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1. SYNOPSIS 

Fast fracture in brittle materials can be simulated with molecular 

dynamics. The results have many features In common with macroscopic 

experiments on real materials. These features Include steady propagation of 

cracks at speeds comparable to the speed of sound; Increasing crack velocity 

with Increasing stress; crack "Inertia", al lowing the penetration of cracks 

Into regions which would not fracture under static conditions; and crack-

surface Irregularity at moderate-to-high temperatures. 

2. INTRODUCT ION 

The breaking of an object Into two or more pieces Is fracture. The 

economic consequences of fracture In Jet aircraft, bridges, and 01 I shale, for 

Instance, abundantly Justify the study of fracture from a variety of 

viewpoints. These studies range from microscopic trajectory analysis of atoms 

near crack tips, through mesoscQplc analyses of the formation and motion of 

dislocations and VOids, to macroscopic finite-element or finite-difference 

simulations of failure for materials characterized by "damage functions" or 

other fal lure criteria describing susceptibility to fracture. 

Fracture normally occurs through the enlargement of existing defects In 

sollds--volds, grain broundarles, micro-cracks, or surface Irregularities. 
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AI I such defects concentrate stress. The fact that failure stresses lie far 

below Ideal crystal strengths shows that the stress concentration Is large. 

It Is not hard to see, from continuum elasticity theory, that a sharp crack 

has an infinite stress concentration. The crack shown in Figure 1 has a 
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Figure 1. Crack In an elastic continuum1 for A = n. 

displacement uy In the vertical direction of order (K/Glx1/ 2, where K is the 

"stress-intensity factor," G is the shear modulus, and x Is the horizontal 

distance from the crack tip. The strain and stress both diverge as r-1/ 2 at 

the crack tIp. This singular behavior is unpleasant because many discrete 

zones are needed near the crack tip to give an accurate numerical description 

of the displacements and strains. Because InteratomIc forces are fInite, It 

can be antIcipated that the singularity changes form very near the crack tip. 

Atomistic simulations of fracture show how this comes about. 

The classical GrIffIth model of fracture Is based on energy conservation. 

Consider the appl ication of the model to a strip undergoIng fracture. The 

unbroken part of the elastIc strip shown In Figure 2 has been stretched by an 

amount 2Eh vertically, so that Its energy density e Is (2n+A)€2/2, where nand 

A are the Lam: constants. 



1 
Figure 2. Elastic strip undergoing brittle fracture. Strip width Is 2h. 

The broken portion Is stress free but has a surface energy, per unit length of 

surface y, equivalent to an energy density y/h. Griffith suggested that 

simple energy minimization causes fracture to propagate when the strain energy 

matches the surface energy: 

(1) 

This Griffith model Is only an approximation. It Ignores the Irreversible 

nature of fracture, the sensitivity of fracture to temperature, and the 

dependence of crack-surface morphology on both temperature and velocity. 

Griffith's model always underestimates the fal lure strain, but It Is stil I a 

useful semiquantitative guide, as we wll I see. 



3. ATOMISTIC MODELS OF FRACTURE 

A microscopIc atomistIc model for crack structure or growth requires (1) 

a force-law, (Z) equatIons of motIon, and (3) appropriate boundary conditions. 

For simple closed-shel I atoms--argon Is the prototype--the forces are wei I 

understood. For metals the sItuation Is complicated, even for bulk matter. 

When empirIcal potential functions are fitted to bulk properties It Is not 

unusual to find that defect properties are In error by as much as a factor of 

two.Z Despite Intense theoretical effort It appears hIghly unlikely that 

fundamental quantum-mechanical estimates of metal forces wll I prove useful 

soon. Instead. there Is consIderable room for judicious empirical work. An 

approach fItting all possible data (elastic contants, formation. fusIon. 

surface, vacancy and stacking-fault energies, etc.) with short-ranged forces 

mlgh1 work. At present It Is unreasonable to expect quantItative agreement 

between computer sImulations and experlment--the forces are simply not wei I 

enough known. 

It Is stll I possible to develop techniques for simulating brittle 

fracture by studying model systems with simple forces. This Is the point of 

view we have adopted In studying fracture.3 ,4 It Is a particularly fruitful 

approach to fol low In characterizing number-dependence, sensitivity to 

boundary conditions, and the qualitatIve response of brittle cracks to stress 

gradients and other lattice defects. Because plastic deformation Involves the 

long-range Interaction of many dislocations, plastic "ductl le" fracture Is 

best handled from either the mesocoplc or macroscopic point of view. 

The simplest force law useful In treating fracture problems Is the 

piecewise-linear ("Hooke's Law") force Illustrated In Figure 3. 
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FIgure 3. Potential and force used In fracture sImulations. 

The atom-atom potentIal has Its mlnl­

j 4 4 4" mum at r=d. The force resIstIngH 
separation Increases wIth r up to the 

mechanical Instability poInt at 

r=d+w. The force then fal Is linearly 

for larger r, and vanIshes for 
, 

r~d+2w. 

