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INTRODUCTION 

Microscopic vs AIacroscopic Viewpoints 
From a fuiadamental point of view real materials are described by quantum 
mechanics. Because solving the time-dependent, quantum-mechanical, 
many-body problem is impractical, a detailed microscopic view of matter 
has to be restricted to the much simpler classical mechanics. In the classical 
description (1), the instantaneous "dynamical state" of a many-body system 
is given by the set of coordinates and momenta for all of the particles. This 
dynamical state and a rule for its time development reduces the classical 
problem to a well-posed initial value problem, the solution of a set of 
coupled ordinary differential equations. The accelerations that govern the 
time development can depend upon boundary conditions or other types of 
constraints. 

As the particle trajectories develop from the initial dynamical state, 
subject to the imposed constraints, dynamical averages can be ac­
cumulated. Any thermodynamic or hydrodynamic state variables that 
depend upon coordinates and momenta can be averaged. If the problem is 
nonsteady or inhomogeneous, such averages can be tabulated as functions 
of time or space. Unacceptably large fluctuations in the averages can be 
reduced by generating several trajectories from similar initial dynamical 
states. 

- We call the ordinary classical Newtonian equations of motion, F = rna, 

or the equivalent Lagrangian or Hamiltonian equations of motion, without 
any special constraints, the "equilibrium equations of motion." These 
equations are reversible in time and, because external heat and work 
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sources are omitted, conserve energy. The particle trajectories they generate 
are said to be calculated by "equilibrium molecular dynamics." Many 
classical techniques have been developed for solving the equilibrium 
differential equations ofmotion (2-5). The simplest technique, replacing the 
Newtonian accelerations d2r/dt2 with a centered second-difference ap­
proximation, is fully as cost-effective as more complicated schemes, unless 
very high accuracy is desired (6). In the Lagrangian or Hamiltonian 
formulations the coupled first-order equations can be solved conveniently 
by using classical Runge-Kutta or predictor-corrector methods. With any 
of these numerical schemes, conservation of momentum and energy are 
extremely useful checks of the numerical work. 

In the event that two widely different time or distance scales contribute to 
the microscopic dynamics, it is logical to eliminate the shorter of these by 
averaging. In the resulting "stochastic" or "Brownian" dynamics (7), the 
interaction of the large, or heavy, solute molecules with the small, or light, 
solvent molecules can be approximated by using an effective diffusion 
coefficient. The solute dynamical trajectories then contain both the 
accelerations from the solute-solute interactions and a diffusive motion due 
to the numerous, but small, solvent-solute interactions. The energy 
conservation and reversibility of the Newtonian equations of motion are 
lost in the averaged stochastic approach. 

The connection between the dynamical functions generated by any form 
of molecular dynamics and the corresponding thermodynamic or hydro­
dynamic macroscopic description is relatively straightforward. The two 
approaches correspond in conserYing mass, momentum, and energy. But 
there is no such correspondence for ent~opy. because entropy is not a 
dynamical yariable. Entropy is neyertheless important to many macro­
scopic to systems. Because entropy production 
characterizes irreyersible 110ii'S and :he equations of motion are 
reversible. it is not surprising that fo:- emropy the connection between the 
two points of "iew is Howcyer. for mechanical variables 
depending only on coordinates and i'elocities. the connection is easily 
made. Both tte poten rial and kinetic energies of the particles are pictured as 
localized at the particle sites. and make localized contributions to the flows 
of mass, momentum, and energy, Temperature is measured directly, as the 
fluctua:ion in the particle yelocities. It is simple to formulate other 
dynamical \ariables. such as the stress tensor and heat flux vector, which 
depend only on these particles and momenta. Irving & Kirkwood (8) 
formalized this description in a way useful for most simulations. 
Modifications can be made if it is desirable to distribute the delta-function 
particle contributions over regions of the order of the particle volume to 
obtain smooth profiles for comparison with analogous continuum calcu­
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lations (9). Shock waves and liquid drops, with their rapid changes of 
thermodynamic properties in space, require care in averaging (1(}-14). 

A "material," from this microscopic Newtonian viewpoint, is completely 
characterized by the forces between molecules, or parts of molecules, as 
functions of their relative location and velocity. The phase diagram and 
constitutive properties of the material follow as the complicated but 
straightforward consequences of the microscopic interactions among its 
constituent parts. The connections between interparticle forces and the 
macroscopic linear viscosities and thermal conductivity were established 
for gases by Boltzmann (15-16) and for general fluids by Green & Kubo 
(17). Thus the characterization ofthe constitutive equation of state is a well­
posed mathematical puzzle with a unique solution that depends only on 
interparticle forces. 

From the macroscopic continuum point of view, the time development of 
a material's behavior is described by the macroscopic differential equations 
describing the flow and conservation of mass, momentum, and energy. The 
macroscopic accelerations are produced by pressure-tensor gradients 
rather than microscopic interparticle forces. The pressure tensor, a function 
of energy, density, strain rate, etc, plays the same role in macroscopic 
dynamics as does the interparticle force, a function of distance, in 
microscopic dynamics. The characteristics of the macroscopic equations 
are limited in that they predict only the future, as they are irreversible in the 
time. 

Because macroscopic behavior can be calculated from microscopic 
interactions, the microscopic description might appear to be simpler, or at 
least more "fundamental." The apparent simplicity is very misleading. At 
present it is at least as difficult to detetmine consistent microscopic flow 
behavior. The microscopic description is not likely to furnish quantitatively 
correct descriptions of real materials beyond the simplest metals, ionic 
melts, and rare gases. The main contributions of the microscopic point of 
view are understanding, semiquantitative estimates of experimental results, 
and the capability to interpolate or extrapolate experimental data into 
regions that are hard to reach in the laboratory. 

These three possibilities-reproducing experimental data, predicting the 
unknown, and understanding the mysterious-together explain the per­
sistence of interest in the mechanistic microscopic description of material 
behavior from the birth of kinetic theory up to today. The details available 
in the microscopic description do make it possible to understand simple 
hydrodynamic flows, but only when the proper questions are asked and the 
calculations are carried out correctly. The computational complications 
involved in studying hydrodynamic flows with Newton's equations have 
led to modified "nonequilibrium" forms described in the following sections. 
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Fluids at Equilibrium 
Eighty years ago, Gibbs formulated the microscopic basis of equilibrium ....... 

thermodynamics. He stated that all dynamically accessible states should be 
weighted equally in calculating the equilibrium properties 0:' isolated 
dynamical systems. At that time the partition functions Gr::':,s enyisioned 
were mainly conceptual, as they were too difficult ;'or - calculation. 
Today, with fast computers, partition functioI:s for =,-,,:e;ials can be 
estimated rapidly enough to be used as subr2,...-::i.::les ir, Cl...-:=eri,:cl hydro­
dynamic calculations. 

