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We fol!ow R~se~feld in comparing fluid-phase thermal conductivities for several simple pair 
potentials .. Wlt.hm ab.out ten per~~nt. these (nonelectronic) conductivities satisfy a corresponding 
s~ates relatlOn mvolvmg the eqUlhbnum entropy. This corresponding states relation, deduced 
dIrectly from the resul~s ofcoo:puter simulations, is also suggested by hard-sphere perturbation 
theory and by t~e qu.aslharmomc cell-model approach. The conductivity-entropy relation should 
be useful for esttmatmg transport coefficients from the equation ofstate ofmonatomic fluids with 
arbitrary pair potentials. 

I. INTRODUCTION 

About ten years ago several groups 1 suggested that 
hard-sphere perturbation theory could be used to calculate 
accurate thermodynamic properties for dense fluids. This 
approach has been refined. Now energies and pressures can 
be reliably estimated with uncertainties of order 0.05 in E / 
NKT and PV / NKT. 2 

An accurate, theoretically based, approach to dense­
fluid transport coefficients is still lacking. No convergent 
perturbation theory of transport has been found. The alter­
native to analytic work, brute-force computer methods can 
be used to estimate transport coefficients. But the computer 

~ methods are considerably more time consuming, for the 
same accuracy, than are those designed to measure equilibri­
um properties. 

Shock wave experiments have been an invaluable 
source of high-pressure thermodynamic information. Un­
fortunately equally-precise experiments measuring trans­
port properties have not been developed. 

On the theoretical side, Enskog's ideas, more than half a 
century old, are still as good as any for estimating the diffu­
sion, viscosity, and thermal conductivity coefficients. As an 
alternative, approximate transport coefficients can be esti­
mated from cell or "Einstein" models. Either method, Ens­
kog's or Einstein's, can be used to suggest corresponding­
states treatments of transport coefficients. Here, in 
considering thermal conductivity, we closely follow the ap­
proach Rosenfeld3 used in analyzing diffusion and viscosity 
coefficients. 

In computer simulation, molecular dynamics methods 
are used to get reliable estimates of transport coefficients. 
The molecular dynamics simulations, either "equilibrium" 
ones using the Green-Kubo formulas, or "nonequilibrium" 
ones generating steady fluxes, make it possible to estimate 
viscosity and heat conductivity with uncertainties on the or­
der ofa few percent.4 The nonequilibrium methods pioneer­
ed by Ashurst5 are more promising than is the equilibrium 
Green-Kubo approach.6 Any computational technique is 

~ 
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complicated by unavoidable fluctuations and number de­
pendence. These difficulties are gradually eroding in signifi­
cance with the increase in computer speeds and the gaining 
of experience in extrapolating small-system results with 
large fluxes to macroscopic zero-flux values. 

The first direct use of molecular dynamics results to 
estimate transport coefficients for fluids was provided by the 
hard-sphere system for the high-temperature gas and liquid 
transport properties of molecular fluids. It was found, for 
. b 7mstance y Dymond, that experimental transport proper­
ties along an isotherm could be represented by molecular 
dynamics results with a fixed hard-sphere diameter over a 
wide density range. Such hard-sphere models, however, are 
not suited to estimating fluid properties in the "dense fluid 
region," where any such parameters must be both density 
and temperature dependent. This region can be defined as 
the relatively "low temperature" fluid region where the tem­
perature is below about twenty times the melting tempera­
ture. This corresponds generally to regions of higher than 
normal density and pressure. 

In the dense fluid region the molecular dynamic study 
of the inverse-power potentials has been rewarding. 8 In addi­
tion to the usual corresponding-states relations for poten­
tials which are linear in an energy parameter and in a func­
tion of distance, the inverse powers also exhibit the simplifi­
cation that a single isochor, isotherm, or isobar is sufficient 
to generate equation-of-state and transport properties over 
the whole phase diagram. 

A similar simplification holds for nonequilibrium sys­
tems ofinverse-power particles arbitrarily far from equilibri­
um. It is only necessary that all four kinds of forces entering 
into nonequilibrium dynamical simulations-interparticle 
forces, boundary forces, constraint forces, and driving 
forces-simultaneously satisfy the same scaling relations. 

