estimate is slightly lower, 0.62. 
Our present results are sufficiently accurate, even 
though limited to crystals of only a few hundred parti ­
cles, to confirm the accuracy of the free-boundary 
studies. 

The dynamical vibrations of the triangular lattice re­
vealed short wavelength surface modes independent of 
crystal size. These modes were (1) the well-known 
Rayleigh wave mode with a wavelength of two interpar­
ticle spacings It = 2d and (2) a second higher-frequency 
mode at the same wavelength. The displacements to 
'which these modes correspond a:re illustrated in Fig. 1. 
The numerical work showed that the ratio of the two fre­
quencies is exactly (3 +.J3)/.J6, even in narrow strips, 

Our previous analysis of Rayleigh waves in the tri ­
angular lattice1 had established that the dispersion re­
lation was a solution of the quadratic equation 

(rnw 2
/ K)2 - 6 sin2(lJd/2)(mw 2

/K) + 6 sin4(kd/2) "" 0 , (2) 

where the wave vector k is 2r./A.. The Rayleigh waves 
correspond to the low-frequency solution w R = [(3 -.J3) 
x (K/m)]112 sin(Jul/2). The other hig'her-frequency solu­
tion was ignored because it did not satisfy the stress­
free surface boundary condition at long wavelengths. 
When our present numerical work revealed a size-in­
dependent mode with wavelength 2d and frequency w' 

[(3 +.J3)(K/m)r12 we re-examined the solutions of Eq. 
(2). We found that the high-frequency wave was a part 
of a branch w' =[(3 + .J3)(K/m) J112 sin(l?d/2) which spanned 
a narrow range of wavelengths with 1(11/2) - (lid/A) , 
s cos-1(3/4)1/4 =O. 374 '73, This branch smoothly con­
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TABLE 1. Entropies for' L xL triangular-lattice crystals. 
The crystal shapes are all regular parallelograms, either 
periodic or with p~rallel free boundaries (making a periodic 
strip L atomic rows high). For both types of crystals the 
Slims, over all 2N-'2 vibrational frequencies, (l/N)i:ln(vElv) 

SOIN,~, are tabulated. The difference between the free and 
periodic sums multiplied by L/2 gives the reduced per particle 
surface entropy In the triangular lattlce, the Einstein 
fl'equel1cy r'E is n:lated to the atomic mass m alld interatomic 
force constant I< by the relation (21fVE )2 = 31<1m. 

SelNh for parallelograms 

Free Periodic 4 

2 0.238693 - 0.107 881 0.346574 
3 0.315236 0.005791 0.464169 
4 0.342672 0.083240 0.518864 
5 0.3:12284 0.132478 0.549515 
6 0.354543 0.164 864 0.569036 
7 0.353578 0.187120 0.582602 
8 0.351191 0.203038 0.5926ll 
9 0.348222 0.214817 0.600320 

10 0.34,,075 0.223786 0.606447 
11 0.341 B50 0.23077B 0.611438 
12 0.338942 0.236345 0.615584 
13 0.336095 0.240851 0.619084 
14 0.333423 0.244554 0.622079 
15 0.330926 0.247637 0.624670 
16 0.328600 0.250233 0.626936 
17 0.326433 0.252440 0.628933 
18 0.324413 0.254335 0.G30706 
19 0.322531 0.255974 0.632292 
20 0.320773 0.257401 0.633719 
21 0.319131 0.258654 0.63500B 
00 0.27326b 0.27326b 0.66072 0.00005c 

"Values for L = 3, 4, ••• ,15 conSistent with these are given in 
Table III of A. Beyerlein and Z. w. Salsburg, J. Chem. Phys. 
47. 3763 (1967). 

bSee Ref. 4. 
cThe is based on a fit of the form a + b eel L + (dIL) 
+ (fIL) where a, b, c, d, t, andg are constants. 

nects the longitudinal and transverse dispersion rela­
tions for waves parallel to the close-packed direction, 
as is shown in Fig, 2. 

Both the high-frequency and the low-frequency Ray­
leigh waves (R' and R in Fig. 2) correspond to similar 
vibrations. The atomic trajectories are ellipses. At 
the special value k =1[/d, these ellipses degenerate into 
straight-line trajectories parallel and perpendicular to 
the crystal surface. The high-frequency surface solu­
tions all resemble the maximum-frequency degenerate 
case shown in Fig. 1, but smoothly become linear com-

FIG. 1. Displacements of 
particles for high-frequency 
(top) and low-frequency 
(bottom) surface waves. Both 
waves correspond to the same 
wavelength A= 2d. In each 
case, the amplitudes decrease 
exponentially with penetration 
depth into the crystal. 

