SIMULATION OF BRITTLE FRACTURE via MOLECULAR DYNAMICS

WILLIAM G. HOOVER

1. SYNOPSIS

Fast fracture In briftle materlals can be simulated with molecular
dynamics, The results have many features In common with macroscopic
experiments on real materlials. These features Include steady propagation of
cracks at speeds comparabie to the speed of sound; increasing crack velocity
with Increasing stress; crack "inertia", allowing the penetration of cracks
Into regions which would not fracture under statlic condltions; and crack~

surface Irregularity at moderate~to~high temperatures.

2, INTRODUCTION

The breaking of an objJect Into two or more pleces Is fracture. The
economlc consequences of fracture in jet aircraft, bridges, and oil shale, for
instance, abundantly Justify the study of fracture from a varlety of
viewpoints, These studles range from microscopic trajectory analysis of atoms
near crack tips, through mesoscoplc analyses of the formation and motion of
distocatlons and volds, to macroscoplc finite~element or finite~difference
slmulations of fallure for materials characterized by “damage functlions® or
other failure criteria describing susceptibllity to fracture.

Fracture normally occurs through the enlargement of exlisting defects In
solids--volds, graln broundaries, micro~cracks, or surface Irregularities,
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All such defects concentrate stress, The fact that failure stresses |ie far
below Ideal crystal strengths shows that the stress concentration is [arge.
[t s not hard to see, from continuum elasticlty theory, that a sharp crack

has an Infinite stress concentration. The crack shown in Figure 1 has a

DISPLACEMENTS:
X
Leading edge U, = cos(8/2)f(r}a(8)
of the crack Uy - sin(e/2)f(e)ale)
£(r) = (k/26) (r/2m) 7%
i a(8) = 1 + 2sin(8/2) ,
Flgure 1, Crack In an elastic cont inuum' for A = n.

displacement uy in the vertical direction of order (K!G)xlgz, where K is the
"stress-intensity factor," G is the shear modulus, and x Is the horlzontal
dlstance from the crack tip. The strain and stress both diverge as r1/2 at
the crack tip. This singular behavior is unpleasant because many discretfe
zones are needad near tha crack tip to glve an accurate numerical description
of the displacements and stralns. Because Interatomic forces are finlte, It
can be antlclipated that the singularity changes form very near the crack tip.
Atomlistic simulations of fracture show how this comes about.

The classlical Griffith mode! of fracture is based on energy conservation.
Consider the application of the mode! to a strip undergoing fracture. The
unbroken part of the elastlic strip shown In Flgure 2 has been stretched by an

amount Zch vertically, so that Its energy density e Is (2q+k)a2/2, where 1 and

A are the Lamé’consfanfs.
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Figure 2. Elastic strip undergoing brittle fracture. Strip width Is 2h,

The broken portlon Is stress free but has a surface energy, per unit length of
surface vy, equivalent to an energy density y/h. Griffith suggested that
simple energy minimization causes fracture to propagate when the strain energy

matches the surface energy:

1/2 2

= (2n+r) ' T(2y/h} 2n+A)EG . {1

%
This Griffith mode! Is only an approximation. |t ignores the irreversible
nature of fracture, the sensitivity of fracture to temperature, and the
dependence of crack-surface morphoiogy on both temperature and velocity.
Griffith's model always underestimates the fallure straln, but It Is still &

useful semlquantitative guide, as we will see.



3, ATOMISTIC MODELS OF FRACTURE

A microscoplc atomistic mode!l for crack structure or growth requires (1)
a force-law, (2) equations of motlon, and (3) appropriate boundary conditlons.
For simpie closed-shell atoms--argon s the prototype--the forces are well
understood. For metals the sltuation is complicated, even for bulk matter.
When emplirical potentlal functions are fitted to bulk properties it Is not
unusual to find that defect propertles are In error by as much as a factor of
Two.z Desplte Intense theoretical sffort 1+ appears highly unlikely that
fundamental quantum-mechanical estimates of metal forces wlll prove useful
soon. Instead, there Is considerable room for judiclous empirical work. An
approach fitting all possible data (elastic contants, formation, fusion,
surface, vacancy and stacking-fault energies, etc.) with short-ranged forces
might work. At present it s unreasonable to expect quantitative agreement
between computer simulations and experIment--the forces are simply not well
enough known.

It Is stil] possible to develop techniques for simulating brittie
fracture by studying model systems with simple forces. Thls is the point of

view we have adopted In studying fracfure}’4

It is a particularly frultful
approach to follow in characterizing number-dependence, sensitivity to
boundary conditions, and the qualitative response of brittie cracks to stress
gradients and other lattice defects. Because plastic deformation Involves the
|ong~range interaction of many dislocations, plastic "ductile" fracture Is
best handled from slther the mesocoplc or macroscoplic polnt of view.

The simplest force law useful In treating fracture problems is the

plecewise-iinear ("Hooke's Law") force Illustrated In Fligure 3.
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Figure 3. Potentlal and force used
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Fligure 4. Fixed~stress boundary.
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In fracture simulations.