About 100 years ago. yaD der \\'aals 2.D2 Be,::z:-:12:Gr. :::.lculated 
analytically the contribution of three- and errecE :,::, 
thermodynamic properties. Today, this same approach ca;} be pursued 
further, to seven-body or eight-body effects, by using fast computers. 
Alternatively, this systematic approach can be abandoned in favor of brute­
force Monte Carlo or molecular dynamic simulation (18-21). With the ~ 
brute-force techniques, problems involving thousands of strongly interact­
ing particles can be solved. This capability is fortunate because, without the 
simulations, theory could not advance. The only reliable test of theories is 
confrontation with experiments, either traditional laboratory experiments 
or computer experiments. Computer experiments are unique in providing 
detailed information about systems in which the forces are known. 
Operational theories based on forces can then be tested against quantita­
tive computer results. 

Operational theories can be developed or discarded according to their 
success in matching machine results. The equilibrium pe::'tUrbation theory 
of fluids, originating in the work of Canfield. :'>fansoori. Rasaiab. and Stell 
(22), is now a highly deyeloped 
modified to fit a large body of data. 

It is a measure of :be of :he many-body problem that a priori 
theoretical approaches :0 equiiibriClm proPerties have been relatively 
unsatisfactory. But a successfu: perturbation approach, in which some 
computer-generated nUDerical solutions are used as a base, is certainly 
better than no approach. 

The success of equilibrium perturbation theory in reproducing the 
dependence of thermodynamic properties on interparticle forces has 
generated many attempts to construct corresponding nonequilibrium 
perturbation theories. L nfortunately, the highly nonlinear response of the 
classical equations of motion to small perturbations, leading to the rapid 
separation of similar phase-space trajectories, is responsible for the failure 

.. 

of all such theories so far proposed (23, 24). .,
In principle, the equilibrium theory can be thought of as containing the 
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nonequilibrium theory as an unlikely, but possible, fluctuation. In practice, 
interesting nonequilibrium states are such unlikely fluctuations that even 
the linear transport coefficients, which can be found numerically by Green­
Kubo analysis of fluctuations (4), can be obtained more accurately by direct 
nonequilibrium methods. 

Even today, the connection between the microscopic force-law point of 
view and laboratory experiments is tenuous. It is true that the properties of 
one simple spherical rare-gas molecule, argon, have been accurately 
described on the basis of reasonable two- and three-body forces. Krypton, 
an equally simple material, is still complicated enough that an analogous 
correlation of microscopic forces with macroscopic properties has not yet 
been worked out (25, 26). 

Fluids Close to Equilibrium 
Our understanding of nonequilibrium problems is in a relatively more 
primitive state because an operational nonequilibrium theory, resembling 
Gibbs' equilibrium theory in generality, doesn't exist for noncquilibrium 
systems. One can see why: Equilibrium is one, unique state; non­
equilibrium is everything else. There is one relatively simple class of 
nonequilibrium problem. Close enough to equilibrium, a macroscopic 
theory containing non equilibrium fluxes linear in the gradients is suf­
ficiently accurate, and local values of the pressure, energy, density, and 
temperature can still be usefully interrelated through the equilibrium 
equation of state. Farther from equilibrium, where nonlinear fluxes and 
changes in the constitutive relations are important, there is no theoretical 
approach like Gibbs' to use as a basis. We shall see that the numerical 
molecular dynamics methods provide a substitute for this missing theory. 

The closest approach to a fundamental nonequilibrium theory is 
Maxwell & Boltzmann's binary-collision picture of gas transport (15). This 
Boltzmann-equation approach successfully expresses the dilute-gas trans­
port coefficients and the approach to equilibrium in terms of a set of two­
body problems. The Maxwell-Boltzmann approach is exact for linear 
problems, and is apparently a good starting point for nonlinear problems as 
well. 

In "linear" problems close to equilibrium, where noncquilibrium fluxes 
varying with powers higher than the first can be ignored, Newton's viscous 
flow theory and Fourier's heat-flow theory are adequate. In such close-to­
equilibrium cases there is abundant evidence that the Boltzmann equation 
correctly predicts the transport of mass, momentum, and energy for low­
density gases. 

For dense fluids the Maxwell-Boltzmann approach does not apply; the 
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only exact results known are formal, and hold only in the linear regime 
governed by Newton's and Fourier's viscosity and conductivity flow laws. 
In this case the transport coefficients have been related to the decay 0: 
equilibrium correlation functions by the "Green-Kubo" relations 
Evaluating this decay involves solving the N-body problem and so is no: 
nearly so easy as the two-body low-density Boltzmann solution. The high­
density problem is further complicated because momentum and energy cae. 
both be transported directly, through intermolecular forces, rather than 
simply through the convective motion of particles. This potential transfe~ 
can even change the sign of the phenomenological Burnett eoefficients 
describing the increase or decrease of the transport coefficients with 
increasing gradients. Enskog's 1926 theory was designed to treat this 
potential transport in a semiquantitative way, and does so remarkably weI. 
Unfortunately, there is no known simple approach that begins with the 
Enskog theory and adds on a chain of successive improvements that lead 
ultimately to a correct theory. 

Current attempts to extend our understanding of transport phenomena 
to higher density borrow from hydrodynamics and have been successful in 
describing flows at scales greater than a particle diameter, but seem to hold 
little promise for a quantitative understanding of small-scale, rapid 
nonequilibrium fluid behavior. The state of the art has been reviewed by 
Zwanzig (27). 

Much of the theoretical work carried out on fluids has been directed 
toward (a) understanding the correlation functions that appear in equilib­
rium fluctuation theory and (b) understanding fundamental flows. The 
relatively slow decay of the low-density correlation functions with time has 
been successfully explained, from a semiquantitative point of view, by the 
mode-coupling theory. The quantitative agreement of this theory with the 
results of computer simulations of viscous flow is very poor at high density. 
with observed correlation functions two or three orders of magnitude 
greater than those predicted theoretically (28, 29). 

