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Two recent studies of Lennard-Iones liquid-phase triple-point heat conductivity suggested very 
different nonlinear dependences of conductivity on field strength. This difference appeared to be 
paradoxical because the two calculations used very similar driving forces to generate heat flows. 
Here we analyze two sets of model calculations parallel to the Lennard-Iones work. The calcula­
tions describe a simple relaxation-time model for field-induced diffusive flow in a low-density gas of 
two hard disks. The nonlinearities found in the simple model suggest that the difference between 
the two Lennard-Iones conductivity calculations mainly reflects a difference in the comparable 
strengths of the currents studied. 

I. MOTIVATION 

In a series of nonequilibrium molecular-dynamics simu­
lations Massobrio and Ciccotti 1 found a heat conductivity 
independent of field strength. In these calculations the 
strength of the driving field was varied over more than six 
decades. In an independent study, Evans2 found a heat 
conductivity which varied linearly with field strength, for 
the same force law and thermodynamic state. Evans's 
calculations spanned one decade in field strength. 

The two sets of data, shown in 2 of Ref. 1, seem to 
be contradictory. But the two calculations are different in 
detail. Evans's steady-current calculations used a con­
stant external driving field. Massobrio and Ciccotti used 
a relatively weak impulsive delta-function field and fol­
lowed the decay of the resulting heat current. Because a 
delta-function field seems more abrupt than a steadily ap­
plied field, it seems natural to expect somewhat larger 
nonlinear effects in the delta-function case, for compar­
able field strengths. Comparability of impulsive and 
steady fields involves the choice of a characteristic time. 
Massobrio and Ciccotti used the molecular-dynamics time 
step in comparing the fields. The model calculations 
described here suggest that a correlation time of the order 
of the collision time is a better choice. The model calcula­
tions suggest that nonlinear effects similar to those seen 
by Evans could also be observed with impulsive fields, but 
at field strengths some 20-40 times larger than those 
used by Massobrio and Ciccotti. 

II. MODEL 

We seek to clarify the apparent contradiction between 
the steady-2 and impulsive-fieldl results by analyzing a 
simple two-particle model for field-driven diffusion taken 
from kinetic theory. The model we study here is an ini­
tially isoenergetic ensemble of two-body systems with no 
center-of-mass motion. Every system in the ensemble 
obeys the same equations of motion, but with different in­
itial conditions. We follow only the average behavior of 
"particle I," as described by the one-particle probability 
density function f(r,p,t). It is assumed that the density 
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function for our ensemble is described by the relaxation­
time Boltzmann equation 

(aflaO+(a/ar)(jil+(a/ap )(fp) af latlcollisions , 

(af latlcollisions=(jO- f)/T . (1) 

We are interested in the spatially homogeneous case 
with f( r,p,t)=f(p,t), so that the spatial-gradient term in 
the Boltzmann equation (a/ar)(ji) vanishes. We denote 
the field-free equilibrium distribution by fa and the two­
particle collision rate, which is proportional to the 
momentum p, by 1/T(p). The linear collision term 
(ja- f) /T, is exact for two hard spheres, with momenta 
±p, because hard-sphere scattering is isotropic in the 
center-of-mass frame appropriate to such a two-body sys­
tem. Because hard disks lead to very similar results, with 
less work, we describe only the hard-disk case here. Both 
diffusion3 and shear viscosity4,5 have been studied for this 
model, but with attention focused primarily on under­
standing steady-state flows. 

We will consider two different forms of accelerating 
field: (i) a constant field E producing a momentum 
change Edt during the infinitesimal interval dt, and (ii) an 
impUlsive delta-function field Elit, producing a momen­
tum change E lit during any interval that includes the 
time zero. The additional factor of lit in the impulsive­
field strength is required for dimensional consistency. 

