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Recent expeI'iments at strain rates reaching 0.1 GHz suggest a power-law dependence 
of solid-phase shear stress on 3train rate. Novel nonequilibrium molecular dynamics 
simulations of pla.stic flow have been carried out. These steady-state isothermal calcu­
lation.9 appear to be consistent with the present-day experimental data and suggest that 
the flows of metals can be described by a single physical mechanism over a range of 
strain rates from 10 kHz to 1 THz. 

PACS numbers: 46.30.Jv, 05.20.C',g, 05.70.Ln, 61.70.Ga. 

It is wdl known that plastic flow in crystals 
proceeds through dlilfect motion .. There: is an ex­

. tensive body of e:'l:perimental and theoretical work 
detailing evidence for this view,l At the same 
time there has been little success in correlating 
theoreti.cal models with experimental data in a 
quantitative way, There are two reasons for this. 
First, the theory is relatively simple, for math­
ematical reasons, and omits nonlinear effects 
which are known to be important but difficult to 
estimate. Second, experiments have, until re­
cently, been restricted to relatively slow defor~ 
mations, below 1 kHz, where grain structure, 

llpurities, and other material-dependent proper­
des obscure the universal flow behavior ilxpected 
at higher strain rates. 

The use of clever eJl.1leriments has extended the 
range of experimental data by another five orders 
of magnitude in strain rate. Asay etal. propa­
gate plane shock waves in metals, and follow the 
detailed progress of these waves using the laser 
interferometry method pioneered by Barker.2,3 

Several similar shock-wave experiments, with 
different sample thicknesses, establish that steady 
plastic waves are formed and that the rise time 
can be measured, optically, at pressures up to 
about 1 Nlliar. Analysis of the wave shapes sug­

that the shear stress increases roughly as 
the square root of the strain rate. 3 A theoretical 
model, based on the idea of shear bands, with 
heat flowing from the bands according to a diffu­
SIon equation, is consistent with such data. 3 

We have generalized earlier nonequilibrium 
molecular dynamics calculations to the systematic 

. study of solids under shear, Related calculations 
have been carried out, over the past ten years, 
by several groups.4 Our most successful work 
incorporates nonequilibrium shear deformation 
"recUy into the equations of motion, while simul­
xleously maintaining constant temperature. 

"Constant temperature" is not inconsistent with 
the existence- of shea,!' bands in the computer work. 
Only the average temperature? averaged over the 
entire system, is fixed. 

The shear deformation is conveniently treated 
with Doll's tensor5 equations of motion: 

x (p,,/m)+ €Y; Y"'(PlI/m);"z (PRim); . . (1)
P,,=F,.; Py 

v/here the forces, Po FlI , and F;;, are derived 
from the interparticle potentials. The strain. 
rate, E, is the derivative of the macroscopic x 
velocity with respect to y. The momenta are de­
fined relative to the local macroscopic velocity. 
Periodic boundaries are used to eliminate edge 
effects. Equations (1) satisfy the microscopic 
analog of the first law of thermodynamics, 

(2) 

so that a solid deforming in this way will grad­
ually heat up and melt. In order to avoid this 
complication we obtain steady-state isothermal 
deformation by·using a news velocity-dependent 
force chosen to satisfy the constraint equations 

d (P" 2)/dt =d (P:y 2)/dt=d (PI: 2) /dt= O. (3) 

These are implemented by modifying (1) as fo1­
luws: 

P;t''''F,,- tx·P:r;; 
(4)PIt Flf- t"P", 

The friction coefficients t", 1;:1" and til are ex­
pliCit functions of the coordinates and·momenta 
which can be identified from the constraints (3): 

F"P"l'i--"P'/; t:v=L; (F",- EP~)py/L;p/; 

(5) 

It is remarkable that these equations are stable 
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and well behaved even for very small systems. 
Numerical calculations demonstrating this 

stability were carried ollt for the smallest sys­
tem pOSSible, three one-dimensional mass points 
connected with Hookean springs using periodic 
boundary conditions. In this case, \\lith the kinet­
ic energy, total momentum, and center of mass 
all fixed, the phase space is three dimensional, 
suitable for analytic study.7 The ordinary New­
tonian constant-energy equations ofmotion gen­
erate an elliptical trajectory in this space be­
cause both nonzero normal modes have the same 
frequency. On the other hand, the solution of 
the isothermal equations of motion,4 projected 
onto a plane described by the displacement coor­
dillates of two of the masses, generates a pattern 
of precessing figure-eight loops. 

The isothermal equations of motion are rever­
sible in the time but do not obey Liouville's the­
orem. This is because the velocity-dependent 
forces cause the distribution function density to 
vary with time in the phase space. This variation 
can be analyzed analytically, with the result 

j =: - f ~ a?!aP;a ~fElkT. 
Thus the phase space density f varies as 
exp(- D.E!kT), where fill is the energy change 
induced by the velocity-dependent forces; and a 
canonical distribution in the phase space is exact­
ly maintained by the isothermal equations of mo­
tion. 