Plane couette flow has received a great deal of attention because it is the 
simplest hydrodynamic flow and can be simulated computationally with 
relative ease. Corresponding extensions of thermodynamics to cover fluids 
and solids undergoing shear have been reasonably successful (30), but have 
shed no light on the significance of entropy far from equilibrium. 

Zwanzig (31) has pointed out a promising connection between the rate 
dependence and the frequency dependence of the shear viscosity. Either 
effect modifies pressure fluctuation correlations, and it is possible that a 
quantitative understanding will relate the long-time decays of these 
correlations to the nonanalytic dependences of the pressure tensor and the 
energy on the strain rate. 
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Interest in extreme conditions, largely fostered by government projects 
iesigned to threaten or placate people with thermonuclear energy, has led 
:0 e'.er more detailed information and speculation about underlying flow 
mechanisms in systems far from equilibrium. 

Fluids Far From Equilibrium 
far from equilibrium the transport coefficients are modified. Why is fluid 
'.iscosity reduced at high deformation rates? How do shear flows produce 
"normal-stress" effects, such as the Weissenberg and die-swell effects? How 
chick is a strong shockwave in a dense liquid? Each of these rheological 
c;uestions involves the nonlinear flow of fluids; that is, conditions are so far 
:'rom equilibrium that the phenomenological transport coefficients describ­
:ng the diffusion of mass, momentum, and energy are changed from the 
small-gradient values that can be obtained from equilibrium fluctuation 
:lleory. Answers to rheological questions involve descriptions on two 
s:.:ales: (a) the microscale description of atomistic flow mechanisms and (b) 
:he macro scale description given by solutions of nonlinear fluid dynamical 
':::oundary value problems. "Nonequilibrium molecular dynamics" has 
grown in an effort to describe efficiently the microscopic flows necessary to 
2. quantitative macroscopic description of nonlinear flow phenomena. This 
~owth has been caused, on one hand, by more quantitative detailed 
experimental information, from neutrons, X rays, and lasers (32), and, on 
,'1e other, by more quantitative detailed computer experiments that keep 
race with increasing computer speeds. The computers make possible the 
s:mulation of nonequilibrium flows, using constraints or special boundaries 
to enforce the nonequilibrium character. 

~onequilibrium molecular dynamics began in America and England. By 
Inw, calculations have been reported in Belgium, France, Germany, 
Holland, Italy, Japan, and Russia. In Australia, Denis Evans' work has 
:ontributed greatly to the development of new techniques. Evans' papers 
2S, 33) on the rheological properties of fluids indicate the variety of 
x:havior that occurs even in the simplest of mass-point central-force many­
)0dy systems. The spatial and velocity distribution functions are not the 
lIlly characteristics measured. Shear thinning (reduction of the viscosity 
~th strain rate), normal stress effects (changes in the diagonal components 
i the pressure tensor induced by an off-diagonal strain rate), viscoelasticity 
ligh-frequency elastic response by a viscous fluid), and shear birefringence 
:hear-induced orientation of polyatomic molecules) have all been charac­
:ri.zed quantitatively for simple microscopic models. 
The amalgamation of the microscopic and macroscopic theories and 

mulations with experimental information has been proceeding for about 
) years, and was the subject of an international conference organized by 
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Howard Hanley, "Nonlinear Fluid Phenomena," sponsored by the 
National Bureau of Standards at Boulder in June of 1982. For a view of 
nonequilibrium problems wider than is possible here, the Boulder proceed­ t 

ings (32) should be consulted. 

Scope of This Review 
I begin this review by briefly surveying the development of molecular 
dynamics from the early computers at Los Alamos, to the national 
laboratories at Brookhaven, Livermore, and Argonne, to the present day 
era ofpersonal compute,s. The technical content of these early calculations 
has been revie\yed here (18, 20) and elsewhere (19, 34) in comprehensive 
detail, so I emphasize problems of current, or recent, interest. Lack of time 
and space bias this emphasis toward my own special interests and 
approaches. I \vish to stress the connection of these new approaches with 
the classical ideas of wechamcs. Mechanics is currently enjoying increased : J 
study and use \\'ith the yastly improved opportunities to compute, and not ~ 
just formulate. 

The first calculations indicated some basic complexities in computer 
simulations. Boundary concitions have to be carefully chosen to reduce the 
influence of surfaces. Beca';.lse surfaces of phase separation are present in 
first-order phase :!le special difficulties associated with these 
studies led naturally to ca:c·..:lat2ons in \vhich the temperature and volume 
were controlled dynamica:.2y. B~;:;ause Newton's (or Lagrange's or 
Hamilton's) equations do no: contain these independent variab­
les, new thermally yarying aile j~=c~a:ional equations of motion had to 
be developed. Such nell 2r~ :l:",,' 2\ailable in profusion. Their 
application is what we call ::::::.c!l;;(:ular dynamics." We shall 
see that "none~uil~brium mole.cula:: . , s";.Hatic.Yfjs can be tho~ght 'tl 
of as a generahzatlOn of GIbbs statlstlcal hle~!E:l;;:'S :: :he :lon~oUlhbnum . 
case. 

After reviewing the development of nonequili'Dr1U=:' =:(!:e::;::a.:­
I summarize the results obtained so far. :\onlinear yiscous ;:'07. haS been 
characterized fairly well, both in two and in three dimensions. There has 
been some corresponding work on diffusion and conduction. The shock-
wave problem, particularly simple because its boundaries are equilibrium 
ones, is evaluated next. I then consider the possibilities for simulating the 
flow of macroscopic granular materials and for calculating the properties of 
polymer melts and solutions (35). Solid state problems are then discussed 
(21), which are intrinsically more specialized due to the much greater range 
of defect structures present in solids than in fluids. Last of all I focus on 
rapidly developing areas that will soon require their own specialized """. 
reviews as their audiences expand in the next few years. 

http:dynamica:.2y
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HISTORICAL DEVELOPMENT OF EQUILIBRIUM 
AND NONEQUILIBRIUM MOLECULAR DYNAMICS 

Alolecular Dynamics at the National Laboratories 
Weapons and energy calculations involve the flows of ordinary matter, 
light, neutrons, and plasmas, often under "extreme conditions" of high 
temperature and pressure. Thus, the national laboratories pursuing these 
calculations invest heavily in the latest computers. As fringe benefits, other 
large-scale computations have been carried out there too. 