Corresponding states relationships linking dissimilar, 
nonscaling f()rce laws can only be approximate, not exact. 
But these approximate relationships can be useful both in 
making estimates of unknown constitutive properties and 
for suggesting theoretical analyses of regularities found em­
pirically. Rosenfeld3 correlated shear viscosity and diffusion 
with the excess eIitropyin the dense liquid region. This ap­
proach was motivated by the success of the fluid-phase hard-
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sphere perturbation theory in which the hard-sphere diame­
ter--or equivalently, the entropy-was used to parametrize 
the structure of equilibrium fluids. As a justification for ex­
pecting transport coefficients to have similar correlations 
away from equilibrium, one can site Maxwell's relaxation­
time approach. In fact, Rosenfeld's empirical correlations 
suggest that diffusion and viscosity can be estimated within 
about 30% by using corresponding states values based on the 
excess entropy. This approach is as useful as Enskog's origi­
nal recipe relating transport coefficients to the thermal pres­
sure. 

Here we extend Rosenfeld's ideas to heat conductivity, 
correlating old data and adding a few new points calculated 
using the new Evans-Gillan9 nonequilibrium molecular dy­
namics method. We compare our entropy correlation with 
several alternatives based on Enskog's model. We find that 
the correlation ofthe conductivity data, over a range offorce 
laws, is even better than that found by Rosenfeld for diffu­
sion and viscosity. We report three additional viscosity cal­
culations for the inverse sixth-power potential. Together 
with previous results these improve somewhat the 
applicability of the corresponding states law to real fluid vis­
cosities. 

In Sec. II we discuss the available data and display it in 
corresponding-states form. In Sec. III we discuss the proper­
ties ofentropy correlations in terms of hard-sphere and sim­
ple cell models. Finally the applicability to real fluids of the 
corresponding-states relations derived from molecular dy­
namic calculations is discussed. 

II. THERMAL CONDUCTIVITIES 

Thermal conductivities have been generated using 
three different kinds of computer simulations. The Green­
Kubo fluctuation-dissipation approach is least direct, and 
has been applied sparingly. There is some Green-Kubo data 
for the inverse first-power potential ll (one-component plas­
ma) and for hard spheres.7 The direct simulation of the flow 
ofheat between a hot reservoir and a cold one was described 
by Ashurst in his thesis.s He studied the whole range offluid 
thermodynamic states, from low-density gas to the melting 
line, for both the Lennard-Jones 12-6 potential and for its 
purely repulsive 12th-power component, the "soft-sphere" 
potential. 

These data from the Green-Kubo method and the di­
rect-simulation method have been augmented, in the past 
two years, by using external driving forces. 9,lD These exter­
nal forces generate a homogeneous heat flow without any 
accompanying temperature gradient (so that periodic boun­
daries can be used in all three directions, including the flow ~ 
direction). To generate a heat flow consistent with the 
Green-Kubo formula and with irreversible thermodynam­
ics, the driving force must have the form 

Fd A (LiE +LiP~x V, LiP~y V, LiP~zv) (1) 

for a heat current flowing in the x direction. LiE is the energy 
ofa particle, less the instantaneous mean value of that quan­
tity' where the pairwise interaction energy is divided equally 
between the two interacting particles. Similarly, 
LiP~x' LiP~y, and LiP !z represent the pressure-tensor contri­
butions of each particle's intractions, again less the instan­
taneous mean values of these quantities. The rate at which 
these external driving forces do work is exactly equal to the 
product of the heat flux vector, the volume V, and the driv­
ing force coefficientA.9 This external work would cause sub­
stantial irreversible heating in the absence of stabilizing 
steady-state constraints. A steady state is imposed through 
constraint forces. - mv;;, applied to each particle, with ;; 
chosen to keep either the temperature or total energy con­
stant. The one-component plasma, hard-sphere, soft-sphere, 
and Lennard-JonesS

,12 conductivities mentioned above have 
been augmented in the present work by the inverse sixth­
power calculations listed in Table I. The latter calculations 
were carried out in order to test the number dependence of 
the results and the sensitivity of inverse-power conductiv- . 
ities to the replusive exponent. The additional sixth-power ~ 
viscosity calculations reported in Table I provide analogous 
data for viscosity. 