TRIANGULAR LATTICE 

kd 2r.d/'A 
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FIG. 2. Dispersion relations in the two-dimensional triangular 
close-packed crystal. The relative orientation of particles in 
the crystal (indicated as cir,cles in the center of the fig,11re) 
and the first Brillouin zone (the heavily outlined hexagon at the 
base of the figure) are shown. The symbols II and -L are used 
to indicate waves propagating parallel and perpendicular to the 
direction of the close-packed lines of atoms. The atomic 
mass is m. The interpa.rticle spacing is d. The Hooke's Law 
force constant of the springs linking neighboring pairs of par­
ticles is 1<. The heavy curves correspond to fue longitudinal 
and transverse waves parallel to the close-packed direction. 
The shaded regions include all high-h'equellcy and low-fre­
quency waves included in the first Brillouin zone for any prop­
agation direction (bulk waves). The Rayleigh wave solutions, 
both the low-frequency R and the high-frequency R' branches, 
are shown. The high-frequency branch links the high-frc­
quency L and low-frequency T bands together. 

binatiol1s of high-frequency bulk waves at the two inter­
sections with the bulk bands. It is interesting to note 
that for values of lTd/A greater than cos·1(3/4W\ the 
low-frequency Rayleigh wave solution becomes complex. 
Details of the calculation 9f both dispersion relations 
are similar and the analysis is described in Hef. 1. 

Both the high-frequency and the low-frequency surface 
waves affect the surface entropy. A quantitative esti­
mate can be based on the entropy change associated with 
the conversion of two waves, parallel to the close­
packed direction, into (i) an ordinary low-frequency 
Rayleigh wave, and (ii) either a high-frequency surface 
wave described by Eq. (2) or an ordinary bulk wave. 
The average entropy of the longitudinal and transverse 
bulk waves, 0.274 65x 2k per particle on the surface, is 
replaced by the sum of (i) and (ii) 

(1.123 75k) +(- 0.238 56 

xO;20407!? + o. 761 44XO.13663k) =1.179 11< , 

giving an increase of O. 630k for each surface particle, 
in good agreement with the cell-cluster work, B,g but 
definitely inconsistent with the accurate data shown in 
Table 1. The discrepancy of b. 03k betw.een the approxi­
mate surface-entropy estimate just described and the 
accurate value O. 6607k, is intriguing. 

We know of no rigorous proof that the surface entropy 
exists in two dimensions. Our attempts to bound this 
entropy, using the Gibbs-Bogolyubov free-energy in­
equality A ::'SAo + (E - Eo)o have been only partially suc­
cessful. By considering a periodic-boundary reference 
crystal with H!,!lmholtz free energy Ao, and treating the 
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effect of nmlOving the 2L nearest-neighbor bonds span-
a new surface as a perturbation, S8 can be bounded. 

The perturbed crystal has two surfaces of total length 
2Ld, and the perturbation energy (E - Ec>u is - 2Ll,T/3 
in this case, equipartition. This establishes that 
the surface entropy per particle ss exceeds 7?/3. An 
attempt to bound the entropy from above, by the 
free-boundary system as reference, establishes only 
that "cannot exceed a value of order hln1'1. The 10­
garitlllnically divergent bound results from the logarith­
mic divergence of the mean-squared displacement char­
acteristic of two-dimensional crystals. 

Because the Gibbs-BogoIyubov bounds, as well as ap­
proaches based on Kirkwood's coupling-parameter the­
ory, suggest the possibility of divergence, either as 
In 1'1 or as In In 1'1, we have attempted to fit the numerical 
data for the L -x L crystals with functional forms incor­
porating these divergences. We found that the coeffi­
cients vary widely with the range of the data included 
and conclude therefore that the two-dimensional surface 
entropy does indeed have a well-defined nondivergent 
shape-independent value. A simple explanation of that 
value expressed in terms of the dispersion relations for 
the bulk and surface modes is still lacking and remains 
a tantalizing 

In carrying out this work, we have profited from 
many stimulating conversations with John Wheeler [who 

pointed out that the Rosenstock--Newell model has a 
nondivergent surface entropy and pointed out the related 
work of M. E. Fisher and G. Caginalp, Commun. Math. 
Phys. 56, 11 (1977)J and Dale Huckaby (whose ce11­
cluster calculations accompany thIs work). Wheeler 
and Prals expect soon to publish mOdified-moment es­
timates of the triangular-lattice surface entropy. 
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