As the laboratories and their computers grew, so did the scope of the 
molecular dynamics problems studied. At Los Alamos, the simulations 
begun by Fermi, Pasta, and Ulam, who studied the one-dimensional chain, 
were followed later by extensive Monte Carlo and molecular dynamics 
work. The failure of the Fermi-Pasta-Ulam chains to approach equilibrium 
generated considerable and continuing interest in ergodic theory. The later 
work, by Wood (36), Holian, and their co-workers, led to the development 
of equilibrium perturbation theory and to characterization of shockwave 
states far from equilibrium. 

At Livermore (5), Alder, Wainwright, and their colleagues studied the 
dependence of hard-sphere and square well thermodynamic and linear 
transport properties on boundary conditions, number of particles, and the 
range of the attractive forces. They concentrated on determining how the 
classical approaches of Boltzmann, van der Waals, Kirkwood, and Eyring 
compared with modern simulations of dense fluid behavior. These early 
calculations set a high standard for later work on faster machines with more 
complicated forces. 

At Brookhaven (2), Vineyard and his co-workers interpreted radiation 
damage in crystals caused by energetic elastic collisions. Rahman, at 
Argonne (3), studied the structure of model fluids, using continuous 
potentials like those of Vineyard. These early studies proceeded in a 
leisurely way, carried out over periods of years, and were published in 
occasional comprehensive reports and journal articles. Parallel pioneering 
work was carried out in France (4) by Verlet and his co-workers, and, on a 
scale more limited by computational power, in Russia (37-39). 

These early calculations can presently be duplicated on home computers, 
so the ability to publish molecular dynamics calculations is correspond­
ingly widespread (40). With this expansion has come a more hectic pace in 
which untried ideas or faulty formulations are sometimes published. 
Despite the minor frustrations caused by this quality control problem, the 
vastly increased participation in the computer-simulation enterprise has 
been extremely beneficial in stimulating new ideas. Even more rapid 
expansion and proliferation is likely in the years ahead. 
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The Impact of Phase Metastability on Equations of 1\1orio11 
The main dramatic feature of equilibrium thermodynamics is the 
behavior associated with phase changes. At the gas-liquid and solid-liqc::: 
coexistence curves, material properties change discontinuously. Near :::-_~ 

gas-liquid critical point, fluctuations that are ordinarily negligibly sma:: 
become macroscopic as the compressibility and heat capacity diverge. A:::. 
early challenge to microscopic simulation was to reproduce these qualita­
tive features of real materials on a molecular scale. The Livermore and Los 
Alamos hard-sphere and square-well calculations established that the 
phase equilibria could be reproduced, and that periodic boundaries. 
illustrated in Figure 1, substantially reduced the number dependence of 
pure-phase thermodynamic properties. At the same time these boundaries 
inhibited surface formation and stabilized metastable phases, so that vaL 
der Waals loops could be observed. 

These metastable phases were soon studied for their own intrinsi. 
interest. Kinetic and mechanistic studies of both supercooled fluids ane 
superheated solids have been carried out. Considerable effort has beer; 
devoted to the artificial stabilization of glassy phases (36, 41, 42). Hard­
sphere glassy phases had been generated, at Los Alamos and Livermore, 
"compressor" experiments in which the hard-sphere diameter was grade:­
ally increased with time. Other fluids could be forced to form glasses 
rapid cooling. These volume and temperature controls were the fiE­
instances of deliberate alteration ofthe equilibrium equations of motion :: 
satisfy desirable macroscopic constraints: the first "nonequilibrium moie­
cular dynamics." 

Recently the relatively long persistence of these metastable states i::. 
computer simulations has led to some interesting speculations on t:-.:: 
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Figure 1 Periodic boundaries for a two-dimensional system ~:::lc'e~~ -_" 
The basic cell can be visualized as a square (with squares aboy;; 
it) or as a parallelogram in which the cell shape changes with t8:;;. :~_ '0: 

velocity ofeach cell exceeds that of the one just below it by the p:-:~~:' 
strain rate. 
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existence of first-order melting in two-dimensional systems. This specu­
lation was abetted by the existence of a "theory" for melting based on the 
presence of dislocation pairs. Abraham has studied this question com­
prehensively and, in two very readable papers (43, 44), describes the 
evidence that melting in two dimensions is just like melting in three 
dimensions. 

Another approach to phase equilibria, taken by Woodcock, Ladd, and 
Cape, is to examine systems large enough for two or even three phases to 
coexist (45, 46). These calculations are complicated by the extremely long 
times required for thermal equilibration between phases. Mechanical 
equilibration proceeds at the speed of sound, but thermal equilibration 
proceeds more slowly, by diffusion of heat. 

Calculations at Constant Temperature, Pressure, Energy, 
Heat Flux, and Strain Rate 
The first dense-fluid simulations in which temperature was constrained, as a 
boundary condition, were described in Ashurst's thesis (47). He rescaled the 
momenta in his "reservoirs" or "fluid walls" to maintain the center-of-mass 
velocity and temperature constant. The differential equation of motion 
describing this veloeity rescaling contains, in addition to the usual 
equilibrium forces eonstraint forces - a - bp: 

dp/dt = F -a bp, 	 L 

where the functions of coordinates and momenta, a and b, vary with time so 
as to satisfy the collective N-body constraints: 

2. 

r 	 a and b can be determined by substituting Eq. 1 into the time-derivatives of 
the two constraint equations (Eq. 2) with the results: 

3. 

where the angular brackets < ) indicate instantaneous averages over the N 
bodies included in the sums (2). It is easy to verify that these choices 
identically satisfy the constraints of fixed momentum and temperature. It 
should be observed that the new nonequilibrium equations, like Newton's, 
are still fully deterministic and formally reversible in time. Under most 
conditions a and b decrease as the num ber of terms in the sums (2) increases. 

It is interesting that the above differential equations describing the 
velocity-scaling process were not written down until about ten years after 
Ashurst's calculations (48, 49). During this ten-year period dozens of 
isothermal calculations were carried out, so that temperature was often 
treated as an independent variable, like volume and energy. 
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The metastable glassy-state extension of the fluid equation of state had 
been generated by gradually compressing hard-sphere systems. Similar 
glassy-phase calculations could be carried out in either of two ways for soft 
spheres: by lowering the temperature or increasing the density. Both the 
soft-sphere equilibrium and nonequilibrium properties depend only on a 
combination of density and temperature, (N(J'3/V)(e/kT)3/n, where pairs of 
particles interact with a repulsive potential e(a/rt. So in this case there is no 
real distinction between isochoric velocity scaling and isothermal volume 
scaling. 

