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DYNAMIC COMPACTION OF POWDERS

WILLIAM G. HOOVER

1. INTRODUCTION

Powder metallurgy and explosive forming are both well-established techno-
logles. With powder metal lurgy, relatively complex parts, requiring |ittie
machining, can be made by casting or by static compression of powdered metals
or ceramics. The volds and Irregularities In the powders can be reduced by
exposure to high-temperature, "sintering", to strengthen the finished product.
With exploslve forming, iarge, reiatively simple shapes can be made. Costly
large~scale static presses can be replaced by translent pressure waves created
by detonating high explosives. The powder-metallurgy and exploslve~forming
methods, were first combined, in dynamic compaction, about 25 years ago."z
The purpose was to make parts from nonequlilibrium powders which were either
hard to compact or which might lose thelr unique properties In the high~
temperature sintering operation. Just as In ordinary explosive forming,
dynamic compaction has the advantage of lighter-weight equipment. The maln
disadvantages are, first, the nolse and vibration associated with high
explosives and, second, the material Inhomogene!ities produced by dynamic
loading.

There are many methods for making nonequllibrium powdered materials. The
distribution of powder particle shapes, sizes, graln structure, and hardness
can be varied widely. Most methods use high=speed coolling, The particles
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+hemselvgs can be made from bulk materials using mechanlcal, inertlal,
electrical, or thermal separation methods, Because the time required to cool
a conducting obJect varles as the square of Its slze, separated powder
particles can be cooled much more rapidly than bulk matter. Thus the most
Interesting nonequiiibrium materials are available [n the form of powders.
Such powders can be consolldated Into technologically useful bulk materlals
elther by static presses or by dynamic compacticon. Dynamic processing
enhances locked~In elastic stralns and lattice defects, often resulting In a
stronger material. Because the dynamlc high-pressure state Is transient,
lasting only nanoseconds or microseconds, the whole compacting process can be
completed before thermodynamically Immlscibie components of the powder
particles have time to separate. Thus dynamic compaction can lead to
nonequllfbrium materials with unlque mechanical, electromagnetic, or chemical
propertles.

The dynamic methods Involve sufficiently compllicated and Inhomogeneous
material behavior and geometrical wave-propagation effects, that numericai
simulation s a relatively Inexpensive and attractive way to predict the
effects of changlng experimental parameters. The dynamical process of powder
compaction, using explosively~driven shock waves, Is well-sulted to numerlcal
simulation.

On the most fundamenta!, atomic, level, nonequiilbrium high-strain-rate
stmulations® should prove useful In understanding the compaction process.
Presently, computer simulations are restricted to a few thousand particles,
Simulations fnvolving more particles but with much less reallstic Interactions
can be carried out with bubbles. Figure 1 shows two stages In a "bubble~raft"
simulation of the sintering process. In the movie version of this simulation,

nucieation and motlion of disiocations are readily fol!owed.4
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Ftgure 1. Bubble-raft model of copper-powder sintering from reference 4.

On the macroscopic scale, computer sclution of the partial differential
equations of motion can be used to provide a realistic mode! of compaction,
To do this, equations of state for metals, powders, and high explosives all
must be included, Here | describe some of the simulation work carrled ocut by
Mark Wilkins, at the Lawrence Livermore National Laboratory, modeling dynamic
compaction. Hls finlite~difference simulatlons of dynamic compaction were
carried out in parallel with corresponding laboratory experiments. He wlll
present a comprehensive report at the San Antonio (Texas) High-Energy-Rate

Fabrication meeting next mon'rh.5



2. NONEQUILIBRIUM POWDERS

Whether a state of matter s Mequliibrium" or "nonequiilbrium" depends
upon the timescale of observatlon. From the standpoint of a nuclear
physlcist, the stable form of matter is Iron, From the standpoint of
thermodynamlc stability, graphite Is stable under-normal conditions while
diamond Is not. From the standpoint of a physicist at dinner, oll-and-vinegar
satad dressing Is sufficlently stable for prompt use. Under ordinary
conditions, dlamond has a reasonable |1fetime, much fonger than that of an
ol|~and~vinegar emulsion, Diamond powder can be produced by compressing
graphite. Because the economic value of dlamonds Increases In a nonlinear way
with slze, it Is commerclally feasibie to compact dlamond powder Into
macroscoplc pleces usefu! for machinery, and possibly, for Jeweliry,