The atom-atom potentlal has Its mini-
mum at r=d. The force resisting
separatlion Increases with r up to the
mechanical Instablility point at
r=d+w. The force then falls linearly
for larger r, and vanishes for
r2d+2w.

Fracture calculations for this
potential have been carrled out using

3 and fIxed=

both fixed-stress
displacemen‘l'4 boundary conditions.,
in the fixed-stress case 512-atom
crystals, periodic In the x direc-

+lon, were stressed In the y dlrec-

tion as shown In Figure 4,



{s> with a crack of length L is

The potential energy ag taken up by such crysta
shown In Figure 5. The interparticle force constant is k, and the inter=-

particle spacing is d. The energy data extrapolate smoothly to the elastic-

y T I T theory result (marked with an x).
KAD | Flixed-displacement boundaries
15;5 have been studied for the same force
1 — law. The crack shown In Figure 2 has
277'_x ] all atoms on the top and bottom
boundaries fixed, in order to produce
° —g ; ;“‘ a macrosoplc vertical straln gyy’ In
d/L this case too the energy extrapolates
Figure 5. Energy Increase in a smeothly To the elastic-theory
512-particle stressed crystal. prediction as the number of atoms

Is Increased. For the two kinds
of boundary conditions shown in figures 2 and 4 the stress at which a long
crack wlli propagate can be calculated. By conslidering crystals of from 700
to 10,000 atoms the Iimiting value of this failure stress, and thus the
critical stress-intensity factor Kc was calculated with an accuracy of 1 part
per ‘rhousand.4 The results obtalned by the two methods agreed nicely. The
cracks require a stress exceedlng the Griffith stress S by about 26%. The
excess energy, beyond the surface energy, ends up as thermal motion, or
"heat", the slignature of an Irreversible process. A part of the excess energy
can be used to drive fracture at stresses below the static value. The
specimen shown in Figure 2 actualiy has a slight taper. The siope of the

upper boundary is =0,016., The arrested crack passed beyond the polnt of

-~ 150 ~



arrest predicted from static analysis (indicated by arrows). A serfes of such
calculations resulted In final arrest at stresses ranging from 2 to 12% in
excess of the Griffith stress. Thils commonly observed feature of real cracks

can occur only when the Griffith stress |lies below the static fallure stress.

IN [RON

4. ATOMISTIC MODELS FOR FRACTURE
Most three~-dlimensional fracture

models have dealt with the cleavage

fracture of body-centered cublc
256 ¢ {eV)
Iron.%’”»* The body-centered lat- 1.0
tice Is unstable with nearest-neighbor Tnn 2
forces (It is a worthwhile exercise to B ///L/’\\\sa/dr I‘S"”
find the shear direction demonstrating 0 % % l‘ } f
this). Therefore a potential linking | \:ti—”i/”> | i
second neighbors Is required. The 20 25 30 35 40 r(R)
Johnson potential is most commonly used. Figure 6. Johnson lron potential.

It Is shown in Figure 6.
This potential underestimates the surface energy by about a factor of
two, but Is otherwise useful In suggesting the addifonal complexities

associated with three-dimensional simulations. To avold using more than a few
hundred particles, only the crack t1p Is described, by fixing elther the

displacements or the forces on the boundary particles. More sophisticated
models couple the boundaries to an elastic continuum which can incorporate
realistic boundary conditions. {n most cases the crystals studied have been
only one unit cell in thickness, and, typlcally, there [s no mechanism for the
relief of stress in the thickness direction or for the formation of jogs which

might reduce the stress required for fracture.
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Mullins® has studied the dynamics of crack Tips propagating at stresses
ranging from 20 to 70§ above the Griffith stress, Evidently the minTmum
stress required for fracture, usling the Johnson potential, Is close to that
found In two dimenslons, namely between 1.2 and 1.3 times the Grifflth stress,
Mulllns found propagation speeds ranging from 20 to 558 of the transverse
sound veloclity, as shown In Figure 7. These speeds |le somewhat below those

found for the two-dimensional

2000 — T
- Hooke's-Law forces, and agree well
-§ with fracture data on steel.
§. 1000 - There appear to be no computa-
¥ tional difflculitles in extendling
w
© 0 | Muliins' work to Include defects In
1.0
15 2.0 the vicinity of the crack tip. The
K/Kg
main problem lles In the uncertain
Figure 7. Crack veloclty for iron, nature of forces in real metals.

5. DYNAMIC STRESS INTENSITY FROM SHADOW PATTERNS

During the past ten years Kalthoff's group at Freiburg has studied
dynamic fracture, In metals and plastics, using "shadow patterns®, The
propagation of a crack down the length of a specimen produces a moving cusp-
like dimple around the crack tip. When transverse light Is reflected from the
specimen (as with steel) the moving dimple results In a bright "caustic" ring
which can be photographed. For elastic materlials, the slze of the ring can be
related directly to the stress intensity factor--l.e., the stress x (an)1/2
directly in front of the crack +ip. If the light Is transmitted (as with

transparent piastics), the dimpling acts as a lens and a simllar moving ring

appears behind the specimen.