The possibility of momentum-dependent non-Hamil­
tonian constraint forces is included in (1). Such "ther­
mostat forces," "linear" in the momenta,3-5 are used here 
to maintain a nonequilibrium steady state with fixed ki­
netic energy. We put quotes around "linear" as a re­
minder that the friction coefficient multiplying the 
momentum is itself a function of the momenta. Thus the 
equation of motion is nonlinear. 

An external field accelerates one particle, "particle I," 
in each system to the right and the other particle, "parti. 
cle 2," to the left. Thus the total momentum PI +P2 is 
zero, and is unchanged by the driving and constraint 
forces. The symmetry of the two-particle problem allows 
us to infer the behavior of particle 2 from that of particle 
1. Accordingly, we consider in what follows that the 
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Boltzmann equation solution f(p,t), normalized to unity, 
gives the probability density for particle I in momentum 
space. The current (p) = f fp dp likewise is the one­
particle current due to particle 1. 

Massobrio and Ciccotti used a form of linear-response 
theory6 as the basis of their flow simulation. In linear­
response theory, transport coefficients can be measured in 
a variety of ways, using delta function, step function, or 
sinusoidal driving forces, with or without constraint 
forces used as thermostats. In the nonlinear case there is 
neither a general proof nor a reasonable expectation that 
these various field-dependent nonlinear transport coeffi­
cients will coincide. In Sec. III we compare three dif­
ferent nonlinear mobilities-or diffusion coefficients­
obtained by solving (1) with both steady and impulsive ac­
celerating fields. 

III. RESULTS 

We consider the steady-state solution of (1) as well as 
two nonsteady solutions. The steady-state diffusion coef­
ficient, which gives the current resulting from a constant 
field of strength E, has already been calculated3 from the 
Boltzmann equation (1) for this system. In the nonsteady 
problems the two hard disks are accelerated by an impul­
sive delta-function external field Eat. This field drives 
particle I to the right and particle 2 to the left. In the 
"adiabatic" case each system is allowed to heat up, or cool 
off, as a result of this interaction with the field. In the 
"isothermal" case an additional thermostat constraint 
force Fc = -{;p, extracts or supplies kinetic energy at the 
same rate that energy is gained from or lost to the field. 
The same kinetic model which underlies the Boltzmann 
equation, a low-density gas with no correlations between 
successive collisions, and with random velocity directions 
after collisions, is used here. For more details see Refs. 
3-5 and the Appendix. 

In all three cases, we consider an initial ensemble of 
two-body systems with fixed center-of-mass momentum 
(PI +P2 =0) and fixed kinetic energy kT =(pi +p~)/2m. 
Initially, the momentum distribution in the ensemble is 
uniform over the allowed states in momentum space. 

In Table I we compare three different nonlinear dif­
fusion coefficients: (i) the steady~state coefficient from 
Ref. 3, (iD the adiabatic coefficient obtained with a delta­
function field, and (iii) the isothermal coefficient obtained 
with field (ii) and a thermostat. 

The three cases have been compared by expressing the 
field strength in terms of the initial momentum Po and 
collision rate llro. E70/Po and Eat/po are dimension­
less, and appear in column one of Table I. It must be em­
phasized that the comparison requires choosing a time re­
lating the strength of the steady and impulsive fields. In 
the two-particle case the natural time to choose is the col­
lision time 70' We use 21"0 in the isothermal case simply 
because the resulting mobilities correspond better with 
that choice. 

The mobilities, ratios of current to field, have likewise 
been compared in dimensionless form. In the linear re­
gime the steady-field response I lroE, and the impulsive­
field response f Idt hoEat, match the value 1- from Ref. 

TABLE I. Mobilities as a function of field strength for two 
hard disks according to the three methods outlined in the text. 
The steady-state values are taken from Ref. 3. The steady-state 
calculations use a field E. The delta-function calculations use 
an impulsive field EM applied at the initial time. I is the ~.~ 
"one-particle current," (p 1 > (P2 >. The energy of the two-' 
body system is P61m in the steady and isothermal cases. In the 
adiabatic case the energy increases to an average value of p21m. 
For the comparison given in the table the dimensionless con­
stant C has been chosen equal to one in the adiabatic case and 
two in the isothermal case. 