Dlamond 1s only one example of the many metastable forms of matter with
desirableVproperffes. Mechanlcal and electrical properties can often be
improved by using nonequllibrium compositions. For Instance, amorphous
metals, made by rapld quenching of a meit on the surface of a cold subsirate,
can have much higher mechanlcal strengths than do thelr stable parent
ingredients. This Is because the principal mechanism for plastic flow In
metals, dislocation motlon, Is not avallable to a materlal lacking crystallline
order., Flow can also be inhibited by an admixture of atoms of different size,

For a list of more than 80 materlals, metals, alloys, ceramlcs, and
composites, all of which have been compacted dynamically, see page 55 of

reference 2.



3, SHOCK AND DETONATION WAVES

Typical solid yield strengths can be estimated by noting that Mount
Everest must exert a pressure of a few killobars on the supporting earth
beneath. Failure of the earth to fiow, in the presence of this stress,
suggests that solld yield strengths are also a few kilobars. Static apparatus
designed to compact powders must, accordingly, be capable of exerting such
pressures over areas of several square centimeters. The need for a supporting
riglid structure can be eliminated if the high pressure is produced within a
transient pressure wave that need not be supported by material boundaries.
Such waves can be generated by using high exploslives.

The energy-density of typical explosives, relative to their reaction
products, can accelerate metals to velocities of a few kilometers per second.
This speed corresponds to an energy density of hundreds of kilobars, fully
adequate to provide the pressures necessary for the Irreversible deformation
and compaction of solids, even diamond.

Steady shock or detonation waves convert one equllibrium state of matter
into another through an adiabatic process conserving mass, momentum, and
energy. In the case of detonation waves, which drive shockwaves, the
explosive's potential energy is divided between external work done and heat of
[ts reaction products.

In a monatomic fluld a typlcal shockwave has a thickness on the order of
an atomlc diameter.® Figure 2 shows the variation in density, pressure,
energy, and temperature In such a fluld-phase shockwave. The distance scale
Is measured in atomic diameters. The curves were calculated using the
Lennard-Jones equation of state and state-dependent transport coefficients in
the Navier-Stokes equations. The circles come from molecular dynamics

slmulaﬂons.6 The strength of the shockwave in these calculations carrled
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Figure 2. Dense~fluld shockwave. micron-sized particles, a few hundred

atoms in dlameter. A typlcal shock=~
wave travels at speeds of order one kilometer per second. Such a micron-sized
particle will therefore be traversed In about one nanosecond. Thus the
deformation rates near volds, at which the gaps between powder grains are
filled In by deforming material, must be 10 gigahertz or more. Friction and
stress—wave reflections at these gaps can cause intense local heatling,

melting, and jet formatlion. On the scale of Indlvidual grains, the compaction
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process is violent and inhomogeneous.

The time required for thermal equilibration of a micron~sized metal
particle Is about a nanosecond (assuming a thermal diffusivity of about one
square centimeter per second). Thus localized meiting, vaporlzation, and
I1ght emission can be expected to occur during shock compaction.

Computer simulatlons of homogeneous high-strain-rate deformation In
solids are consistent with the {imited Information available from plastic
wave-shape experiments. The "nonequilibrium molecular dynamics™ simulations
are carried out with shearing boundary conditions, changling with 11me.
Typically, a few hundred atoms are used and the deformatlon proceeds to a
total strain of order 100. As the system ls sheared, plastic work is done.
To avold the Irreversiblie heating associated with this work, the equations of
motion are additionally constralned to preserve the temperature or the energy
unchanged., Thus nonequllibrium simulations of high~strain-rate flow can be
carried out In the deslired steady state.’

Figure 3 Is a corresponding~states description of the dependence of yield

strength on straln rate. The figure includes both atomistic simuiation data
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Figure 3, Solid-phase shear stress o as a functlon of strain rate £.