By tracking the size and motlon of the caustic ring Kalthoff's group has
obtalned conslderable data indicating wide variations In stress about that
which could be calcutated on a statlic basis. Because the data indicate that
fracture sometimes propagates at stresses lower than the critical static
value, a quantitative understanding of the shadow pattern results has been
sought by the Electrlc Power Research institute.?

To what extent can shadow patterns be dupiicated from atomistic
simulations? Thls questlion has been studied by Moran.? By using the plane
stress elastic equations Yo calculate displacements normal to his two-
dImensional crystals, Moran could represent the surface of a three~dimensional
thin fracturing strip. Next, by simulating the reflection of light from the
triangular mirrors allgned according to the elastic equations, he simulated
the |ight pattern which wouid be photographed in a shadow-pattern experiment.
Figure 8 is a serles of shadow patferns formed as the first seven bonds break.

Indvidual sound waves can be seen spreading out from the moving crack tip.



Figure 8. Shadow patterns for cracks with (AL/d) = 0,1,2,3,4,5,6,7
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Flgure 9, taken from Kalthoff's work,

o
i

is a reproduction of an experimental

Lo aes

shadow pattern in high strength
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[

steel.,

o
i

The quantitative analysis of the
shadow patterns Is somewhat disap-
pointing. The stati¢ caustic agrees
Flgure 9. Experimental shadow well In slze with the expected value

pattern for steel. from elastic theory. The Irregu-
tarity in the dynamic results
(and those shown In Figure 8 were obtalned with a sllight viscous damping added
to the equations of motion) makes quantitative comparison with experiment
Impossible. The steady~state caustic dlameter Is essentially Indistinguish-

able (within nearly 10% fluctuations) from an estimate based on statlc theory.

6. DUCTILE FRACTURE

Except at low temperature, real metals normally fracture by a ductile
mechanism. Volds form and coalesce as shear stress generates and moves
lattice dislocatlons. When "piastic flow" has occurred the falled parts no
longer fit together after fracture. Because real metals are made of atoms,
there is no doubt that a sufficiently large atomistic model could describe
ductile failure too. But how large? In ductlile failure material mill!imeters
away from the crack surface undergoes extensive plastic flow. A cubic
mi i1 imeter of Iron contalns about 10'% atoms. Even a square mi | imeter exceeds

current computational capacity by six orders of magnltude.
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Thus the study of models following the detailed atomistic motion of
dislocations Is not feasibie, and a continuum macroscoplic approach Is used
Instead. Rather than solving Newton's ordinary differential equations of

mot jon,

ma=F , (23

we solve instead the partlal differential macroscoplic equation of motion,

pa = VYeg (3)

where o is the stress tensor. The finlte~d]fference method Involves approxi=-
mating the continuum by a discrete set of nodes (or contliguous zones) and
moving these according to ordinary differential equations. {f, for Instance,
a two~-dimensional elastic continuum is divided Into triangular zones (See
Flgure 2), and the displacement In each zone varles linearly with position,
the continuum equation (3) reduces to equations (2) where the force Is given
by Hooke's Law.3

To treat fracture by contlnuum methods, a criterion for the breaking of
nodal 1links or the separation of contiguous zones must be specified. Wilkins’
has successfully used a "damage function® depending upon plastic strain and
pressure as a failure criterion., Popelar and Gehien equated the (potential)
energy lost In discarding a stressed crack-tip zone fo the new surface energy
galned. The surface energy was a specifled function of crack velocity. Other
emplirical approaches have been based on crack-tip radlus or crack-opening
displacement. Such empirical approaches can successfully correlate data for

particular classes of experiments, but are not sufficiently sound to make
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trustworthy predlictions for new geometfries. A major computational diffliculty
Is the necesslity to speclfy In advance possible crack trajectories.

The fundamental mechanism for the propagation of ductile fracture Is the
growth and coalescence of volds ahead of the crack tip. The detalied
numerical simulation of fracture Incorporating these volds has not yet been

seriously attempted.

7. OUTLOOK

Empirical short-ranged potential functions, chosen to reproduce bulk and
defect properties, coupied with Mullins' boundary conditlons, should help In
understanding crack-tip phenomena--stress corrosion cracklng, disiocation
production, and the Interactlion of cracks with volds. The prospects for
fundamental progress on ductile fracture are more remote. As a start, more

emphasls on mesoscoplc simulations |s recommended.

8. PROBLEMS

1. Show that the shear modulus fn a face-centered cubic lettice with
nearest-nelghbor Hooke's Law forces Is not isotropic.

2, Show that the Griffith far-fleld stress for a friangular~lattice
strip, of width 2Zh, with nearest-nelghbor Interactlon energy -¢ Is
(3%3K812h31/2, where « Is the nearest-nelighbor Hooke's~Law force
constant. Hint: show first that the lattice Is elastically isotro-

plc, with both Lamé constants n and A equal to /3k/4.
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