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The grain-boundary free energy of a two-dimensional £ = 7 bicrystal has been estimated by combining a quasiharmonic
method based on evaluation of the partition function, with Monte Carlo energy sampling,

Free energies are fundamental to understanding the
thermodynamics of solids [1]. Grain-boundary phase
transformations in polycrystalline solids can be char-
acterized in terms of the excess free energy per unit
length associated with the different grains [2]. The
determination of equilibrium grain-boundary struc-
tures at finite temperatures requires minimising con-
strained free energies, though frequently only the po-
tential energy is minimised [3].

Computer simulations are efficient methods for
sampling the configuration space of many-particle
systems. These techniques have two advantages over
static calculations [3]. Dynamical mechanism@ can be
followed, and thermal effects, including entropy and
pressure, are included, thus providing estimates of the
Gibbs or Helmholtz free energies [4]. In this letter
we describe a general approach to calculating bicrystal
grain-boundary free energies as a function of tempera-
ture, by combining lattice dynamics with Monte Carlo
energy measurements. These methods can be applied
to any bicrystal boundary with a stable quasiharmonic
energy minimum. We use a piecewise-linear nearest-
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neighbor force law. These results have interesting im-
plications, and the methods used can be applied to
other, two- or three-dimepsional, solid interfaces.
We consider four different crystal sizes all of the
shape shown in fig. 1. Each bicrystal contains a
T =7 (38.21°) coincidence boundary, with repeat
length of /7 times the equilibrium interatomic spac-
ing d. The interatomic potential leads to piecewise-

Fig. 1. A £ = 7 (38.21°) bicrystal with & = 150 atoms and a
grain-boundary length of L = 3\/7011 The system can be con-
verted to a 10 X 15 atom parallelogram by connecting the two
sides after a relative out-of-plane rotation.
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linear forces:

¢(r) = %x(r»d)2~a<w2, rdtw,
=-—%§<(I‘-—d—2W)2, d+w<r<d+2w,
= 0, d+2w<r.

For this potential the crystal bulk and surface prop-
erties have been characterized by Huckaby and others
[5]. Here we illustrate the free energy calculation for
the width parameter w = 0.15 d. First, relaxed crystal
structures were obtained by solving damped equations
of motion, m§ = F - ag . Five thousand time steps pro-
vided energy minima with machine (sixteen-digit} ac-
curacy and forces less than 10~ 14 kd.

The classical canonical partition function can be
evaluated at low temperatures, in the quasiharmonic
approximation,

= V(?..?T}’) (ﬂkB T)N—l .S(Det)—O.SZ}\ZN ,

where A is the thermal de Broglie wavelength,
h{(2mamkyT), and Det is the determinant of a (2V — 3)
X (2N —3) symmetric matrix constructed by fixing par-
ticle 1 at the origin, (x, »)=(0, 0), and placing particle
2 on the x-axis at a distance 7 away, (x,,¥,) = (7, 0).
The matrix is the N-particle, 2V X 2N force-constant
matrix, with the 3 rows and columns, corresponding
t0 X, ¥y ¥,,removed [6].

By coﬁlparing the grain-boundary energies and en-
tropies with those of perfect crystals, in our case
parallelograms of 4 X 7,7 X 11,10 X 15,and 13 X 19
atoms, the energy and entropy data shown in table 1
were obtained. Plotting these data versus the recipro-
cal grain-boundary length gives the infinite-crystal

Table 1
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Table 2

Energies obtained by Monte Carlo sampling for constrained
parallelogram and grain-boundary crystals with NV = 77. Values
shown are for 50 000 moves at each temperature (the last figure
is uncertain). Bulk melting temperature is about 0.012 wd* JkB.

k]_),ﬁ?’/rca’2 ®p/kd2 ngg"xaﬂ
0.003 —4.19 —4.06
0.006 -3.93 -3.79
0.009 ~3.60 -3.43

quasiharmonic grain-boundary free energy,
Ad /L =0.0225 kd — 0430 kg T/d ,

where L is the grain-boundary length. Earmme et al.
found a grain-boundary entropy of 1.3 kg per atomic
area for a = = 5 face-centered cubic model of alumi-
num [7]. Hashimoto et al. found similar results for
the £ =S case and considerably smaller entropies in
the case of Z = 11 [8].

To estimate the magnitude of anharmonic contri-
butions (of order 72 and higher) we performed Monte
Carlo calculations of the energies of the 77 particle sys-
tems, grain-boundary and perfect crystal. System config
rations were sampled with each particle constrained to
lie within a circle of radius d/2 centered at its mini-
mum energy position, and data up to 3/4 of the bulk
melting temperature were obtained. Table 2 shows the
results for the 77 particle systems. The difference be-
tween the Monte Carlo results and those of table 1 is
the anharmonic contribution to the internal energy.
Assuming this follows a T 2 variation we can integrate
the energy difference to obtain an estimate of the coef-
ficient of the T2 contribution to the free energy. For
the 77 particle grain-boundary system one finds the
interface free energy per unit length to be

Parallelogram and grain-boundary energies for two-dimensional crystals. Energy and entropy differences are tabulated. 7 is the mo-

ment of inertia. Infinite size extrapolations are also given,

N Iyimd* Igpimd® Dp/rd® bgp/xd A®/kdL ASdfkRL
4x7 147 152.34 ~14175 ~1.3605 0.021559 0.54330
7x 11 1078 1104.4 ~4.4100 ~4.2936 0.022005 0.48932

10 15 4037.5 4110.8 ~9.0225 —8.8460 0.022165 0.46942

13% 19 10868 11024 ~15.2550 ~15.0196 0.022244 045964

- 0.0225 0430
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AA[L = BAg/L — 120(kgT)?[kd> .

The anharmonic free energy shift is seen to be relative-
ly large, such that the quasiharmonic approximation
could be in error by a factor of two near melting.

The methods illustrated here should be equally ef-
fective with other potentials and three-dimensional sys-
tems. The simple size dependence, with corrections to
AA/L of order dkzT/L, found here suggests that ex-
trapolating a series of small crystal calculations in-
creases the accuracy of the estimated free energies.
The determinant method for quasiharmonic free ener-
gy evaluation is orders of magnitude faster than the
corresponding matrix diagonalisation. If necessary,
quantum corrections can be included. The use of simu-
lation techniques to estimate free energy of defect
solids deserves further attention.
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