All of the data are plotted in Figs. I and 2, correspond­
ing-states style, as suggested by Rosenfeld's study of diffu­
sion and viscosity. We plot the logarithm ofa dimensionless 
heat conductivity Kd 21k (kTIm)1/2 and a dimensionless vis­
cosity T}d 2/(mkT)l/2, whered 3 is the volume per particle and 
k is Boltzmann's constant, as a function ofthe excess entropy 
S e = S Sideal' The excess is measured relative to that ofan 
ideal gas at the same density and temperature. This form of 

TABLE I. Transport coefficients for the inverse-sixth-power potential ¢ E(alr).6 The reduced density p for n 6 is (NeT'1\/2 V)(ElkT)'12. se is the excess 
entropy. The thermal conductivity K and shear viscosity "I are expressed in units with a,m,E, and k set equal to unity. The time t, and viscous strain rate 
w = dux I dy, and conducting driving force A are also given in these same units. Most viscosity and conductivity calculations were done on 64 and 108 particle 
systems, respectively. 

- s" 
nk 

p K A K, r( TJr 

0.5 
1.0 
1.4 
I.Sb 

1.32 
2.60 
3.47 
3.69 

2.2±0.2 
8.5 ±2 

16.7 ± 2 

0.05 
0.03 
0.03 

500 
1600d 

310 

2.8 ± 0.3 
6.8 ± 1.5 

10.6 ± 1.3 

0.37 ± 0.02 
1.6 ± 1 

5.8 ± 0.2 

600 
240 

300 

0.47 0.03 
1.3 ± 0.1 

3.6 ± 0.15 

• See Fig. 1. 
b Liquid phase could not be stablized at this density for conductivity calculations. 
c w = 0.2 for al1 cases. 
dThis is a total time for 32, 108, and 256 particle eonduetivities, which were consistent with a weak number dependence. 
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FIG. l. Summary plot of fluid con­
ductivities for dense fluids with var­
ious pair potentials. Lennard-Jones 
values have small uncertainties of 
about 2%.5,12 Excess entropies are 
from standard sources as follows: 
n 1: W. L. Slattery et al., Phys. 
Rev. A21, 2087 (1980). n 6: D. A. 
Young and F. J. Rogers, J. Chern. 
Phys. 81, 2789 (1984). n 12: W. G. 
Hoover et al., J. Chern. Phys. 52, 
4931 (1970). n 00: Carnahan-Star­
ling representation. Lennard-Jones: 
Y. Rosenfeld, Phys. Rev. A 26, 3633 
(1982). 

______~______~____~ 

2 

Excess entropy - seInk 

the reduced transport coefficients is suggested by elementary 
kinetic theory to be appropriate to a dense medium in which 
the carriers are atoms, with scattering occurring after a mo­
tion of order the average interparticle distance. The residual 
variation of the reduced transport coefficients with the ex­
cess entropy is relatively weak. 

It is apparent that a single, straight, corresponding­
states line would describe all the conductivity data shown in 
Fig. I with an accuracy of order 10%. (The straight line 
approach is qualitatively wrong at very low density, where 
the excess entropy vanishes. In this limit our reduced con­
ductivity diverges.) The slope of the approximating line 
would be about 0.45. This number lies relatively close to the 
value, 1/3, derived from the Einstein model, as discussed in 
the next section. In Fig. 2 similar straight line fits are seen to 
be consistent with viscosity data for each power law. More­
over, the slopes for all potentials except the hard-sphere sys­
tem are about the same, 0.66 ± 10%. However, for the softer 
potentials computer viscosities are systematically lower. A 
single corresponding states representation of viscosities is 
therefore less accurate than for conductivities. 