Calculations at constant pressurc tensor, energy, enthalpy, strain rate, 
and heat-flux vector are likewise possible but were not developed until 
1980-1982. These more recent developments began with a simulation of 
bulk viscosity (50, 51) and the formulation of a "constant-pressure" 
molecular dynamics (52). 

Bulk viscosity describes the extra nonequilibrium stress present when a 
fluid is compressed or expanded at a finite rate of strain. If the compression 
and expansion is carried out cyclically, then the irreversible heating per 
cycle is proportional to the bulk viscosity coefficient. The cyclic process 
complicates computer simulation. It was necessary to develop equations of 
motion for the periodic expansion and contraction of a fluid. The expansion 
had to be periodic in space, to eliminate surface effects, and periodic in time, 
to allow averaging of many cycles. Ifwe denote the time-varying strain by I] 
and if the momentum p at r measures velocity relative to the comoving 
hydrodynamic velocity, then the coordinate equation of motion is 

f = (rIm) + sr. 4. 

In order to force the deformation (Eq. 4) to describe an adiabatic process, 
with E P V, it is necessary (50) that the momenta also respond to strain 
rate: 

p= F-f:p. 5. 

The complete set of equations of motion, Eqs 4 and 5, is deterministic, and 
formally reversible in the time, like Hamilton's equations of motion. But, 
through dynamic instability, it produces the irreversible macroscopic 
dissipation described by the hydrodynamic bulk viscosity coefficient. 

Andersen simultaneously incorporated adiabatic deformation Eqs. 4 and 
5 into the equations of motion to force the pressure to relax toward a 
preassigned value. The title of Andersen's paper (52), "Molecular Dynamics 
Simulations at Constant Pressure and/or Temperature," suggests that the 
dynamical phase functions, whose average values are temperature and 
pressure, are held constant. Both dynamical phase functions 
oscillate about the specified values with relaxation tirr::'s 
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parameters in Andersen's description. In this way his scheme is different 
, .--.. from the isothermal schemc, Eqs. 1 and 3, which produces a constant 

dynamic temperature. Evans & Morriss have recently shown (53) that 
constant pressure calculations can likewise be carried out (54) in a stable 
way, without Andersen's relaxation time. 

Bellemans has pointed out that these relaxation calculations are 
examples of "control theory" in which feedback mechanisms, based on 
values of a function and some of its time derivatives, are used to govern 
future behavior. Temperature-tensor components and pressure-tensor 
components are obvious choices to which control theory can be applied, 
but by no means the only ones. Calculations at fixed angular velocity have 
likewise been carried out. The extent to which the constrained phase 
functions influence the observed hydrodynamics has not been analyzed 
theoretically, but could and should be. Simulations of shear flow at 
constant temperature and at constant energy are so closely alike (32) that 
even long calculations show no systematic difference. 

From the standpoint of statistical mechanics, the new "nonequilibrium 
molecular dynamics" calculations should be viewed as an extension of 
Gibbs' approach to nonequilibrium systems in the spirit envisioned by 
Jaynes. In the equilibrium case all accessible states have the same energy. 
The relative weights of these states are given by Gibbs' theory. Away from 
equilibrium it has been difficult to generate a properly weighted set of 
nonequilibrium states. Nonequilibrium molecular dynamics does this. In 
the nonequilibrium simulations, a many-body system explores, with 
reversible microscopic equations, a more restricted part of phase space in 
which additional macroscopic constraints are specified. To the extent that 
the specified constraints correspond to the restrictions of laboratory 

-., 	 experiments, or approach these as the size of the system is increased, we 
expect that macroscopic constitutive properties of the nonequilibrium 
system will faithfully describe macroscopic behavior. 

Occam & Gauss 
The ad hoc, case-by-case nature of these early constrained nonequilibrium 
molecular dynamics calculations disguised the possibility of a general 
approach to constrained molecular dynamics, in which the constraints 
control macroscopic thermodynamic functions rather than the more usual 
holonomic control of microscopic geometric variables. 

The Occam-Thoreau admonition to keep models as simple as possible is 
familiar, even to nonscientists. Gauss' principle of least constraint is less 
familiar, but a close relative. Gauss' principle implies, and is more general 
than, Newton's equations of motion. Gauss stated that the trajectory 
followed by a constrained many-body system lies as close as possible to the 

l 



116 HOOVER 

unconstrained trajectory. It is perhaps surpnsmg that many (55) con­
strained trajectories are possible. Even for such a small system as three 
Hooke's-Law particles (56), there are infinitely many trajectories passing " 
through a given point in the phase space, which simultaneously conserve 
mass, momentum, and kinetic-not total-energy. These trajectories all 
have differenteffective masses, through differentinitialvalues of a Lagrange 
multiplier chosen to fix the kinetic energy. 

To illustrate Gauss' principle we derive the equations of motion that 
constrain the kinetic energy (temperature) to a constant value. Gauss' 
principle is equivalent (1) to the minimization of the sum 

:L!m[F-(F/m)]2 == :L!m(M)2. 6. 

Here this minimization must satisfy the constraint that 

:L!mf2 !NkT 7. ,
is a constant. If we consider a change (jF in the extra accelerations AF 
satisfying the constraint, Eqs. 6 and 7 give, respectively, 

:LmMM 0 = L(mF F)M, 8. 

and 

:Lmr(jf = O. 9. 

The Lagrange multiplier solution of Eqs. 8 and 9 is then 

mF= F-)Jnr, 10. 

and the constraint condition, Eg. 7, is satisfied for the choice 

). = :LFfl:Lmr2, 11. 

giving equations of motion identical to those of Ashurst's velocity-scaling 
Eqs.I-3. •

This example suggests that we could apply Gauss' principle to constrain 
any dynamical variable that can be expressed as a phase function. The 
resulting accelerations would involve contributions proportional to de­
rivatives of the constraint equations with respect to the particle coordinates 
and velocities. Not only does this procedure lead to Ashurst's velocity­
scaling isothermal molecular dynamics, but it has also provided workable 
schemes for determining the diffusion and heat-conduction coefficients (56). 