Fracture calculatIons for thIs 

potential have been carrIed out usIng 

both flxed-stress3 and flxed­

dlsplacement4 boundary conditions. 
~ In the fixed-stress case 512-atom 

, 
crystals, perIodIc In the x dlrec­¥ tttt 'tt t n 
tlon, were stressed In the y dlrec-

FIgure 4. Fixed-stress boundary. tlon as shown In Figure 4. 



The potential energy 6~ taken up by such crystals3 with a crack of length L is 

shown In Figure 5. The Interparticle force constant is k, and the Inter­

particle spacing is d. The energy data extrapolate smoothly to the elastic­

2 
theory result (marked with an x). 

FIxed-displacement boundaries 

have been studied for the same force 

law. The crack shown in Figure 2 has 

al I atoms on the top and bottom 

boundaries fixed, In order to produce 

a macrosoplc vertical strain Eyy ' In 

d/L this case too the energy extrapolates 

Figure 5. Energy Increase In a smoothly to the elastic-theory 

512-partlcle stressed crystal. prediction as the number of atoms 

Is Increased. For the two kInds 

of boundary conditions shown In figures 2 and 4 the stress at which a long 

crack will propagate can be calculated. By considerIng crystals of from 700 

to 10,000 atoms the limIting value of this failure stress, and thus the 

critical stress-Intensity factor Kc was calculated with an accuracy of part 

per thousand. 4 The results obtained by the two methods agreed nicely. The 

cracks require a stress exceeding the Griffith stress 0G by about 26%. The 

excess energy, beyond the surface energy, ends up as thermal motion, or 

"heat", the signature of an Irreversible process. A part of the excess energy 

can be used to drIve fracture at stresses below the static value. The 

specimen shown In Figure 2 actually has a slight taper. The slope of the 

upper boundary Is -0.016. The arrested crack passed beyond the point of 
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arrest predicted from static analysis (Indicated by arrows). A series of such 

calculations resulted In final arrest at stresses ranging from 2 to 12% In 

excess of the GriffIth stress. This commonly observed feature of real cracks 

can occur only when the Griffith stress lies below the static fal lure stress. 

4. ATOMISTIC MODELS FOR FRACTURE IN IRON 

Most three-dimensional fracture 

models have dealt with the cleavage 

fracture of body-centered cubic 

iron. 2,5,6 The body-centered lat­

tice is unstable with nearest-neighbor 

forces (It Is a worthwhi Ie exercise to 

find the shear direction demonstrating 

this). Therefore a potential I Inking 

second neighbors Is required. The 

Johnson potential is most commonly used. Figure 6. Johnson Iron potentIal. 

It Is shown In Figure 6. 

This potential underestimates the surface energy by about a factor of 

two, but Is otherwise useful In suggesting the addltonal complexities 

associated with three-dimensional simulations. To avoid using more than a few 

hundred particles, only the crack tip Is described, by fixing either the 

displacements or the forces on the boundary particles. More sophisticated 

models couple the boundaries to an elastic continuum which can Incorporate 

real istic boundary conditions. In most cases the crystals studied have been 

only one unit cel I in thickness, and, typically, there Is no mechanIsm for the 

relief of stress In the thickness direction or for the formation of Jogs which 

might reduce the stress required for fracture. 
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Mul IIns6 has studied the dynamics of crack tIps propagating at stresses 

ranging from 20 to 70% above the Griffith stress. Evidently the mInImum 

stress requIred for fracture, usIng the Johnson potential, Is close to that 

found In two dImensions, namely between 1.2 and 1.3 times the Griffith stress. 

Mul I Ins found propagation speeds ranging from 20 to 55% of the transverse 

sound velocity, as shown In Figure 7. These speeds I Ie somewhat below those 

found for the two-dimensional 
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Hooke's-Law forces, and agree wei I 

wIth fracture data on steel. 

There appear to be no computa­

tional dlfflculltles In extendIng 

Mul I Ins' work to Include defects In 
1.0 1.5 2.0 the vIcInity of the crack tIp. The 

K/KG 
main problem lIes In the uncertaIn 

Figure 7. Crack velocity for Iron. nature of forces In real metals. 

5. DYNAMIC STRESS INTENSITY FROM SHADOW PATTERNS 

During the past ten years Kalthoff's group at Freiburg has studied 

dynamic fracture, In metals and plastics, using "shadow patterns". The 

propagation of a crack down the length of a specImen produces a movIng cusp-

I Ike dimple around the crack tip. When transverse light Is reflected from the 

specimen (as with steel) the moving dimple results In a bright "caustic" ring 

which can be photographed. For elastic materials, the size of the ring can be 

related directly to the stress intensity factor--I.e., the stress x (2~r)1/2 

directly In front of the crack tip. If the light Is transmitted (as with 

transparent plastiCS), the dimpling acts as a lens and a simi lar movIng ring 

appears behind the specimen. 