3 4 

III. APPROXIMATE MODELS FOR CONDUCTIVITY AND 
VISCOSITY 

Enskog used the "thermal pressure" T (ap / aT lv to esti­
mate a hard-sphere diameter. He then approximated the ra­
tio of each of the transport coefficient to its low-density 
limiting value through a universal function of a reduced, 
dimensionless density based on this hard-sphere diameter. 
An alternative approach to Enskog's is to use the difference 
between the pressure and the zero-temperature pressure as a 
"thermal pressure." This approach fails for densities lying 
outside the stabilty range of the solid phase. Variational, 
hard-sphere perturbation theory supplies perhaps the best 
definition of an effective hard-sphere diameter. In this the­
ory the excess entropy is precisely that of the hard-sphere 
fluid. Because the hard-sphere entropy, relative to an ideal 
gas, is a function of the reduced density, entropy can replace 
density as a corresponding-states variable. Entropy is also 
experimentally accessible and is for that reasona more ap­
pealing choice than a variable depending explicitly on a 
hard-sphere diameter. 
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Some features ofthe dependence ofthe conductivity on 
entropy (shown in Fig. 1) can also be understood in terms ofa 
quasiharmonic Einstein model. Completely analogous argu­
ments hold for viscosity. In the Einstein model the excess 
entropy has the form 

- selNk = 3In(v) + 31n(d) - (3/2)ln(kT) + cs ' (2) 

where the additive constant Cs is material independent and v 
is the "Einstein frequency," the frequency at which a single 
particle vibrates in the fixed field of its neighbors. This fre­
quency varies as the (n + 2)/6 power of the density for in­
verse-power potential interactions. 

The Einstein frequency can also be related to the ther­
mal conductivity, as was suggested by Horrocks and 
McLaughlin.5.14 The analog for viscosity is due to Andrade.5 

Suppose that a vibrating particle transports energy from its 
hotter to its cooler neighbors, through an area of order d:2. 
The transport occurs at the Einstein frequency. The loga­

rithm of the resulting conductivity has the form 


In(K*) = In[Kd 2/k(kT Im)l!2] 


= In(v) + In(d) - (!)In(kT) + Ck' (3) 

FIG. 2. Summary plot of fluid vis­
cosities from molecular dynamics. 
The Lennard-Jones isotherm calcu­
lations5 have errors of 5%-10%. 
The present results for the inverse­
sixth power repulsive potential were 
calculated at a moderate strain rate 
(see Table I). The highest-density 
(right-most) point, near melting, is 
probably several percent lower than 
the zero-strain-rate limit. 

proportionality for all materials with a slope of 113. 
Because a more rigorous justification cannot at present 

be given by theory for these approximate corresponding 
states relationships, the evidence for their generality must 
depend mainly on the computer data. While the inverse pow­
ers do represent fluids with a wide variety ofGriineisen "lat­
tice" gammas <a lnvI aInp>, these gammas do not vary with 
density. Realistic potentials (Lennard-Jones, exponential­
six) lead to gammas which decrease rapidly with density. 
The existing Lennard-Jones conductivity calculi,ltions 
shown in Fig. 1 provide a thorough test of corresponding 
state behavior for fluids with high gammas. For viscosity, 
however, the high temperature isotherms for the Lennard­
Jones potential in the excess entropy range of Fig. 2 lie at 
high densities where the potential is effectively repulsive, 
close to the n 12 soft-sphere potential. The agreement 
with the 12th-power results on these isotherms is thus not 
surprising. Viscosity calculations at the lower reduced tem­
peratures used in the conductivity work is desirable to see 
the effect of the inverse-sixth part of the potential. 

The Lennard-Jones potential is in one sense, however, a 
relatively poor example of a typical pair potential. Its repul­ -' 


where the constant Ck too is material independent. Compar­ sions are too strong and its lattice gammas (greater than 7/3) 
ing relations (2) and (3) for S'lnk and In K reveals the same too large at high compression. It would be desirable to test 
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further the generality of the corresponding states relation­
ship by carryng out calculations using a more realistic poten­
tiallike the exponential-six potential with its weaker repul­
sions at close distances. 

1 

In spite of its large scatter, the available viscosity data 

also support the usefulness ofa corresponding states law for 

monatomic fluids. This can been seen in Fig. 2 where the 

viscosities appear to have a maximum near n:::::::: 12. This cor­

responds to the range of gammas in typical solids and li­

quids, 1.5 <r < 2.5. The possibility of lower, hard-sphere­

like, reduced viscosities due to large gammas would occur 

mainly at high temperature expanded states where, how­

ever, available Lennard-Jones results show no anomalies. 


f The main deviations from corresponding states behavior in 

fluid viscosity should thus occur at very high densities and 

pressures when pair potentials will soften and gamma is ex­

pected to decrease to its plasma value of 0.5. 
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