FLUID PHENOMENA 

Simulation of Viscous Flows 
The simplest fluid flow problem is plane couette flow, in which the 
hydrodynamic x velocity component varies linearly with y, as is shown in ­
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Figure 1. Because such a homogeneous shear flow, or a corresponding 
dilatational flow, could conceivably arise as an equilibrium fluctuation, it is 
possible to treat such problems with linear response theory. The theory 
predicts (17) that the Newtonian viscosities are given by the large system 
decay of shear or bulk pressure fluctuations: 

I1s/b = (V/kT) too «(iPs/b(O)(iPs/b(t)eq dt, 12. 

where (ips is the fluctuation in any off-diagonal pressure-tensor component 
and (iPb is the fluetuation in the mean pressure. Beeause the derivation of 
this relation and its analog for eonduetivity is not entirely convineing (57), 
and because early calculations of heat conduction based on an analogous 
approach failed to agree with experiment, other approaches to transport 
properties were developed. For plane couette flow, there are six approaches 
in alL These are indicated in Figure 2. 

The physical idea underlying Green-Kubo linear response theory (A) can 
be taken literally (B), by applying a small external field that creates a shear 
flow infinitesimally different from the unperturbed one. This approach was 

D 
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E 

i J 

r':f-

Figure 2 Six methods for determining the shear viscosity coefficient using molecular 
dynamics. Equilibrium method (A) is based on Green-Kubo analysis of equilibrium pressure 
fluctuations. In method (B) a perturbing force generates an infinitesimal strain rate. In method 
(C) a sinusoidal horizontal force generates a sinusoidal response. In method (D) the shear flow 
is maintained by periodic moving images of the basic cell (see Figure 1). In method (E) the flow 
is driven by reservoir regions maintained at fixed velocities and temperature. In method (Fl, 
also periodic in the sense of Figure 1, the deformation is driven by externalforces affecting both 
the coordinates and the momenta. Methods (B-F) are examples of nonequilibrium molecular 
dynamics. 
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pioneered by Ciccotti and co-workers (58, 59). Gosling, McDonald & 
Singer (60) used an external force to drive a sinusoidal shear flow (C). Lees & 
Edwards (61) used periodic images of the system to shear it at constant 
strain rate (D). Ashurst & Hoover (62) used reservoir regions, with 
constrained average velocities and temperatures, as described above, to 
drive the shear flow from the boundaries (E). Finally, Ashurst & Hoover 
and Evans (63, 64) developed periodic deformation schemes, similar to 
those of Lees & Edwards, but constrained to constant temperature or 
energy (F). 

Each of these methods has objections associated with it: the Green­
Kubo integrand (A) has been studied numerically, using the Lennard-lones 
potential near the triple point (D. Levesque, E. L. Pollock, private 
communication). The number dependence of the integrand is evidently 
large and unpredictable. The time during which the perturbed and 
unperturbed trajectories (B) remain well correlated is less than the decay 
time ofthe crucial correlations (32,66). Transport coefficients for sinusoidal 
fields (C) are very different from the infinite-wavelength limit (67). The 
systems heated by moving boundaries (D) change temperature rapidly, on a 
picosecond timescale. Finally, the systems cooled at the boundaries (E) 
develop large temperature gradients. We believe that nonequilibrium 
molecular dynamics simulations with periodic boundaries-homogeneous 
and isothermal (F), or isoenergetic-are by far best for viscous flow 
simulation. Number dependence is evidently small, and convergence is 
rapid. Holian & Evans (68) have recently arrived at this conclusion by 
comparing Green-Kubo calculations with Evans' nearly homogeneous 
scheme. 

A number of couette-flow simulations have been carried out. Hard 
spheres (69, 70), soft spheres, Lennard-lones particles (71), soft-sphere 
mixtures (72), and polyatomic models of methane (64) and chlorine (73) 
have all been studied. What are the results from these simulations? Four 
separate physical effects have been characterized: the nonlinear, frequency­
dependent decrease of viscosity with strain rate, the development ofnormal 
stresses with increasing strain rate, the change ofthe structure, measured by 
the pair distribution function, with strain rate, and the shift in the phase 
diagram with strain rate. Calculations detailing these effects have all been 
summarized by Evans & Hanley (28, 30). Although they use a nearly 
homogeneous isothermal algorithm, driven with boundaries of the Lees­
Edwards type, there is little doubt that the same hydrodynamic (small strain 
rate, amplitude, and frequency) viscosity would result from the systematic 
application of any of the six methods. The viscosities are useful information 
because the best operational theory, Enskog's, is in error by about a factor 
of two near the freezing line. 
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The nonlinear viscosity depends upon strain rate and frequency in a 
complicated way. This dependence can be determined relatively well only at 
densities in the vicinity of the freezing line. At low and intermediate 
densities the nonlinearities are too small for accurate determination. In the 
high-density region there is good numerical evidence (73) that the viscosity 
varies with strain rate, with frequency, and with wave number: 

13. 

.... 


Viscosity no doubt also depends upon strain amplitude, but this depen­
dence is harder to investigate numerically. Each of these effects has been 
predicted by mode-eoupling theory, but with a much smaller coefficient 
Zwanzig has pointed out that if the shear stress relaxation, Eq. 12, is 
measured in the corotating frame, the extra decay induced by rotation has 
the same form as the reduction due to frequency dependence (31). 

Similar calculations in two dimensions are singular in the sense that the 
viscosity diverges (as 1m3) at zero strain rate. Evans carried out isothermal 
calculations that clearly established a logarithmic dependence of viscosity 
on strain rate in two dimensions (74). In early reservoir calculations (34) this 
effect was disguised by large fluctuations-a persuasive indication of the 
superiority of the homogeneous methods for quantitative work. 

The structure of a fluid is modified in a shear flow. To a first approxi­
mation the structure simply undergoes an infinite-frequency shear, with an 
amplitude that can be estimated from the Maxwell relaxation time multi­
plied by the imposed strain rate. Quantitative studies, for both pure fluids 
and mixtures, have been carried out by Hanley, Evans & Hess (75--77). 

The structural changes must correspond to shifts in energy and other 
thermodynamic properties, to the extent that these can be defined for 
nonequilibrium systems. Hanley & Evans (30) measured the strain-rate 
dependence of the free energy for the Lennard-Jones fluid, assuming that 
generalized thermodynamic relations hold for a fluid under shear, but with 
strain rate as a new state variable. They show that there are measurable 
shifts in the phase diagram, similar to those found, at lower rates, in 
polymer melts and solutions. 