Application of these isothermal flow equations 
to solids is complicated by the number of inde­
pendent variables: force law, temperature, strain 
rate1 density, and crystal geometry. We have 
llsed the simplest possible forces, pi.ecewise­
linear forces, in all of our calculations. We have 
explored the effects of denSity, dimenSionality, 
and temperature. A comprehensive study of these 
effects will require considerable time. We be­
lieve that the two-dimensional results now avail­
able are sufficiently interesting for publication. 
These data are shown, as solid Hnes, with a 
dashed extrapolation to lower in Fig. 1. 
Each line summarizes about twenty individual 
steady-state shear calculations, typically pro­
ceeding to a strain of ten-the top of our periodic 
cell would be displaced ten sidelengths, relative 
to the bottom, during this time-or longer. Three 
different temperatures are considered here and 
correspond roughly to 0.3, 0.6, and 0.9 times the 
melting temperature. These data show, unam­
biguously, that the stress has a (te,mperat,ure­
dependent) power--law dependence on the strain 
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FIG, 1. Strain-rate dependence of the shear stress 
a,G is the shear modulus, d the nearest-neighbor 
spacing in a close-packed lattice, E the rate 
du", I d y. and C T the transverse sound velocity. The 
nonequilibrium molecular dynamics was generated for 
two-dimen..'lional solids at 1.1 times the stress-free 
density and temperatures of 0.3 (top full liue) , 0.6 
(mIddle line), and 0.9 (bottom line) times the melting 
temperature, usiDg from 64 to 400 particles. The 
interparticle force used rises linearly to a maximum 
at 1.15 times the zero-force separation, and then 
falls linearly. vanishing at 1.30 times the zero-force 
separation. The beryllium data from Asay et ol" Wal­
lace and Grady' s estimates for alummumj and 
bellos older low-strain-rate estimate are shown. The 
uncertainty in the slope of the lines is a few percent. 
It should be emphasized that the experimental data are 
not at the same temperature and density. The effects 
of the temperature and denSity variation are· relatIvely 
small. 

rate at the rates accessible to our calculation, 
These rates correspond, in real solids, to strain 
rates of order 10 GHz to 1 THz. The lower rate 
corresponds, roughly. to a single dislocation pair 
in a system of several hundred atoms, the highest 
rate to a defect density approaching the number 
denSity. This highest strain rate could alterna­
tively be descrIbed as one at which particles on 
adjacent glide planes move at a relative velocity 
equal to the transverse sound velocity. 

In order to compare laboratory experiments on 
beryllium and aluminum with computer experi­
ments, we have used a corresponding-states ap­
proach in Fig. 1. The dimensionless ratio, shear 
stress divided by shear modulus, is displayed as 
a fUnction of reduced strain rate. Our two-di­
mensional computer data lie along the heavy lines 
marked NEMD. We have verified that the two­
and three-dimensional data are similar and that 
the slopes are insensitive to density on this scale. 
It should be noted that the general trend of the 
,computer data, wh~n extr::tpol_aJed (dashe,? e.)..-ten­

. sion) over the intervening two orders of magni­
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tude in strain rate, is nicely consistent with 
laoor8.tory measurements. We must emphasize 
that the laboratory "measurements" do not meas­
ure stress directly. The values shown are in­
ferred through the idealized models outlined in 
Refs. 3 and 8. 

We have included Wallace's calculations in the 
figure, for aluminum at high strain rates. S His 
data represent neither true laboratory experi­
ments nor computer simulations. They are in­
stead a relatively sophisticated educated guess, 
based on a continuum model, fitted to plastic­
w.ave data and consistent with reasonable thermo­
dynamic bounds on the temperature, stress, and 
entropy within nonequilibrium shock waves. The 
discrepancies between Wallace's and Grady's 
more naive estimates at the lower strain rates 
reflect the difficulty in estimating shear stress 
from measured longitudinal data. Asay's es- . 
timates for beryllium like',vise include some rela­
tively uncertain approximations. The upper 
bounds for shear stress, computed for aluminum, 
copper, and iron by Chhabildas and Asay,3 lie 
well above our low-temperature calculated line. 

We are well aware that the approximate methods 
used to estimate shear stress in Refs. 3 and 8 
lre overSimplifications of a complex phenome­
non. Nevertheless these estimates represent the 
best experimental description of the strain-rate 
dependence of stress available, The semiquan­
titative agreement of the three kinds of data nev·­
ertheless suggests that a common explanation of 
high-strain-rate data, at rates exceeding about 
10 kHz, can be obtained by analyzing the small­
system consequences of the nonequilibrium equa­
tions of motion. At present there is no x-ray 
diagnostic capable of providing experimental data 
on shock fronts at pressuresil1 the megabar 
range. The data presented here suggest that such 
shock waves could be successfully described by 
extrapolation of the stress-versus-strain-rate 

relation obtained at lower rates. 
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Ashurst, and Dick Grover for helpful discussions 
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part by the U. S. Army Research Office and by 
the U. S. Department of Energy under Contract 
No. W-7405-Eng-48. 
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