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The grain-boundary free energy of a two-dimensional E 7 bicrystal has been estimated by combining a quasiharmonic 
method based on evaluation of the partition function, with Monte Carlo energy sampling. 

Free energies are fundamental to understanding the 
thermodynamics of solids [1] . Grain-boundary phase 
transformations in polycrystalline solids can be char­
acterized in terms of the excess free energy per unit 
length associated with the different grains [2] . The 
determination of equilibrium grain-boundary struc­
tures at finite temperatures requires minimising con­
strained free energies, though frequently only the po­
tential energy is minimised [3] . 

Computer simulations are efficient methods for 
sampling the configuration space of many-particle 
systems. These techniques have two advantages over 
static calculations [3] . Dynamical mechanisms can be 
followed, and thermal effects, including entropy and 
pressure, are included, thus providing estimates of the 
Gibbs or Helmholtz free energies [4] . In this letter 
we describe a general approach to calculating bicrystal 
grain-boundary free energies as a function of tempera­
ture, by combining lattice dynamics with Monte Carlo 
energy measurements. These methods can be applied 
to any bicrystal boundary with a stable quasiharmonic 
energy minimum. We use a piecewise-linear nearest-

neighbor force law. These results have interesting im­
plications, and the methods used can be applied to 
other, two- or three-dimellsional, solid interfaces. 

We consider four different crystal sizes all of the 
shape shown in fig. 1. Each bicrystal contains a 
I: 7 (38.21°) coincidence boundary, with repeat 
length of V7 times the equilibrium interatomic spac­

d. The interatomic potential leads to piecewise­
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Fig. 1. A E 7 (38.21°) bicrystal withN 150 atoms and a 
grain-boundary length of L " 3..j7d. The system can be con­
verted to a lOx 15 atom parallelogram by connecting the two 
sides after a relative out-of-plane rotation. 
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linear forces: 

4;(r) :i I< (r di - I<w2 
, r <d +w, 

(r - d - 2wp, d +w < r <d +2w , 

0, d+ 2w<r. 

For this potential the crystal bulk and surface prop­
erties have been characterized by Huckaby and others 
[5] . Here we illustrate the free energy calculation for 
the width parameter w = 0.15 d. First, relaxed crystal 
structures were obtained by solving damped equations 
of motion, mq == F cx4 . Five thousand time steps pro­
vided energy minima with machine (sixteen-digit) ac­
curacy and forces less than 10- 14 I<d. 

The classical canonical partition function can be 
evaluated at low temperatures, in the quasiharmonic 
approximation, 

exp(-A/kBT) == ZQH 

=V(21fr)(1fkBT)N-1.5(Detro.51i\2N, 

where i\ is the thermal de Broglie wavelength, 
h(21fmkBT), and Det is the determinant of a (2N - 3) 
X (2N - 3) symmetric matrix constructed by fIxing par­
ticle 1 at the origin, (x 1,Yl) (0,0), and placing particle 
2 on thex-a,xis at a distance r away, (x2'Y2) (r,O). 
The matrix is the N-particle, 2N X 2N force-constant 
matrix, with the 3 rows and columns, corresponding 
tox1'YI Y2,removed [6]. 

By co~paring the grain-boundary energies and en­
tropies with those of perfect crystals, in our case 
parallelograms of 4 X 7,7 XII, 10 X 15, and 13 X 19 
atoms, the energy and entropy data shown in table 1 
were obtained. Plotting these data versus the recipro­
cal grain-boundary length gives the infrnite-crystal 

Table 1 

Table 2 
Energies obtained by Monte Carlo sampling for constrained 
parallelogram and grain-boundary crystals with N = 77. Values 
shown are for 50000 moves at eaeh temperature (the last figure 
is uncertain). Bulk melting temperature is about 0.012 Ii.d2 /kB. 

0.003 -4.19 -4.06 
0.006 -3.93 ·3.79 
0.009 -3.60 -3.43 

quasiharmonic grain-boundary free energy, 

MQHIL == 0.0225 I<d - 0.430 kBT/d , 

where L is the grain-boundary length. Eannme et al. 
found a grain-boundary entropy of 1.3 kB per atomic 
area for a :z; == 5 face-centered cubic model of alumi­
num [7] . Hashimoto et al. found similar results for 
the :z; == 5 case and considerably smaller entropies in 
the case of:Z; 11 [8]. 

To estimate the magnitude of anharmonic contri­
butions (of order T2 and higher) we performed Monte 
Carlo calculations of the energies of the 77 particle sys­
tems, grain-boundary and perfect crystal. System confIg 
rations were sampled with each particle constrained to 
lie within a circle of radius dl2 centered at its mini­
mum energy position, and data up to 3/4 of the bulk 
melting temperature were obtained. Table 2 shows the 
results for the 77 particle systems. The difference be­
tween the Monte Carlo results and those of table 1 is 
the anharmonic contribution to the internal energy. 
Assuming this follows a T 2 variation we can integrate 
the energy difference to obtain an estimate of the coef­
fIcient of the T2 contribution to the free energy. For 
the 77 particle grain-boundary system one fInds the 
interface free energy per unit length to be 

Parallelogram and grain-boundary energies for two-dimensional crystals. Energy and entropy differences are tabulated. I is the mo­
ment of inertia. Infinite size extrapolations are also given. 

2N Ip/md2 
Igb/md2 '1>p/t<.d2 

'1>gb/t<.d t:.'1>/t<.dL t:.Sd/kp,L 

4X7 
7 X 11 

10 X 15 
13 X 19 

147 
1078 
4037.5 

10868 

152.34 
1104.4 
4110.8 

11024 

-1.4175 
-4.4100 
-9.0225 

-15.2550 

-1.3605 
-4.2936 
-8.8460 

-15.0196 

0.021559 
0.022005 
0.022165 
0.022244 

0.0225 

0.54330 
0.48932 
0.46942 
0.45964 

0.430 
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The anhannonic free energy shift is seen to be relative­
ly large, such that the quasihannonic approximation 
could be in error by a factor of two near melting. 

The methods illustrated here should be equally ef­
fective with other potentials and three-dimensional sys­
tems. The simple size dependence, with corrections to 
M/L of order dkBT/L, found here suggests that ex­
trapolating a series of small crystal calculations in­
creases the accuracy of the estimated free energies. 
The detenninant method for quasihannonic free ener­
gy evaluation is orders of magnitude faster than the 
corresponding matrix diagonalisa tion. If necessary, 
quantum corrections can be included. The use of simu­
lation techniques to estimate free energy of defect 
solids deserves further attention. 
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