Strain rate is the independent variable in the Doll's-Tensor nonequi­
librium equations of motion. Parrinello & Rahman (78) used Andersen's 
version of the equations, in which the pressure tensor is fixed (52), to study 
analogous solid-phase equilibria. 

The couette flow problem is a useful prototype for testing new ideas for 
nonequilibrium simulations. In this way it has been shown that velocity­
dependent forces, present in a rotating frame, must be included in the 
microscopic equations of motion. Otherwise the kinetic part of the shear 
stress, and both the kinetic and potential parts of the normal stresses, are in 

r 
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error. More recently, several different isothermal schemes have bee 
evaluated in this way (J. Dufty, private communication, 1982; W. G. 
Hoover and A. J. C. Ladd, private communication, 1982). It is possible c.: 
constrain any combination of the x, y, and z temperatures during couet:7.­
flow. The choice made influences the nonlinear flow properties. If the5;e 
same choices arc analyzed through the relaxation-time approximation :c 
the Boltzmann equation (81), it is found (J. Dufty, private communicatio::.. 
1982; W. G. Hoover and A. J. C. Ladd, private communication, 1982) tha: 
application of the isothermal constraint to all three components of the 
temperature gives results agreeing with the Chapman-Cowling solution fo~ 
Maxwell molecules. This same approach can also be used to calculate the 
dependence of Boltzmann's entropy on the strain rate. The result, 

1 • f.1S/Nk = -(ST)2/2+(ST)4/4-"" '-. 

where T is the collisional relaxation time, could be compared WIt::. 

simulations or with theoretical predictions, if the latter could be carried ou: 
to fourth order in the strain rate. 

Two other kinds of viscous-flow simulations have been performed using 
nonequilibrium molecular dynamics. The periodic and homogeneous bulk 
viscosity simulations show that, for dense fluids, the errors in Enskog­
theory predictions increase as the rcpulsion becomes softer (65). Ko 
quantitative theory explaining these bulk-viscosity results has yet been 
constructed. There have also been simulations of the vortex viscosity, which 
measures the coupling of molecular rotation to the vorticity. These 
calculations (82) can be carried out either by measuring the decay or" 
molecular rotations or by measuring the entropy production associated 
with maintaining molecular rotations with external forces. These simu­
lations are precursors of polyatomic and polymer flow simulations. 

Heat Flow, Rotation, and the Boltzmann Equation 
The diffusion of heat can be studied through analogs of four of the six. 
methods developed for shear flow. Ciccotti, Jacucd & McDonald (591 
suggested an external-field method derived from the Green-Kubo fluctu­
ation calculation. Ashurst (47) simulated the flow of heat between reservoirs 
maintained at constant temperatures. Later, Ciccotti & Tenenbaum 
developed a similar, somewhat less useful, reservoir technique (83). Evans & 
Gillan proposed driving a heat current with an energy-dependent externai 
force. Evans has shown (84) that not only are the results of this method 
consistent with the Green-Kubo and reservoir results, but fluctuations are 
substantially reduced, allowing much more accurate estimates of the 
hydrodynamic conductivity. Gauss' principle of least constraint can be 
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applied to the heat-current case too, by constraining the heat flux vector. 
The dissipation associated \'lith this constraint determines the heat 
conductivity. 

r 
Heat conductivity behaves differently from viscosity in that it may either 

increase or decrease with increasing current, whereas the viscosity of simple 
fluids has never been observed to increase with increasing strain rate. The 
conductivity has been studied (85) in a constrained rotating system, in order 
to demonstrate that the angular Coriolis accelerations impart an angulari 
heat current in response to a purely radial temperature gradient. This 
nonlinear effect, observed in a dense-fluid computer experimcnt, was 
originally predicted by the Boltzmann equation, and illustrates the failure 
of the "principle of material frame indifference" of continuum mechanics. 

I 

Fluid Shockwaves 
_ The simplest hydrodynamic problem beyond plane couette flow and one­

dimensional heat flow is a planar one-dimensional shockwave. Such a 
shockwave is a steady adiabatic compression wave, linking together two 
equilibrium states. For this reason, together with the technical importance 
of shockwaves in aerodynamics, warfare, mining, explosive metal-working, 
and chemical synthesis, considerable interest in their properties exists. 

Gas-phase shock waves are only a few mean free paths thick. Laboratory 
and computer experiments agree fairly well with predictions from the 
Boltzmann equation. Until recently (86) analogous measurements for 
liquids and solids could not be carried out because the length scale is too 
small. Computer experiments (1O~12, 87) are ideally suited to these small­
scale dissipative waves. A pair of these structures can be generated by 
modifying the Lees-Edwards scheme of Figure 2D so that the periodic 

.A.. images compress, rather than shear, the basic fluid cell. The shockwaves 
found agree fairly well in structure with the predictions of the Navier­
Stokes equations. The main difference is that the shockwave thickness 
exceeds the Navier-Stokes prediction by as much as 30%. The velocity 
distributions within the shockwave are quite unlike either the MaxweI1­
Boltzmann or the Mott-Smith bimodal predictions (11). The importance of 
these nonequilibrium distribution functions to chemical reactivity has been 
forcefully argued by Klimenko & Dremin (13, 88). 

Flows of Granular, Polyatomic, and Polymeric Materials 
Molecules with structure-ranging from diatomics, through polymer melts 
containing hundreds of atomic units, even up to soil, seeds, and oranges­
can be simulated with nonequilibrium molecular dynamics. There are two 
apparent difficulties. First, there is a disparity between the high-frequency 
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vibrations within one structure and the somewhat lower frequency of 
collisions between structures. The highest frequency controls the molecular 
dynamics timestep. This problem has been avoided by using either 
constrained bonds, which don't vibrate at all (89), or artificially soft bonds 
(90), which vibrate at a low frequency. Fixman pointed out (91) that 
constrained bonds affect the dynamical bond-angle distribution. It is 
unlikely that this would have any qualitative impact on polymer behavior, 
but the constraint effect is serious for realistic simulations of small 
molecules, like butane (92). Second, there is a force-law problem for the 
larger granular materials. These inelastic particles absorb energy internally, 
as heat. The wealth of measured granular-flow phenomena is stimulating 
the development of inelastic force models capable of describing these 
energy flows. The energy can be supplied by boundary agitation or by a 
gravitational field. The experimental data for granular flows, velocity, and 
depth profiles in chutes, as functions of solid-phase fraction and velocity 
(93, 94) invite simulation. 