By tracking the size and motion of the caustic ring Kalthoff's group has 

obtained considerable data indicating wide variations In stress about that 

which could be calculated on a static basis. Because the data Indicate that 

fracture sometimes propagates at stresses lower than the critical static 

value, a quantItative understanding of the shadow pattern results has been 

sought by the Electric Power Research institute. 4 

To what extent can shadow patterns be duplicated from atomistic 

simulations? This question has been studied by Moran. 4 By using the plane 

stress elastic equations to calculate displacements normal to his two­

dimensional crystals, Moran could represent the surface of a three-dimensional 

thin fracturing strip. Next, by simulating the reflection of light from the 

triangular mirrors aligned according to the elastic equations, he simulated 

the light pattern which would be photographed In a shadow-pattern experiment. 

Figure 8 Is a series of shadow patterns formed as the first seven bonds break. 

Indvldual sound waves can be seen spreading out from the moving crack tip. 



-

Figure 8. Shadow patterns for cracks with (~L/d) 0,1,2,3,4,5,6,7 
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Figure 9. Experimental shadow 

pattern for steel. 

Figure 9, taken from Kalthoff's work, 

Is a reproduction of an experimental 

shadow pattern In high strength 

steel. 

The quantitative analysis of the 

shadow patterns Is somewhat disap­

pointing. The ~ caustic agrees 

wei I In size with the expected value 

from elastic theory. The Irregu­

larity In the dynamic results 

(and those shown In Figure 8 were obtained with a slight viscous damping added 

to the equations of motion) makes quantitative comparison with experiment 

Impossible. The steady-state caustic diameter Is essentially Indistinguish­

able (within nearly 10% fluctuations) from an estimate based on static theory. 

6. DUCTILE FRACTURE 

Except at low temperature, real metals normally fracture by a ductile 

mechanism. Voids form and coalesce as shear stress generates and moves 

lattice dislocations. When "plastic flow" has occurred the failed parts no 

longer fit together after fracture. Because real metals are made of atoms, 

there Is no doubt that a sufficiently large atomistic model could describe 

ductl Ie fal lure too. But how large? In ductl Ie fal lure material mil I Imeters 

away from the crack surface undergoes extensive plastic flow. A cubic 

ml I I Imeter of Iron contains about 1019 atoms. Even a square ml I I meter exceeds 

current computational capacity by six orders of magnitude. 
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Thus the study of models fol lowIng the detal led atomIstIc motion of 

dIslocatIons Is not feasible, and a continuum macroscopic approach is used 

Instead. Rather than solving Newton's ordinary differential equations of 

motion, 

rna F (2) 

we solve Instead the partial differential macroscopIc equation of motion, 

pa (3) 

where 0 Is the stress tensor. The finite-difference method Involves approxi­

mating the continuum by a discrete set of nodes (or contiguous zones) and 

moving these according to ordinary differential equations. If, for Instance, 

a two-dimensional elastic continuum Is divided Into triangular zones (See 

FIgure 2), and the dIsplacement in each zone varies lInearly with position, 

the continuum equation (3) reduces to equations (2) where the force Is given 

by Hooke's Law. 3 

To treat fracture by contInuum methods, a criterion for the breaking of 

nodal I Inks or the separation of contiguous zones must be specified. Wi Ikins7 

has successfully used a "damage function" depending upon plastic strain and 

pressure as a failure criterion. Popelar and Gehlen equated the (potential) 

energy lost In dIscarding a stressed crack-tip zone to the new surface energy 

gained. The surface energy was a specified function of crack velocity. Other 

empIrical approaches have been based on crack-tip radIus or crack-opening 

displacement. Such empirical approaches can successfully correlate data for 

particular classes of experiments, but are not sufficiently sound to make 
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trustworthy predictions for new geometries. A major computational difficulty 

Is the necessity to specify In advance possible crack traJectories. 

The fundamental mechanism for the propagation of ductile fracture Is the 

growth and coalescence of voids ahead of the crack tip. The detailed 

numerical simulation of fracture Incorporating these voids has not yet been 

serIously attempted. 

7. 	 OUTLOOK 

EmpIrical short-ranged potentIal functions, chosen to reproduce bulk and 

defect properties, coupled with Mul I Ins' boundary conditions, should help In 

understanding crack-tip phenomena--stress corrosion cracking, dislocation 

production, and the Interaction of cracks with voids. The prospects for 

fundamental progress on ductile fracture are more remote. As a start, more 

emphasis on mesoscoplc simulations Is recommended. 

8. 	 PROBLEMS 

1. 	 Show that the shear modulus In a face-centered cubic lattice with 

nearest-neighbor Hooke's Law forces Is not Isotropic. 

2. 	 Show that the Griffith far-field stress for a triangular-lattice 

strip, of width 2h, with nearest-neighbor Interaction energy -E Is 

(313K€/2hl 1/2, where K Is the nearest-neighbor Hooke's-Law force 

constant. Hint: show first that the lattice Is elastically Isotro­

pic, with both Lame
.; 

constants n and A equal to 13K/4. 
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