(solld tlnes on the righthand slde of the figure) and experimentally~based
estimates (points on the lefthand side) for the yleid strength as a function
of straln rate. G is the shear modulus; d Is the Interparticle spacing, and ¢
is the transverse sound speed. The maximum strain rate shown In the flgure
exceeds a terahertz and corresponds to nelghboring atoms shearing past one
another at approximately the velocity of sound,

Together, the simulation results, and the experimental evidence1

s, provide
ample reason to belleve that the yield strength during dynamic shear
deformation substantially exceeds Its static value. For a yleld strength of
10 kilobars and a total piastic strain of unity, the work of deformation would
provide a temperature Increase of several hundred kelvins. Much higher

temperatures would be expected near the surfaces of non-spherical powders, or

for powders with higher yleld strengths,

4, LAGRANGIAN SIMULATIONS®

In a fyp!caf "finlte-difference" (as opposed to differential) computer
program, a structure Is divided up Into comoving "Lagranglan zones." Thess
zones are just line segments In one-dimensional simuiations. Zones are
usually triangular or four-sided in two dimensions, and six-sfded polyhedral
"bricks®™ In three dimenslons.

These contlinuum simulations are more complicated than atomistic ones
because each zone has many propertles (the stress and straln-rate tensors, for
instance) which must be followed as functions of tlme, not Just location and

9, simulatlions Involving thousands of

velocity. Just as In the atomistic case
zones are posslble. For a typical calculational grid, see figure 4. {in the
figure each rectangular zone represents a ring of material (powdered metal,

confining plastic tube, or high explosive, from Inner radius to outer

— 76 -
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fliled with hot product gases from

the detonating explosive, The motion

Figure 4. Exploslve compaction. of each of the materials shown

The maximum radlus shown Is 15 (explosive, plastic, and powdered
cent imeters. metal) obeys finite-dlfference

approximations to the continuum
equation of motion, oli = V'o. Stress o and stralne In each zone are approxi-
mated In terms of boundary "node" displacements, leading to ordinary
differentlal equations for the motlon of these nodes, How are the finlite-
difference equations converted into ordinary differentlal equations?
As a simple example, conslder a meter stick divided Into 100 I1-cm zones

by 101 equaliy spaced nodes. Now consider longitudinal deformations. |In the
elastlc regime the longltudinal stress In each zone would be glven by Young's

modulus E times the strain, € = (V = Yo)/Vo. By considering the stress

XX
levels In the two zones adjacent to each node, the accelerations QB can be
calculated. The differentlal-difference equation of motion for a typical node

has the form



mxy = (X jyq=2xtxg,q)/d ’ 1}

where m = pd Is the mass of a zone and d Is the unstrained zone length., If we
fix the two ends of the meter stick, (x; = 0, xigq = 100) this probliem can be
solved analytically. With the nodal displacements glven by x; = A explint -
ikx?), the equatlons of motion lead to the elgenvalue solution for the

vibration frequency w, as a function of the wave-vector k:
w? = (E/pd?) (2-2coskd) (2)

This solutlion corresponds 10 the exact contlinuum scolution, mz = (E/p)kz, In
the timit that d vanishes. For nonzero d the error Is of order d. An
expliclt finlte~-difference solution of equation (1) would typically be carried

out by approximating the second-order time derivative,
K1) 2 Dxg (D) = 2x5(1) + x (=D (@02 . (3)

Here agaln the errors in the finlte~dlfference approach are second order, of

order (d1)Z,

The set of 89 difference egquations resulting from combining the spatlial
discretization In (1) with the temporal discretization In (3) can still be
solved by the plane~wave solution approprliate to {1}, but the solution [s
unstable, and dlverges exponentially In tlme, unless dt Is suffictently small.
The numerical Instability can be analyzed by examining the high-frequency
motion In which adjacent nodes move In opposite directlons, kd = m. The
quadratic equation for exp{iwf} produces unstable sojutions uniess dt is less

than the time required for sound to cross the zone width d, dt € d/c, where



the sound speed c is (E/p)1/2. This conditlon on dt, called the Courant
condition, Is necessary for stabllity. The analysis Is obviously more
complicated by geometrlcal and constlitutive noniinearities, but the principle
applies to any explliclt finlte-difference solutlon of the equations of motlon,
In applying the numerical expliclt finite~dlffence approach to powder

compaction, there are two additlonal complications. Both the equatlion of
state of a porous {(powder) material and the equation of state of the explosive
driving the materlal must be specified. For powders, the simple Interpolative

equation of state

(V/V) = (1 + APY / (1 +BP) (4)

where A and B are chosen to match the powder's initial compressibl|ity and
density, Is sufficlently accurate for many purposes, An accurate version
would have to Include more parameters as well as an explicit dependence on
energy and the size and surface finish of the powdered material,