Ero/Po 
or lITE f IdtlTEllt 

El::.t/Cpo Steady Adiabatic Isothermal 

0.0 0.5000 0.5000 0.5000 
0.1 0.4975 0.4981 0.4983 
0.2 0.4907 0.4928 0.4934 
0.3 0.481 0.4845 0.4855 
0.4 0.468 0.4741 0.4749 
0.5 0.455 0.4627 0.4621 

3. In the nonlinear case this dimensionless mobility falls 
below the linear value. It is interesting to see that the 
trends of the mobilities, for the fields shown in Table I, 
are similar. 

This comparison strongly suggests that the steady and 
impulsive Lennard-Jones conductivities measured by 
Evans,2 Massobrio, and Ciccotti I should also be compared 
by choosing an appropriate "collision time" or "correla­
tion time." Although this time is not a precise concept an 
estimate can be based on the time required for the current 
correlation function to fall to a value of 1/e, about 
O.ll( mcr2/£)112 in Lennard-Jones units, or on the time in­
tegral of the correlation function, about O.14( mcr2/£)112. 

These times are about 30 times larger than the value 
h =0.0045(mcr2/€)1/2 used to compare the data in Fig. 2 
of Ref. 1. 

Accordingly, we expect that impulsive Lennard-Jones 
conductivities at fields some 30 times higher than those 
used by Massobrio and Ciccotti may well reveal non­
linearities similar to those found by Evans. This question 
is being investigated.7 

APPENDIX 

Here we outline the numerical calculation of the 
impulsive-field mobilities given in Table I. In carrying 
these calculations out, it is convenient to average over the 
before-field probability density, with all momentum direc­
tions, corresponding to 0::; e::; 21T, equally weighted. In 
the adiabatic case (ii) there is no thermostat force. The 
momentum p after applying the field is p = (Po cose 
+ Eat,po sine) (Px,Py)' The post-field temperature 
(p2/mk> is equal to To+(Ead/mk. The time integral 
of the current becomes 

fa"" Idt= fo'" dt f dpf(p,t)p 

(l/21T) f021T de foOO dtpx exp[ -th(p)] , 

(Al) 
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where the collision rate is 1h=4ap /m V. The hard-disk 
diameter is a, 2p /m is the relative velocity, and V is the 
(two-dimensional) "volume" of each two-particle system. 
The integration over time gives 

Ioco Idt = (1/21T)PO'TO I0211' (px/p)de , (A2) 

where 'To is the before-field collision time 1170 
=4aPo/m V. The integral of this well-behaved integrand 
was evaluated by Gaussian quadrature. Sixteen points 
were sufficient. 

The isothermal case (iii) involves the use of a thermo­
stat. As in Ref. 3, the corresponding equation of motion, 
in polar momentum coordinates with p =Po 
X (cose,sine)=(px,Py) is 

(d/dt)ln[tan(e/2)]=-E/po· (A3) 

From (A3), the post-field momentum p can be expressed 
in terms of the initial momentum (again making it possi­

ble to integrate over ewith a uniform before-field weight) 
and the field strength 

tan(e /2) =tan(eo/2) exp( -Et::..t /po) . (A4) 

In this case the collision rate does not change with ip­
creasing field. This is because the combined effect of the 
field and thermostat is simply to rotate the momentum 
vector without changing its magnitude. The current in­
tegral I (Px /p)d e can again be evaluated with 16-point 
Gaussian integration. 

In the limit of very high fields the mobilities for the 
adiabatic and isothermal cases coincide. In the adiabatic 
case the integrand (Px /p) in (A2) approaches unity. Di­
viding the integral by field strength gives a dimensionless 
mobility which approaches zero as Po/Et::..t. In the iso­
thermal case the current integral I Idt approaches Po'To 
at high fields and again the dimensionless mobility ap­
proaches zero as Po/Et::..t. 
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