There are some qualitatively interesting effects in polymer chain flows 
too (35). It appears that the functional dependence of viscosity on chain 
length undergoes a transition-like change at chain lengths of about 300 
monomer units. A practical way of simulating such long chains has yet to be 
developed. 

In addition to the challenge of finding reasonable force laws for 
polymeric and granular materials, there may be some interesting physics 
involved in carrying out and interpreting molecular dynamics simulations. 
There are symmetric and nonsymmetric versions of the pressure tensor for 
molecules with structure (95), and there are several ways in which large 
molecules could be accelerated to produce a shear flow. It seems likely that 
any of these choices will reproduce the linear transport properties of the 
flowing material, but that the nonlinear terms will be influenced by the 
details of the calculation. 

One particularly simple structure is the rough-sphere model, in which 
particles excha~ge angular momentum as well as linear momentum on 
collision. An attempt was made (96) to generalize this transfer process to the 
soft-potential case, but the resulting interaction was physically unrealistic. 
At present it is not clear whether or not a simple prototype model for 
granular materials can be built on existing central-force models. 

Conductivity and Dielectric Phenomena 
Electrical conductivity can be determined as perhaps the simplest appli­
cation of linear response theory. By applying a small electric field, and 

-. 
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comparing two neighboring trajectories, Ciccotti & Jacucci (97) measured 
the conductivity of a charged Lennard-Jones particle. Sundheim (98) has -. 
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used a larger field (up to seven orders of magnitude greater than laboratory 
fields) to determine the conductivity for a model of molten KCI. His 1728­
particle conductivity was about 20% less than the experimental conduc­
tivity and showed that current remains linear with the field up to the high 
levcljust mentioned. Pollock & Alder (99) and Watts (100) have determined 
the dielectric constant for dipolar Lennard-Jones particles by non­
equilibrium simulations, including frequency dependence in Watts' case. 

SOLID PHENOMENA 

Two characteristics complicate bonding in real solids: (a) in most cases the 
forces are not central, and (b) the forces are readily changed near defects. In 
the solid phase, defects of various kinds are the main interesting objects for 
study using nonequilibrium molecular dynamics. The defect-generating 
simulations started by Vineyard continue to employ collisions of reason­
'lbly perfect crystals with incoming high-energy particles. Crystals con­
taining as many as 54,000 atoms have been studied (101). A recent paper on 
laser annealing uses nonequilibrium velocity scaling to describe the ab­
sorption of energy by a crystal surface (102). Successive nonequilibrium 
qllcnches have been applied to crystals and to glasses. Analysis of the 
temperature recovery yields quantitative estimates for the vibrational 
frcquency distribution (103). 

Voids in crystals, leading to stress concentration and fracture, have been 
the object of several, mostly two-dimensional, investigations (21, 104). 
These investigations allow determination of the gross properties of brittle 
cracks, such as dependence of the velocity on temperature and stress. But it 
is abundantly clear that the plasticity present in ductile fracture is extremely 
hard to simulate on a microscopic level. Even so, the equation of state for 
solids at very high rates of strain, above lOS hertz, is relatively simple, and 
can be characterized by nonequilibrium simulations (48). 

Considerable progress has been made in characterizing the motion of 
':dgc dislocations through crystals, but even in the idealized two­
t1imensional case, knowing all of the properties of the dislocations, it has 
not been possible to make a quantitative estimate of the plastic flow stress, 
C,\ccpt through simulation. 

Shockwaves in solids are another extremely difficult problem. It has been 
shown (12, 105) that the rise times for these waves are extremely short and 
Ihat the scale of the underlying plastic flow is size dependent. For this 
reason it is highly unlikely that a quantitative estimate of solid-phase shock 
,lrtlcture can be generated with molecular dynamics. 

There is considerable Russian literature on idealized, two-dimensional, 
s,,'id-phase problems. Strength reduction, by absorption of impurity atoms 
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at defects, the influence of stress on diffusion, and the sintering and failure of 
stress-concentrating solids are described in a recent comprehensive review 
by Shchukin & Yushchenko (21). 

FUTURE DEVELOPMENTS I 
" 

Additional simulation work is needed to evaluate the usefulness of J 
generalized hydrodynamics in transport problems far fro111 equilibrium. 
The considerable effort expended in determining the wavelength and ,I frequency-dependent decreases of the transport coefficients (W. E. Alley, B. 
J. Alder, in preparation) still leaves unexplained the apparent increases seen 
in shockwaves. t 

Solid-state transport problems will continue to be studied. These 
calculations are complicated by more serious number dependences and t 
long equilibration times. Nevertheless, the simple results found at high rates ! 

1 
of strain suggest that more detailed mechanistic studies of nonequilibrium 

i 
I 

solid flows would produce new theoretical approaches. 
The surge of interest in rheological problems (107) suggests that polymer 

melt and solution problems will attract increasing attention. One of the 
most challenging of these problems, a dramatic change in the dependence of 
viscosity on molecular weight, occurring at a polymer length of about 300 !monomer units, lies outside the range of straightforward simulation (108). 
Nevertheless, a model that takes into account several contiguous monomer I 
units through a renormalized interaction could possibly be developed to 
deal with this transition. An analytical characterization of the snakelike 
reptation movement of the long chains, thought to be responsible for the 
transition, is likewise desirable. A simpler but equally fascinating topic for 

1 
I 

future research is the alignment of shorter-chain polyatomic molecules by 
shear flows, heat flows, and shockwaves. 

The stochastic-dynamics approach of the Langevin equation has been 
used to describe conformational relaxation and diffusion oflarge molecules 
(109). It seems likely that such stdchastic calculations could be adapted to 
flow problems as well, to determine approximate viscosities and con­ I 
ductivities for large molecules. tFinally, chemical applications of nonequilibrium molecular dynamics 1are appearing. The work that Klimenko & Dremin have carried out on the !
sensitivity of aromatic and aliphatic hydrocarbons to shockwave compres­
sion (13) is particularly provocative. They combined semiempirical poten­
tials with classical trajectory analysis to predict reaction pathways. 
Whether or not this approach will prove useful in designing energetic 
materials remains to be seen. 
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