For high exploslves the equation of state is energy~dependent and time-
dependent, The detonatlon energy {taken from experiment) In each zone Is
released at the time and with a rate consistent with the (experimental)
detonation speed,

In dynamic compaction both the magnitude and duration of the stress are
Important. Because dynamic pressure waves move at approximately sonic
veloclitles, the relative values of the sound speeds in the explosive and in
the material belng compacted are cruclial fo determining the stress history
followed by the material. Figure 5 shows the dlifference between a fast and
slow explosive (relative fo the sound velocity In the steel) compressing a

stack of four steel plates.

.
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Fast (top) and siow (bottom) explosive compresslon processes.,

There are explosive charges both above and below the stack of steel plates.

in the fast-explosive case a strong shockwave is formed.

At the horizontal

centeriine the high pressure generated Is sufficient to force the plates

apart, releaslng the stored compression energy.

rapidly.

The compresslon occurs too

This undesirable behavior can be avoided by using a slower



explosive. In that case (baseof figure) the pressure waves in the steel can
outrun the detonation wave (D) In the explosive, resulting In permanent
plastic deformation.

Because a considerabie part of the energy lost by compression waves In
compressing and compacting powders, typically at only half normal density,
of fsets the galn from cylindrical stress convergence, It is possible to
achleve a falrly uniform stress level. Computer simulations are particularly
useful In studying the variation of results with changing geometrical
features. |f too Iittle explosive is used, losses predominate and powder near
the center of the cyilnder Is not compacted., [f too much is used, the central
region can be melted or vaporlized by stress convergence. A method for
moderat Ing excessive compressive stresses (which can cause melting) or tensile
stresses (which can cause cracking) Is to place a massive "mandrei' along the
cylinder axis. This geometry Is shown In flgure 6 for two dlfferent
thicknesses (&) of explosive.

The dynamical properties of the mandre! influence the quality of the
compacted powder. The effect of an aluminum core within a steel mandre!l is
itlustrated in figure 7, In which copper powder was compressed. In the upper
photograph a pure stesl| mandrel was used. In the lower photograph the steel
contalned a central aluminum bar, The softer aluminum cushioned the
compact Ing powder better the compacting powder better than did the steel,
which exhibits the multiple fractures characteristic of excessively-strong
rarefactlon waves. The calculatlions shown In the figures all correspond to

real laboratory experiments.
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compaction with central mandrel,

Two explosive thicknesses (A},
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Figure 7, Cylindrical compaction
of copper powder. Steel mandrel with

and without aluminum filler.



The sections of aluminum nitride
{(top) and metallic glass {bottom}
cylinders shown In figure 8 were both
made using aluminum mandrels.

Because the equation of state of
powders Is complicated by the effects
of grain size, hardness, shape, and
surface oxidation, and is not simply
refated to the equation of state of
the parent materlals, serjes of simu~
lations must be carrled ocut to make
the parameters of the equation-of-
state models fIt experimental
resuits. Once this fitting procedure
has been accomplished, the resulting
model Is capable of predicting the

results of further experiments.

Figure 8. Aluminum nitride and

metalllc glass cyllnder.

6, OUTLOOK

The potential importance of dynamic compaction, coupled with the
sophistication required for effective model ing make dynamic compaction an
exclting area of physics right now. |In particular, microscoplic modeling of
surface~surface Interactlions, and mesoscopic modeling of sintering, deforma-
tion, and cold welding should have useful Impact on the macroscoplic models
requlred to help design physics experiments and refine commerclal powder

processes,



7. PROBLEMS

A. Caiculate the minlmum radlal strain required fo change a disk to a hexagon
at fixed density. lf only the outer half of the disk deforms, what is the
mintmum straln requlired?

B. Show that the time required for a graln fo reach unlform temperature
varles as the two-thirds power of Its volume. Assume that heat flow
foliows Fourler’s law f = DVZT, where the thermal diffusivity D is
constant,

C. Show that the finlte-difference solution for the vibrations of a meter

stick falls to converge If the Courant condition dt < dfc is violated.
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